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Abstract 
 
Combining binary LDPC codes and high order constellations is a simple but effective way to improve the bandwidth 
efficiency. Since the binary LDPC codes require soft decisions as the input information, the constellation has to provide 
soft information calculated by Log-Likelihood Ratio (LLR) to it. In this paper, a simplified algorithm to calculate LLR 
for binary turbo-codes is applied for binary LDPC codes. Simulation results show that the simplified algorithm have a 
very small performance loss over Gaussian and Rayleigh channels. 
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1. Introduction 
 
Combining high errors correcting codes and high order 
constellations, such as Quadrature Amplitude Modulation 
(QAM), is an effective way to improve the bandwidth 
efficiency with a high transmission quality. Turbo-codes and 
LDPC codes are powerful error correcting codes can 
approach the Shannon limit [1]. 
 Turbo-codes [2] are obtained by the concatenation of 
two or more low complexity codes to obtain a powerful code 
with reasonable complexity. Their decoding is done 
according to the principle of iterative decoding or turbo to 
improve code performance. 

After the power of iterative decoding, which was shown 
by the invention of turbo-codes. Binary LDPC codes, which 
have been neglected because of their complexity, for many 
years since they were introduced by Gallager in 1962 [3, 4], 
have been rediscovered by Mackay [5] in 1995 and 
Spieleman and others [6] in 1996. LDPC codes are linear 
block codes, based on sparse parity check matrices, i.e. the 
number of non-zero elements in the matrix are less than the 
number of zeros, and decoding according to the iterative 
decoding principle. 

LDPC decoders and turbo decoders must operate in soft 
decisions which can be calculated using the LLR at QAM. 
However, the number of operations performed to calculate 
the soft decisions used by the decoder increases with the 
order of the constellation. Thus, this calculation varies with 
the type of the transmission channel. 

Several algorithms have been introduced in order to 
simplify the exact calculation of the LLR. The pragmatic 
algorithm, introduced in [7, 8], attempts to simplify the 
calculation assuming that the likelihood values are Gaussian 
variables. The max-log-MAP (Maximum A Posteriori) 

algorithm is the most popular simplifying the exact 
algorithm [9]. 

In this work, we apply the pragmatic algorithm for 
binary LDPC codes. It is programmed to adapt as perfectly 
as possible the transmission system to the type of channel 
concerned. This simplification leads to simplify the 
implementation of the system. We restrict our description of 
combining binary LDPC code with square Gary-QAM 
constellations MAQ-16, over Gaussian and Rayleigh 
Channels. 

The rest of the paper is organized as follows. Section 2 
introduces the exact calculation of LLR for Gray-QAM with 
square constellation over Gaussian and Rayleigh channels. 
In Section 3, the simplified calculation of LLR is 
investigated, respectively. Finally, the simulation results and 
concluding remarks are given in Section 4 and 5, 
respectively. 

 
 

2. Exact LLR calculation for Gray-QAM with square 
constellation over Gaussian and Rayleigh channels 
 
2m-QAM transmit at each instant nT m bits 𝑢!,! , 𝑖 ∈
1,… ,𝑚 , that is represented by 𝑎! + 𝑗𝑏! where 
𝑎! 𝑎𝑛𝑑 𝑏!  ∈ ±1,±3,±5,… ,𝑚 ± 1 . After passing 
through the transmission channel, the observation relating to 
the couple 𝑎!,  𝑏!  is represented by a couple 𝑎!! ,  𝑏!! .  
 
 In the case of Rayleigh channel 𝑎!!  and 𝑏!!  are given by: 

 
𝑎!! = 𝛼!𝑎! + 𝑧!                                             (1) 
 
𝑏!! = 𝛼!𝑏! + 𝑧!                                       (2) 

 
Where 𝑧! is a Gaussian noise, centered, with variance 𝜎! 

and  𝛼! is a variable characterizes the attenuation of the 
transmitted signal. In the case of Gaussian channel  𝛼! = 1. 
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At the reception, we treat the couples 𝑎!! , 𝑏!!  to extract 
m samples 𝑢!,! , 𝑖 ∈ 1,… ,𝑚  each representative of a bit 
𝑢!,! associated. The sample 𝑢!,! is obtained using the 
relationship 𝐿𝐿𝑅 𝑢!,! .  

𝐿𝐿𝑅 𝑢!,! , 𝑖 ∈ 1,… ,𝑚 , is calculated as follows [10]: 
 

𝐿𝐿𝑅 𝑢!,! = 𝑙𝑜𝑔 !" !!! ,!!!  !!,!!!
!" !!! ,!!!  !!,!!!

                                   (3) 

 
Where 𝑃𝑟 𝑎!! , 𝑏!!  𝑢!,! = 𝑤  is the probability that the 

available couple is 𝑎!! , 𝑏!! ; knowing the binary symbol 𝑢!,! 
is equal to w. 

For a square constellation 𝑚 = 2𝑝, 22p-QAM has the 
particularity to be reduced to two amplitude modulations 
with 2P states independently acting on two carriers in phase 
and quadrature [11]. According to the this property (the case 
of a square constellation): 

 
Ø The p expressions in phase, obtained from the 

equation (3) are consequently the following: 

𝐿𝐿𝑅 𝑢!,! = 𝑙𝑜𝑔 !" !!!  !!,!!!
!" !!!  !!,!!!

        𝑖 ∈ 1,… , 𝑝       (4) 

 
Where: 
 
𝑃𝑟 𝑎!!  𝑢!,! = 𝑤 =

    
!"# ! !

!!!
!!! !!!!!,!

! !!!!!
!!!

!"# ! !
!!!

!!! !!!!!,!
! !!!!!

!!! ! !"# ! !
!!!

!!! !!!!!,!
! !!!!!

!!!

,        

1,… , 𝑝                                               (5) 
 
With 𝑎!,!!

 are possible values of the symbol 𝑎! when the 
symbol 𝑢!,! to be transmitted has the value k (k = 0 or 1); 
𝑤 = 0 𝑜𝑟 1; For a Gaussian channel  𝛼! = 1. 

Therefore, the equation (4) yields to: 
 

 𝐿𝐿𝑅 𝑢!,! = 𝑙𝑜𝑔
!"# ! !

!!!
!!! !!!!!,!

! !!!!!
!!!

!"# ! !
!!!

!!! !!!!!,!
! !!!!!

!!!

                     (6) 

 
Ø The p relations in quadrature eventually lead to the 

following expressions: 
 

𝐿𝐿𝑅 𝑢!,! = 𝑙𝑜𝑔 !" !!!  !!,!!!
!" !!!  !!,!!!

  𝑖 ∈ 𝑝 + 1,… , 2𝑝      (7) 

 
With the same demonstration as precedent, the equation 

(7) yields to: 
 

𝐿𝐿𝑅 𝑢!,! = 𝑙𝑜𝑔
!"# ! !

!!!
!!! !!!!!,!

! !!!!!
!!!

!"# ! !
!!!

!!! !!!!!,!
! !!!!!

!!!

                                 

           𝑖 ∈ 𝑝 + 1,… , 2𝑝                  (8) 
 
With 𝑏!,!!  are possible values of the symbol 𝑏! when the 

symbol 𝑢!,! to be transmitted has the value k (k = 0 or 1). 
Equations (6) and (8) are the exact calculation of the 

LLR, it is the optimal calculation that represents the log-
MAP algorithm [12-14]. However, it involves several 
operations. Several algorithms have been introduced in order 
to simplify the exact calculation of the LLR.  

In this work, we use a simplified algorithm, a pragmatic 
algorithm, that used for binary turbo-code. we apply this 
simplified algorithm for binary LDPC codes. In [7], the 
authors show that, for turbo-code, the pragmatic algorithm 

got on a Gaussian channel can be reused efficiently on a 
Rayleigh channel (Figure 1), this provided insert an 
additional operation to accommodate, each time nT, the 
channel attenuation 𝛼!.  

 

 
Fig. 1. Principle of simplified LLR calculation  

 
 

3. Simplified LLR calculation  
 
Gaussian channel 
The pragmatic algorithm introduced in [7] shows that the p 
relations in the phase and p relations in the quadrature, 
multiplied by 𝜎! 2 , are given respectively by the equation 
(9.a) and the equation (9.b): 

𝐿𝐿𝑅 𝑢!,! = −𝑎!!   
 
𝐿𝐿𝑅 𝑢!,! = 𝐿𝐿𝑅 𝑢!,! − 2!!!  
        ⋮  
𝐿𝐿𝑅 𝑢!,! = 𝐿𝐿𝑅 𝑢!,!!! − 2!!!!!                        (9.a) 

        ⋮   
𝐿𝐿𝑅 𝑢!,! = 𝐿𝐿𝑅 𝑢!,!!! − 2  
And  
𝐿𝐿𝑅 𝑢!,!!! = −𝑏!!   
𝐿𝐿𝑅 𝑢!,!!! = 𝐿𝐿𝑅 𝑢!,!!! − 2!!!  
        ⋮  
𝐿𝐿𝑅 𝑢!,!!! = 𝐿𝐿𝑅 𝑢!,!!!!! − 2!!!!!                 (9.b) 

        ⋮  
𝐿𝐿𝑅 𝑢!,!! = 𝐿𝐿𝑅 𝑢!,!!!! − 2  
For a good approximation of equations (6) and (8) 

without multiplication by 𝜎! 2 , we multiply the equations 
(9) by 2 𝜎! , we get: 

 
𝐿𝐿𝑅 𝑢!,! = 2 𝜎! ×𝐿𝐿𝑅 𝑢!,! , 𝑖 ∈ 1,… , 2𝑝              (10) 
 
Rayleigh channel 
In [15], the authors assume that the attenuation of the 
Rayleigh channel 𝛼!, at time nT, is known perfectly by the 
receiver. He shows that the pragmatic algorithm got on a 
Gaussian channel can be reused efficiently on a Rayleigh 
channel, as follow [8]: 

First, as the variable 𝛼! at time nT is known, it is 
possible to divide the two samples 𝑎!!  and 𝑏!! , equations (1) 
and (2), available at the channel output by  𝛼! [8]. Samples 
𝑎!"  and 𝑏!"  thus obtained are expressed in the form: 

 
𝑎!" =

!!!

!!
= 𝑎! + 𝑧!!                                   (10) 

𝑏!" =
!!!

!!
= 𝑏! + 𝑧!!                                   (11) 

Where 𝑧!!  is a Gaussian noise, centered, with variance 𝜎!! 
equals to 𝜎! 𝛼!!.  

Second, Since the samples 𝑎!"  and 𝑏!"  are modeled by 
Gaussian variables, it is possible to apply directly on the 
samples  𝑎!"  and 𝑏!"  available, simplified algorithms of LLR 
strictly identical to those used when the transmission 
channel is Gaussian, and this irrespective of the modulation 
used.  

!𝑢!,!! !	 !𝑢!!,!!	

1 𝛼!⁄ 	

(𝑎!! , 𝑏!! )	

𝛼!! 	

Simplified
LLR  

Binary LDPC  
decoder 
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Finally, it is necessary to multiply by 𝛼!! the samples 
𝑢!,!! = 𝐿𝐿𝑅 𝑢!,! . 

 
 

4. Simulation results 
 
In this section, we will show the effect of simplifying 
calculation of the LLR for 16-QAM, using Gray mapping, 
on the performance of binary LDPC codes, with different 
block lengths and iterations number, over Gaussian and 
Rayleigh channels. Simulation results, obtained by computer 
simulations using Matlab, are given in terms of Bit Error 
Rate (BER) versus Eb/N0, where Eb is the energy per 
information and N0 is the spectral density noise. 

Figure 2 shows performance comparisons, on a Gaussian 
channel, between a binary LDPC code using the simplified 
LLR and a binary LDPC code using the exact LLR, with the 
same 512 input bits, code rate of 1/2 and frame equals 20. 
LDPC code is made by parity check matrix of size 
512×1024; with two numbers of iterations 4 and 6. 

 
Fig. 2. Performance comparisons, under Gaussian channel, of (512, 

1024) LDPC code using exact and simplified LLR algorithms, with 4 
and 6 iterations (frame =20) 

Under Gaussian channel and with different iteration 
number, as seen in figure 2, the simplification of LLR 
calculation has a very small performance loss. In order to 
study the influence of the simplified calculation on the 
performance of a binary LDPC code on a Rayleigh channel, 
in figure 3 a same performance comparison obtained on a 
Gaussian channel are performed on a Rayleigh channel. In 
this figure, we show performance comparisons, on a 
Gaussian and Rayleigh channels, between a binary LDPC 
code using the simplified LLR and a binary LDPC code 
using exact LLR, with the same 512 input bits, code rate of 
1/2 and frame = 30. LDPC code is made by parity check 
matrix of size 512×1024; with number of iteration equals to 
4. Also, we can see that the simplified LLR has a very small 
performance loss over Rayleigh channel.  

The remarks obtained in figure 2 and 3 can be see when 
we increase the matrix size of LDPC code as shown in figure 
4.  

Figure 4 shows performance comparisons, on a Gaussian 
and Rayleigh channels, between a binary LDPC code using 
the simplified LLR and a binary LDPC code using exact 
LLR, with the same 1024 input bits, code rate of 1/2 and 

frame = 10. LDPC code is made by parity check matrix of 
size 1024×2048; with number of iteration equals 4.  

As a result, the simplification of LLR calculation can 
achieve a good performance with a simple calculation. 

 

 
Fig. 3. Performance comparisons, under Gaussian and Rayleigh 
channels, of (512, 1024) LDPC code using exact APP and simplified 
LLR algorithms (frame = 30) 

 

 
Fig. 4. Performance comparisons, under Gaussian and Rayleigh 
channels, of (1024, 2048) LDPC code using exact APP and simplified 
LLR algorithms (frame = 10) 

 
 

5. Conclusion 
 
In this work, we used the simplified calculation of the LLR 
for binary LDPC codes. This simplification is programmed 
to adapt as perfectly as possible the system to the type of 
channel in question. Also, it ensures an efficient decoding 
regardless of the channel type. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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