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Abstract 
 
Piezoelectric transduction has received great attention for vibration-to-electric energy conversion in the last years. 
Cantilevered beams with piezoelectric layers are lately more and more frequently used as energy harvesters. The 
development of piezoelectric energy harvesting systems needs accurate models for system behavior prediction and 
evaluation. In this paper, a Multisim-based distributed parameter model is proposed. In the modeling procedure, Euler-
Bernoulli beam theory is used. A procedure for obtaining the model parameters is described. 
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1 INTRODUCTION 

 
The development of piezoelectric energy harvesting systems 
needs accurate models for system behavior prediction and 
evaluation. Different approaches for energy harvester 
modeling given in the literature sources, are based on the 
description of the physical processes in the active medium 
[1]. The typical design for piezoelectric EH for unimorph 
structures is based on the cantilever beam system [2] as 
vibrations are considered the main external mechanical force 
[3]. I used the Euler-Bernoulli and Rayleigh-Ritz solution to 
model the beam design. [4]. This modeling approach allows 
predicting the electromechanical response in higher 
vibration modes. However, since the utilized approximation 
technique is based on parameter discretization of a 
continuous distributed system, the solution is not exact. The 
used analytical modeling approach [5] is about a single 
vibration mode expression in the piezoelectric relation that 
generates so that it can connect the electric displacement in 
order to link the electrical output to the mechanical shape 
and the operational mode. Another method for representing 
piezoelectric harvesters is the distributed parameters of the 
electromechanical equation [6]. In this method the linear 
constitutive equation and the Rayleigh-Ritz solution are 
developed. Moreover, because the air tamping and the base 
motion which includes a small rotation are taken into 
account the electromechanical modeling for cantilever 
piezoelectric unimorph beam has its base on Euler-Bernoulli 
theory. Appropriate equivalent electrical circuitry of the 
cantilevered piezoelectric system is also developed [7] as the 
SPICE based software is introduced to represent the circuit 
connections. The advantage when using the simulation 
software is that it can easily capture the model behavior of 
each of the vibration modes. Other approaches of modeling 
which have their base on finite element method [8] are also 

researched as a means for derivation of the 
electromechanical coupled system equation for the 
piezoelectric cantilever beam utilizing finite element 
software package which is combined with SPICE simulation 
software for the electrical circuit. The dynamic behavior for 
power harvesting using finite element ANSYS (FEA) 
software package and equivalent circuit analysis using 
SPICE software are also in the development process [9]. The 
finite element procedure is proposed to find the static 
capacitance of the coupled structure, short-circuit resonance, 
charge response for each mode and determining all 
parameters found in the FEA software package for the 
SPICE circuit modeling. An array of piezoelectric harvesters 
(multiple identical harvesters are mounted on the same base) 
is presented by some researchers as a way to increase power 
output that can be harvested. The array application can result 
in the difficulties in finding the appropriate load for the 
device as the authors [10] are proposing the usage of the 
impedance for investigating the electrical response of the 
array. The current paper proposes a Multisim-based model 
of piezoelectric energy harvester. 
 
 
2 FEATURES OF THE MULTISIM-BASED MODEL  
 
A simple structure of a unimorph harvester is shown in Fig. 
1. The harvester beam is supposed to be created when its 
base shows a motion.  
 

 
Fig. 1. Translational and small rotational base motion in a unimorph 

piezoelectric energy harvester  
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3. Modeling Assumptions 
 
Simulation model 
For the study of a unimorph piezoelectric energy harvester, 
the present work uses the Multisim-based model, proposed 
in [11]. The model is shown in Fig. 2. 

 

Fig. 2. Multisim model of a piezoelectric unimorph cantilever harvester 
 
Multisim-based model in fig. 1 contains in its structure 

three differentiator blocks (D1÷D3), four gyrators (G1÷G4), 
one Laplace block (LP), one gain block (E1), a capacitance 
(Cp) and a resistance (Rp) of a piezoceramic layer. RL is the 
load resistance [9]. 

The gyrators are assumed as Voltage Controlled Current 
Sources (VCCS) and the block E1 as a two-pin voltage 
controlled voltage source (VCVS). The main reason is to 
validate the results obtained using the proposed Multisim 
model. Only the value of the resistivity is taken from [12]. 
The summary of the geometries and the material properties 
is given. 
 
Frequency Range 
To obtain the characteristics of the harvester in the 
frequency domain, it is required to set the frequency range. 
Knowing the frequency range allows determining the 
number and values of natural (or resonant) frequencies [2]. 
Therefore, three vibration modes can be studied in the 
specified frequency range. 
 
Model Parameter Values 
The calculated model parameter values for the first three 
vibration modes are listed in Table 1. 
 
 
4 Simulation Results 
 
Using the model parameters, given in Table 1, a parametric 
case simulation study for the unimorph energy harvester is 
performed. Single-mode and multi-mode FRFs of the 
voltage output are obtained. 
 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒	𝐹𝑅𝐹 = ,(.)
012345678

     (1) 
 

The multi-mode FRF is obtained by summation of the 
single-mode FRFs, i.e. 
 

𝐹𝑅𝐹 = ∑ (𝐹𝑅𝐹):;
:<=       (2) 

 
where (FRF)@ is the FRF of the r-th vibration mode. 

The multi-mode voltage FRFs (per base acceleration) for 
various resistive load values over the frequency range of 0 – 
1000 Hz are shown in Fig. 3. Represented here voltage 
frequency responses are based on the single-modes 
simulation results. The set of the electrical load resistance 

considered here ranges from 100 Ω to 1 MΩ. 
 

 
Fig. 3. Three vibration modes are clearly visible for the defined 
frequency range (0-1000 Hz). 
 
By changing the load from 100 , to 1M , the resonance 
frequency changes from 47.8 Hz to 48.8 Hz for the first  Ω 
Ω [13] mode, from 299.6 Hz to 301.5 Hz for the second 
mode, and from 838.9 Hz to 839.9 Hz for the third [13] 
mode. 

These three separate single mode representations (for 
mode 1, mode 2 and mode 3 independently) are 
approximately valid around the respective resonance 
frequencies only. Therefore, they are shown namely around 
these frequencies.   

It follows from the simulated results for the first and 
second mode (Fig. 4 (a), (b)), that the voltage FRFs of the 
largest two values of load resistance are almost indifferent 
especially for the second mode, implying a convergence of 
the curves to the open-circuit voltage. From Fig. 4 (c), it can 
be seen that for the third vibration mode the voltage 
frequency response curve, of even 10 kΩ value of load 
resistance, coincides with the respective open-circuit curve. 
For a different configuration, it might be the case that even a 
load of 100 k might be sufficient to represent the open-
circuit conditions.  

From the qualitative point of view, it is found that when 
the resistive load increases from 100 Ω to 1 MΩ, the 
maximum voltage output increases from 26.365 mV.sec2/m 
(at 47.8 Hz) to 9.981 V.sec2/m (at 48.8 Hz) for the first 
mode, from 6.213 mV.sec2/m (at 299.6 Hz) to 413.486 
mV.sec2/m (at 301.5 Hz) for the second mode, and from 
0.845 μV.sec2/m (at 838.9 Hz) to 20.158 mV.sec2/m (at 
839.9 Hz) for the third mode, respectively. 

For the so found intersection point, that is, for a load 
resistance of 40.07 kΩ, the voltage response has the same 
amplitude (3.305 V.sec2/m) for excitations at both 
frequencies. The maximum voltage amplitude limit 
	RA = ∞		actually, RA = 1MΩ) is about 4.594 V.sec2/m for 
excitation at 47.8 Hz and it is about 9.981 V.sec2/m for 
excitation at 48.8 Hz. 

The obtained simulation results for voltage FRFs have a 
good agreement with the analytical results in [12]. The 
existing insignificant difference in results obtained using the 
Multisim-based model and analytical model can be due to 
the discretization errors within the Multisim solver and 
rounding errors from the pre-calculated modal parameters. 
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Table 1: Blocks/elements settings for the first three vibration modes 
 Parameter Value 

Block/  
Element Mode 1 Mode 2 Mode 3 

G1 -0.090769 -0.050241 -0.029457 
G2 0.442941 0.245479 0.143929 
G3 0.017563 -0.060997 0.100140 
G4 0.017563 -0.060997 0.100140 

LP 
1

sF + 6.007883s + 9.023663e4 
1

sF + 48.9459853s + 3.543949e6 
1

sF + 3.478966e02s + 2.778513e07 
E 17.274146 -17.274146 17.274146 
D1, D2, D3 1 
𝑅S 0.200 TΩ 
𝐶S 79.650 pF 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Voltage FRFs of the first three vibration modes for five different 
values of load resistance 

 

 
Fig. 5. The maximum voltage amplitude in the limit	RA = ∞		actually, 
RA = 1MΩ 

The input displacement is fed to the input of the 
differentiator block D1, which gives the first derivative of 
the wb(t) i.e., the velocity of the mounting base (which is 
jωY0ejωt). The second derivative of the wb(t)– the 
acceleration of the base (–ω2Y0ejωt), is obtained at the output 
of the differentiator block D2. The model contains four 
gyrators (G1 ÷ G4) a search gyrator is represented by 
Voltage Controlled Current Source (VCCS). Gyrators G1 
and G2 convert the acceleration and velocity of the base to 
components of mechanical excitation with h(t) = 0. The two 
components of mechanical excitation (N@W	and	N@[) are, 
respectively, marked as Nr_m and Nr_c. The force 
contribution from the applied/induced voltage in the 
piezoelectric layer is modeled by gyrator G3 and is marked 
as Xr_v(t).The feedback from the electrical to mechanical 
system is modeled using the gyrator G3.The components 
Nr_m and Nr_c are summed and the force Xr_v(t) is 
subtracted from the result, applying Kirchhoff's law with a 1 
ohm resistor (resistorR1) to ground. In this way, the right-
hand side of the modal equation (15) is obtained, which is 
solved by the Laplace block LP that gives the modal 
amplitude η(t). The differentiator block D3 is used to obtain 
the first derivative of the modal mechanical function.  

 
Determining the Model Parameters 
Each block/element of the model requires a specific 
parameter to be predetermined. The model parameters are 
summarized in Table 2. For calculating the values of the 
model parameters, using Matlab software [15], a suitable 
code has been written. In order to obtain the parameter 
values for numerous vibration modes without repeating 
some operations, in this code symbolic variables are used. 
Moreover, the eigenfunction ϕr(x) is also specified as a 
symbolic function. In this case, the symbolic differentiation 
and symbolic integration of the function ϕr(x) can be 
performed. As a result, the first derivative dϕr(x)/dx and the 

integral  are also obtained as symbolic functions. 

Once obtained, the symbolic expressions can be repeatedly 
used for calculation for specific values for different vibration 
modes. The damping ratios ζ1 and ζ2 of the first two modes 
are supposed to be recognized as well. 

The model parameters are calculated and a vibration 
mode should be chosen. The first mode is ought to be chosen 
due to its dominating influence over the output. The r-th 
solution of the characteristic equation corresponds to the r-th 
vibration mode. Solving the characteristic equation requires 
for each root to be defined either the initial approximation or 
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the interval in which the root is located. As the roots are 
considered to be points where the function actually crosses, 
not just touches, the x-axis, the easiest and precise way to fix 
the initial roots approximation or the intervals in which the 
function changes its sign, is to display the function 
graphically. This approach is used here to solve for λr. The 
values of ϕr(L), dϕr(L)/dx and  can be calculated 

using respective symbolic expressions, when knowing the 
value of λr for the r-th vibration mode as well as the harvester 
parameters. The value of the undamped natural frequency ωr 
and of the modal coupling terms χr and kr for the r-th mode is 
determined. In other words, the proportional damping 
coefficients csI and ca can be defined by using the ωr and ζr 

parameters for the first and second modes (that is, for r = 1 
and r = 2).  

 

     (3) 

Finally, the values for the coefficients 𝑚𝛾:^ and 𝑐`𝛾:^, 
required to obtain the components of mechanical excitation, 
as well as for the coefficients 2ζrωr and 𝜔:F of the left side of 
the modal motion equation are calculated.  
 
Table 2. Parameters of the model blocks/elements 

Block/Element Label Model Parameter – 
Value/Expression 

Differentiator 
D1 1 
D2 1 
D3 1 

Gyrator 

G1  

G2  

G3  

G4  

Laplace function LP  

Gain_2_PIN E1  
Resistance R1 1Ω 
Internal resistance of the 
PZT layer Rp  

Internal capacitance of 
the PZT layer Cp  

 
The flow diagram of the steps required to calculate 

parameters used by Multisim-based model, is shown in Fig. 
6. 

 

 
Fig. 6. Flowchart for obtaining the model parameters 

 
 

5 Conclusions 
 
In this paper, a simulation study for a specified unimorph 
piezoelectric energy harvester is performed by using a 
Multisim-based model. Also a modeling procedure using 
Euler-Bernoulli beam theory as well a procedure for 
obtaining the model parameters are described. The Multisim 
model and the proposed approach for results processing can 
be successfully applied to studies in regard to the frequency 
responses of such electrical outputs in energy harvesters. 
 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License 
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