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Abstract 
 
Several neurorobotic studies have demonstrated that ability to learn skilled animal movements depends on the 
cerebellum. Models based on Marr-Albus have been applied for different behaviours, such as the vestibulo-ocular reflex 
that suggests that cerebellum can act as an internal model like a state estimator. The prime focus is on the brain motor 
control system, the function of cerebellum as an adaptive filter and on the model of vestibulo-ocular reflex (VOR). In 
this paper simple Vestibulo-Ocular Reflex model was used to simulate oculomotor plant on Matlab/Simulink. Main task 
of the VOR is to convert the vestibular signalto motor commands to the oculomotor plant, in other words head velocityto 
eye velocity. This paper covers in detail the model of basic VOR system and how cerebellum inspired adaptive control 
can be realised. 
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1. Introduction  
 
This paper covers in detail the model of basic VOR system 
and how cerebellum inspired adaptive control can be 
realized. Bioinspired and biomimetic attitudes are 
extensively researched in robotics with the aim to improve 
cognitive, motor, autonomic functions of machines. The 
motor control stabilizes by using bioinspired adaptive 
control algorithms. To maintain gaze stable VOR operates to 
counter-rotate the eyes to prevent retinal slip. Experiments 
of implementation and evaluation of bioinspired adaptive 
control algorithm in the control of a robot eye 
showsignificant performance. For example actuation by 
pneumatic artificial muscles as a model of cerebellar 
function, which is analogue to the VOR [1]. 

It is important that these excellent results be extended to 
neurorobotics. To this end, it is necessary to further 
investigate the neurorobotic adaptive control in order to 
validate and extend current research findings [2 - 4]. 

The objective of the VOR inspired motor learning 
process is to let the brainstem B in combination with the 
cerebellum C get the inverse model of the motor plant P. 
The training signal is the sensory error e(t), which is 
represents the retinal slip signal in the biological system.  
 
 
2. Material and method 
 
2.1 Basic linear system model 
Diagram of circuitry that mediates the horizontal VOR is 

presented in the Fig1. Result of the moving of image 
extremely fast across retina is the vision degradation. The 
retinal slip would beproduced by movements of the head, as 
it happens in locomotion. The VOR operates to counter-
rotate the eyes to prevent retinal slip for maintaining the 
stable gaze [1].  
 

 
Fig 1. Bio-control circuit. 
 

Cerebellar flocculus receives information about head 
velocity, eye movement commands and retinal slip.The 
adaptive control is used to be sure that the inverse plant 
model is accurate. The information about system output has 
to be used for learning. According to Fig 1 and Fig 2training 
signal is retinal slip, which is sent to the flocculus, also 
consistent with flocculus being the adaptive part of the 
controller. 

Characteristics of basic VOR system model are shown 
on Fig 3.The output is a motor command	u(t); input is a 
conjunction of the vestibular system 	r(t) and the cerebellar 
output	z(t). 
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Fig 2. Control circuit 

 
P – the first order dynamic model of oculomotor plant, with 
transfer function P(s) between eye-in-head velocity x(t)and 
motor command u(t) as a Laplace transform in equation 1 
[6-7]. 
 
   𝑃(𝑠) = +,

,-./01
,      (1) 

 
where T4 = 0.2	s is time constant, k = 1 is a gain. 
B – brainstem, which is modeled as a first-order leaky 
integrator plus a pure dc gain. Transfer function of brainstem 
model B(s) is presented as Laplace transform in equation2 
[6]. 
 
   𝐵(𝑠) = 𝐺> +

@A
,-./0A

,    (2) 
 
where GC = 1 is the direct path gain and GD = 1/T4 = 5 is 
the indirect path gain and TD = 0.5s is a time constant. 

Further simulations were executed with different values 
of the parameters T4, GC, GD, TD.It has to be noted, that the 
exact values are not important at this stage, but time 
constants should be in the 100 ms range. 
Brainstem provides a control, which the cerebellum 
improves by adjusting the response via the filter weights. 
The perfect compensation of plant could be achieved by 
brainstem itself, when TD = ∞, 	GC = 1, GD = 1/T4	. 
The cerebellum is implemented as an adaptive FIR (finite 
impulse response) filter	C, with output z(t),	which is given in 
equation 3. 
 
  𝑧(𝑡) = ∑ 𝑤L𝑝(𝑡 − 𝑖 ∙ ∆𝑇),S

LTU    (3) 
 
where input u(t) to the adaptive filter C, which was splited 
into number of L components p.(t), … , pX(t),  with delays 
between them of ∆T. ∆T = 0.02s	(2 s in total). 
wD –weight of the componentpD.  
 
2.2 Learning algorithm 
Weights of adaptive filter have to be changed to reduce the 
perceived visual slip from the input. The inverse oculomotor 
plant is realized when the learning algorithm is successfully 
applied and adjustment of the weights is done in 
combination with the brainstem. The sensory error e(t) is a 
direct result of the performance of the adaptive filter	C. 
 
   e(t) = (P − B\. + C) ∙ x(t)    (4) 
 
As it can be seen in equation 4 error is reduced to zero 
when	C = B\. − P. 

Efficiently, this learning topology subsequently does not 
need a translation of the sensory error into a motor-
command error. For that reason, the observed visual slip is 
expected to build the suitable teaching signal for the 

adaptation of the filter. Rule to adjust the weights is shown 
in equation 5. 
 
  𝛿𝑤_ = −𝛽〈𝑝_(𝑡) ∙ 𝑢c(𝑡)〉,     (5) 
 
whereδwf is the change in the jth weight wf 
β – a constant of learning rate. The value of that is adjusted 
to give rapid learning without instability. 
uc(t)– the value of retinal slip at time t 
pf(t) – the value of the jth filter signal at time t 
〈 〉 – denotes the expected value of the enclosed quantity 
over the time period used for training. 

The feature of learning rule is that it is identical to the 
least means square rule of adaptive control theory. 
The system architecture of the model has been programmed 
by means Matlab and Simulink software. Block-diagram in 
Simulink software is shown in Fig 4.Simulation results have 
been done for a simple first order plant in order to prove 
usefulness of the algorithm. 
 

 
Fig 3. The basic VOR system. 
 

 
Fig 4. Block-diagram in Simulink software 
 
 
3. Results and discussion 
 
Model architecture of the system was programmed by using 
Matlab and Simulink. Experiments below were done for 
simple, first order plant, to prove the usefulness of the 
algorithm [8]. 

Performance of the system to band limited white noise 
input, i.e. head velocity, gave rise to retinal slip with low 
frequency, which is expected because of the existing 
brainstem controller. It can be stated that it is unable to 
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maintain eccentric gaze. The time course of the plant and the 
brainstem is directly effected on how fast eye position 
returns to initial value. 

The performance of the model when training element is 
implemented made with the same characteristics of P and B. 
Learning starts at 30 seconds. For testing how the value of 
learning rate effects on performance, each time the same set 
of signals are used as input r. 

The difference between retinal slip of pre-training and 
post-training experiments gives better understanding how 
adaptive component reduces error (Fig5). 
 

 
Fig 5. Retinal slip before and after training (learning began at 30 s). 
 

Next experiment adaptation to change in plant 
parameters, implemented via a change in the gain of the 
plant, is studied after 150s.The performance of the system is 
illustrated in the Fig. 6. 
 

 
Fig 6. Performance of the system with dynamic plant 

 
Zoom of the Fig 6 shown in Figs 7, 8, 9, start, when 

plant’s gain changed and end of learning respectively.  

 
Fig 7. Start of the learning 
 

Fig 8. Gain of plant changed at 150s 
 

 
Fig 9. End of learning. 
 
Learning rate is increased to learn the plant change. The 
code learns for 150 s then plant model is changed by halving 
the gain. Then there is no learning for about 30 s and the 
effect of changing the plant model and after that time the 
learning can be seen again. A high learning rate results in 
oscillations due to overlearning. 
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4. Conclusions 
 
In this paper pre-training and post-training investigation was 
done. An analysis of the RMS error after training revealed 
satisfactory performance. System performance with different 
learning rates was done. It is concluded that bigger learning 
rates result in smaller RMS error. However higher learning 
rates (β≫1) results in instability hence complete loss of 
tracking. 

Investigation of tracking on the dynamic model reveals 
that the adaptive controller is able to track even when 
changes occur in the plant model. 
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