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Abstract

A robust nonlinear controller based on an improved feedback linearization technigue with state observer is developed for
a class of nonlinear systems with uncertainties and external disturbances. First, by combining classical feedback
linearization approactvith a discontinuous control and a fuzzy logic system, we design and study a robust controller for
uncertain nonlinear systems. Second, we propose an optimized extended Kalméakiieior the observation of the

states. The parameters to be optimiaeel the covariance matrices Q a@dwhichplay an important role in the EKF
performancesThe particle swarm optimization algorithm insures this optimizatigapunov synthesis approach is used

to prove the stability of the whole control loop. The praubspproach is applied ont&o-link robot system under

Matlab environment. Simulation results have confirmed the effectiveness of the proposed approach against uncertainties
and external disturbances; and exhibited a more superior performance thanitn@nowed control actions.

Keywords:Feedback linearization, discontinuous control, fuzzy logic, extended Kalman filter, particle swarm optimization.

1. Intro duction solution to observerOsynthesis problem was completely
resolved by Kalmalfil3] and Luenbergef14]. Contraily, in
The control design has played an increasingly important rolaonlinear systems, thereOs not aeg@nsolution to the
in industrial applications andn advanced science i.e., problem ofobserversynthesis which prompted researchers
mechanical engineering systemegrospaceand robotics  to develop nonlinear observerSeveral algorithmson this
The mainobjectivesfor control system design astability,  subject can bedound in the literature namely extended
good trackig and disturbance rejection [1]. Feedback Luenberger observer [1516], extended Kalman filter
linearization is an approach to nonlinear control desigr17,18], sliding modeobserve{SMO) [19], model reference
which has attracted a great interest of researchers in recadaptive systerf20], artificial neural networlobserver[21]
years[2-4]. The basic idea of the approach is to algebraicallyand fuzzy logicbserve(22,23].
transform a nonlinear system riymics into a fully, or Amongstall thesealgorithms, EKFprovidesthe optimal
partially linear one, and then linear control techniques can bgtate estimatodue toits ability to considerthe stobastic
used.In the classical feedback linearizatiff), the presence uncertainties. EKF is a recursive algorithm based on the
of uncertaintiescan perturb the function of the feedback knowledge of thestatisticsof both measurement and state
linearization controller which can lead to sydem noises Compared toother nonlinear observer[24], EKF
instalilities. In the nonlinear control desigthe question of algorithm has &ter dynamic behavior, resistance to
how to handle thearametric uncertaintgnd disturbances is uncertaintiesand noiseand it can work even in the presence
one of the important issuéa the control theoryIn this of a standstill conditionsEstimation performanceis the
context, we find in the literature thatlassical feedback major problem associated EKF it stronglyinfluencesthe
linearizaion wascombined with someontrolapproaches to parameter valuesf the system, state and measurement noise
solve the problem of robustnggs4, 6-12]. covariance matrice® andR, respectively Following [25],

In practice, the state variables of a given system ar® and R have to be acquired by taking into account the
rarely available for direct measurement. In most casestochastic properties of the corresponding naisasis why
thereOs a real needing for reliably estimate asumed in most casesQ and R are usually unknown matrices.
states; the elaboration of a control law ofjigen system  However, since these are usually not known, in most cases,
often requires access to the value of one or more of its statébe covarnce matrices are used aeeighting factors
For this reason,it is necessary to design an auxiliary (factors adjustment). Moreovethese matrices were first
dynamic system;named observercapableto deliver state  tuned manually bytrial-error methods which are very
estimatesfrom the measurements provided by physicaltedious proceduredue to large time consumptid@6]. To
sensos and applied inputs. In the case of linear systems, thevercome this problem and to avoid the caoational

complexity oftrial-error method authorsin [27] have used
*Email addressdjghou.ali@gmail.com genetic algorithms (AGs) to optimize these matrices
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Two contributions will beoroposeé in this investigation

Assumption 4. The desired trajectory X, is once

(1) First, a new form of feedback linearization, called differentiable in time. Furthermore, every element of vector

improved feedback linearizationontroller This controller
combines classical feedback linearizatign discontinuous
control and fuzzy logic In the proposed approacty
feedback linearization control law is first designéat
control purposes (stability, trajecy tracking)using pole

X,, as well asx{” is available and with known bounds.

Concerning the nonlinear control problem, we propose to
use the fedohck linearization approadi29]. This choice is
motivated by its ability to controlling nonlinear systems and

placement. Then, a écontinuous control is added to ji5 design simplicity.
guarantee that the state reaches the sliding mode in the

presence of parameter uncertainties and

control perfornance and to reduce chatteripigenomenoin
the sliding mode.

externgl o
disturbancesFuzzy logic system is employed to improve

Proposed control design
Let e=X! X, be the tracking errotherefore the feedback
linearization control law with EKF algorithm can be

(2) Second, an optimized EKF observer for system statesomputedeasily as follows

estimationin which the optimization of EKF matrice® (
and R) is ensured by amlternative optimization method
proposed in [28] which is agvolutionary algorithm inspired
by social interactions, that relates toarticle swarm
optimization(PSO) algorithm.

This paper is structured as followls Section2, we present
the problematic and detailedexplanation ofthe proposed
method. $nulation results are conducted iSection 3.
Finally, conclusions are given iBection4.

2. Problem formulation and proposed method

2.1 Problem statement

Consider then™ order nonlinear uncertain systemhich is
described by:

X = £(X)+g(X)u+d

1
By =x )

where X is the n" time derivative ofx, y! R is the
output of the systemu! R is the control,d represerdt

the sum of the parametric uncertainties and externe

disturbances,f and g are both unknown real continuous
functions assumed to be bounddlfe suppose that the

system state vector X = (X %eeeiX,)T

W= (1 F(R) K, e+h,)

2
a(®) @

where §=(e,éa)Tis the tracking error vector and

Ko =(k,,k,)" is chosen sucthat R(p)= p?+k, p+..+k

is a Hurwitz poynomial.
By combiningcontrollaw Eqg.2and systenkq.1, we get
thefollowing error dynamics

B+k, e+k e=0 ©)

in whichthe main objectivevill be Lim et)=0.

FLS
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Extended Kalman Filter

Y
Fig. 1. Schematic diagram of EKF optimization based psaubcontrol
approach

Estimated States

The presence of uncertairgieand disturbances can

=(%.%,...x"Y)"" R'is unavailable for measurement and it perturb the feedback linearization controlleworking:

will be estimated by the EKF (seeig. 1). The control
objective is to find a control laws=u(®) such that even in

the presence of external
imprecision, the state vectorX will track a given desired

bounded reference trajectody, = (X,,X,,...x"" )" .

In respect of the dynamic system presenteiqri, the
following assumptions will be made:

Assumption 1 The functon f is unknown buthe error on
its estimate is bounded, i.e*.f()@)! f(X)’" F  where

f(X)is an estimate off (X).
Assumption 2 The input gaing is unknavn but positive
and bounded, i.e0< Imin ''9(X)! gmax -

Assumption 3 The disturbanced is unknown but
bounded, i.¢d|! Dwhere D >0.

disturbances and modelingn

therefore, systemdynamics may lead tdénstabilities like
static errors (sepp]). To overcome this probleme propose
to improve this controlby adding a discontinuous contras
own inFig. 1. Discontinuous control can be found in
sliding mode control This choice is motivatedy its high
robustnessagainst uncertainties and disturbanc8s, the
whole control lawwill be corstitutedof two terms: feedback

linearization control tem(u*) and a discontinuous control

term (udis) as follows:
u=u+u, :ﬁ(! 0! KL, e+k,)l Ksgn(y) (@)
where

s is definedby a sliding surface andescribedoy thestate
space equations(e) =0, such that
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where n is the number of system statés, is the centre of

Q= (") "e ©) . of syste ‘
gravity of he membership function &k~ for the I™ rule.
with s:R'! R [29] Therefore, the control la&qg.4becomes:
In thetwo dimensional casé =2) , Eq.5becanes U=+ K Uy,
s=et/e o ool TV ket K son(g ©

So, the time derivative of will be with K, is the output othe FLS as shown irFig. 1 and

s=g+le (7) thereforethe final gain become#, = K 1 K.

The use othe discontinuous sign function will excitn Based on Assumptionsbl3 and considering that the
undesired phenomenon called chatteaused by the estimateg(®) could be chosen according to the geometric

discontinuous switching function. In this context high .
: . =9, , th ds of g(X) may be
switching gainK of u,. in Eq.4will lead to an increasi Mean g(R) =y/Gr,Gns - the bouds of g(X) y

oscillations of the control input signal, antlereforean  expressed a$ f<g(R)/g(X)<! where! =g /g, .
excitation of high frequency dynaes, consequently, & ynpder this condition, the gainK, should be chosen
chattering phenomenowill be created Moreover a low )
switching gain K can reduce the chattering phenomenor@ccording to:
and improve the tracking performance despiteertainties B .
and external disturbances. However, ingieg the gain K, ! " g"(R)($+D+ F)+g#1()@)(’@‘#"‘l§g|) (10)
causes an increase of the oscillations in input control around
the sliding sgrfacg. To achlgve more approprlatewhere! is a strictly positive constant related to the
performance, this gain must be adjusted. This adjustmentis =~ =" °
based on the distance between the system states and [R@chingtime. _ ,
sliding surfae. That is to say, the gain should be high when N order to dominate the states of the system to arive
the state trajectory is far from the sliding surface, and whej€ Sliding surfaces=0 in a limited time and to stay there,
the distance decreases, it should be redukieid.idea can be (€ control law must bedesignedso that the sliding
realized by combining fuzzy logic with discontinuous condition described iq11is satisfied
control to adjustthe gain K adaptively (see Fig. 1)
according tesomeappropriate fuzzy rules. 12321 #H

For this reasona oneinput oneoutput FLS is designed ot~ °
with an input s which reflects the distance of the error

trajectory to the slidingsurface. The output of the fuzzy This goal isassured byhefollowing lemma.
system is denoted bl .

11

An FLS, consists of four parts: the knowledge base, th emma.

fuzziler, the fuzzy inference engine, and the defuzziler. ThernS'der. th?m ulfnfhertaln N nlo.nllnetar. syslte?qdl Eang

knowledge base is composed of a collection of fufaien ssumptions 4. € control Inputu 1s selected a q

rules whose rules can be stated in a linguistic manner #&)d by consideringK, as Eql0, then, the previous

follows: conditionEq.11 is satisfied, which ensures the convergence
of the tracking error vector to the sliding surface

R:If sis A, Then K, isB', 1=12..,N

i Proof:
| Consider the Lyapunowhction candidate

where A and B' are fuzzy sets, which are associated with

the fuzzy membersh functions i, () and p (K,,), L=(Y2)s (12

respectivelyandN is thetotal number of rules.

Note that the singleton fuzzilcations, center average
defuzzilcation, Mamdani implication and product inference
engine are used inithpaper. Therefore, the output of the y _1d 2 _ . _(uy ela=(u1 % +~
fuzzy system could be described by the following equation: . 2 dtsz s$ (é ’ é)s (k' % éa)s

\ =(F(X)+g(X)u+d! #,+"&)s
Kmy(s):M 6) :;f(X)+g(X)g”(>@)(1 f(R)+4,!
" (#ay9) K €)! GO K, Sgn(s)+d! #,+"

Its time derivative is given as
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Noting that: f(X)= f(9)! ;;tf(ﬁ)! f(x)§5, vectors with zero mean and withasso@ted covariance

matricesQ = E[w,,w] ] and R=E[v,,v;], respectively.

o .. . L .. it
@=1 f(R)+4,! kiyy @ and @ =1 F(R)+X,1 [0, "] e one To apply EKF to the nonlinearitgiven byEq.17, it must

has be linearized by using first order Taylor approximation near
a desired reference poirtt®,,W, =0, =0), which gives
I!_:;} FOR)! £(X))+d+g(X) gu()@)@ the following approximated linear model:
1@ ! g(X) K, sign(s)ys (13 ] )
- on( gzxm! X))t FR U 0+F(X," R)HW, (0" 0)  (1g

Therefore, considering Assutiigns 1 and 2, and defining &' N(Xov)! hOR0)+H (X" R)+V, (v, " 0)

K, according tq.10, ! becomes
where F , W, , H, andV, are the Jacobean matrices given

L1 g g b
which implies L(t)! L(0) . From the definition ofs in _1f(X,0) W _! f()@k,w) H _'h(X,0)
Eq.6 it canbe verified thate is baunded. Thusassumption k I X 7)@’ k Iw Tk IX | eew
4, Egs.6 and imply that s and & are also bounded. = =0 o
_'h(R ,v)
The finitetime convergence of the tracking error vectoramOI Vie= v (19)
v=0

to the sliding surfaceto the sliding surface can be

representeds follows: . . . .
P The EKF is a recursive algorithm that is used for

estimating staterector of the nonlinear dynamical systems

Ezlﬂsz =81 " A (15) It consists of two parts, namely, the prediction and
2dt measurement correctioli.can be describeas follows:
Then, d|V|d|n9 b){slf’:lnd |n.tegrat|r.19 both .5|des O\fer the LR = (R, u.0)
interval 0<t<t_, in which t_ is the timerequired to hits, Prediction:" (20
gives g P = R RS +HWQW/

I'Sed” #$1 9"
°l8 ° Compugtion ofthe Kalman Gaink, as
|st=t)|! |s(t=0) <! "t

Kk:F)k+1/kHI(HkF)k+1/kH:+V|<R\/kT)!1 (21)

In this way, considering__. as the time required to hit

reach

Thenupdate the statestimate and predidie state

s and noting thajs(t,.., ) =0, one has CoVarianceas

rea

(16) Correction:

and, consequently, the finite time convergence to the sliding:
surfaces. ﬁ =

k+1/k+1 .k+]Jk + Kk(zk ! h(ﬁkﬂ/k ’0))

(22)

2.3 Extended Kalman filter ?)ﬂwm =P.! KHP..,.
Extended Kalman filter is a generalization of the Kalman

filter which is a stochagt observer for nonlinear dynamical - o o

systems. In this papewe shall attempt to find the best Where X, denotesthe priori state prediction vector,

estimate of the state vectof, of the system which evolves ¥

k1S the posteriori state prediction vectoR,

k+1/k
according to the following discretéame nonlinear dynamic: denotesthe priori prediction error covariance matri)@kw
is the posteriori prediction error covariance matrix
#Xm = F (XU W) (17) Therefore the functional representation BKF algorithm is
#Z, =h(X,.v,) depicted irfig: 1. . . o

Determiration of matrices Q and R is a difficult task,
. . ially when th rr nding noi have unknown
where f(.) represents the evolution function of the systemgtsopcicazt% or 0(;'; o rtti ei ncgr d(zsrpt% a(il/ oi%l th(i)ssgrsobli r:] thue ce °
h(.) represents the relationship between the state vector apghatrices will be consideredas free parametersto be
adjustedIn the literatureBolognani S, and al.1999)were
the first who adjusted these matrices manually with trial
control input to the systemt discrete timek , and w, and  error method[26]. Unfortunately, this method is tedious
sk. Therefore, to overcome this difficulty and gweoid

. . 1
v, are the process and measurement white Gaussian no'tsﬁ%l-error method, authors in [27] have used genetic

4

the measurement resulZ,, whereasu, stands for the
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algorithms to optimie these matrices automatically. In our

The new positiorand updated matric&d andR are then

work, we suggesto usea recently proposed method for the used to adapt the EKF for the next iteration until a

adjusting and optimization afovariancematricesQ and R
by using the PSO algorith{28].

24 Particle Swarm Optimization algorithm

Particle Swarm Optimition (PSO) was developed by

Kennedy and Eberhart in 1995he main idea of PSO

predefined number of iterations have been reached, and then
optimal matrcesQ andR are obtained. FinallyoptimizedQ
and R are injected into EKF observéor a future online
running

Note that he PSGEKF algorithm is executedin an
offline manner for the reason thRSO algorithm requires

algorithm was based on the simulation of simplified sociakeveral iterations to achieve aptl solutions. Foreach

models such as bird flocking or fish schoolifithe PSOis

used ina wide range of applications such as optimizaten;
the optimization algorithm has beentimesallowing the optimization of the parametépsandR,

framework for
developed based on PSO algorithm

In this work, the main PSO taskdepicted inFig. 1, where
we runningit in an offline way with EKF in order to
efficiently find the optimal covariance matric€andR, we
will call this combination PSEEKF. Mean square error
(MSE) criterion defined inEq23 is used inthis paper as
fitness/objective function between thetual outputandthe
estimatedbneaccording taa certainnumber of iterationsN

to be performed for each step of estiroati

iteration PSOEKF algorithm must be executed once.
Therefore, PSEEKF algorithm should be executed several

from each measurement.

3. Simulations and discussions

In orderto verify the performance of proposed optintize

observetbased control scheméet us consider two degrees
of freedom planar manipulator with revolute joints shown in
Fig. 2

lll

MSE=—" T (y,! %) (23

where ¥ is an estimate of theutput y and N denotes the
number of data samples.
The contol input u and the measured respongewill
be considered as input signalsBKF observer, whera! is
applied to botmonlinear system arektended Kalman filter.
The Actualoutput y andthe estimated outputp are set
to bethe inputs of theperformance evaluataf the PSO
module through a comparator. Thétness functionis
calculated by the performance evaluator. Then, obtained
values of MSE will be used in the PSO algorithm. Based on
these values, PSO optimizer will calculate and optimize the
unknownparameters of covariance matric@andR. After
that, we get the best set of particles by updating the particles

solutions accating to updatindeqs24 and25 as follows:

v, (k+1) =wy, (K) +,.1, (k). (B, (K) ! % (K))

+c2.r2(k).(pg(k)! xi(k)) (24)
x (k+2) = x (k) +V, (k+1)

(29

where v,(k) and x (k) arethe currentelocity and position

of particke i at time k, respectively.r (k) and r,(k) are

two independent random sequences uniformly distribute

between 0 and .1The parametersc, and c, are the
cognitive and the social accelerationsoefficients,
respectively,with positive values.w is the inertia weight
factor. The value p, (k) is the best local position for

pariclei

k.

Once the velocity for each particle is calculated,24
updates the velocity to the new oii&e new position is then
detemined by the sum ahe new velocity anthe previous
positionby Eq.24

, and p,(k) is the besglobalpositionbothat time

LSS S S

Fig. 2. Two-link robot manipulator

where | is the link length, m is the link mass|, is the link's
[poment of inertia given in center of massjs the distance

between the center of mass of link and thgoint.
The dynamic of the twdink robot manipulator can be
describedy the following differential equation80]:

Emomo gt Bk et g
#m, ”Ez&u &;#C sz%'!Z%
s1y s (26)
#G &_#(1 d,
#G g%#( g%#d §Z]
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the matrixM,, :[mij]z2 is given by: #(;)*1 =X,
, L g/akzzfl(x)+gl(X)!l+"1
My =mig+my (17 +12,+2m |, cos(1)) +1,+1, %=, -
m, =m, (12 +1,,co8{! )+ 1, 4, = (X0, (X) 5+,
- =X
rT'Ez—ITE|22+|2 gl:)%

the matrix C, :[0'1']2!2 is definedby: wherethe dynamicsf (X) and g(X) are given as follows

— afl | | — | —
c,=af,, c,=ar+af,, c,=la*, c,=0,

! $
f
f :# 1 &: M 1fs y ' )
where a=! mJll_sin",, B g (Clx %] G,)
! $
the vectorG, =[G,,G,]" is given by: g zi 9 g: M, (32)
9, &

G, =(ml,+mJ,)gcos(!,)+m/ ,gcos(!, +/,)

Since Kalman filter is a discrete algorithm, then
discretzation of the model is needed. This discretization will
G,=mJl, 9005(-’1+~’2) be done using the forward Euler method which provides an
acceptable approximation of the systems dynamics for a
short sampling period.

Theresulting global discrete form will be given by the
robot can take. following discrete nonlinear representation

The vector [d,,d,]" represents the external load that the

Due tomodeling errolparameter variation and unknown (y (i+1)=x (k)+! t. x,(k)+w,(k)

load), it is assmed that the dynamic model of the _ " &
manipulator 6) presentsa certainuncertainty. Therefore, *Xz(kﬂ)_xz(k)ﬂ BEOGCK)+ 6,0k ", (k) + 4 (k)8 w, (k)

M(/),C( ") and G(! ) can be written as TX(k+1) = x(k) +! . x, (K) +wy (k) (33)
*X,(k+D)=x,(k)+! tg}ﬁz(x,k)+gz(x,k) "z(k)+#z(k)&l-w4(k)

M(/)=M,()+"M()# R @n  *al=x00+vK)
+2,(K) =%, (K) +v, (k)

1y — | n | 252

ct.AH=GEAH+CEN# R (28) where !t is the sampling perigdk is the discretdime
oint and k) =[w; (k) w, (k) w,(k) w,(k and

G(1)=G,(1)+" G(! ) # R 29 p W(k) =[w (k) w, (k) wy(k) w, (k)]

v(k) =[v,(Kk) v,(k)] are the ppcess and measurement white

. ian noise v rs with zero mean and with associated
where M (!), C,(! 1 and G,(!) are nominal parts, Gaussa oIS ectors with zero mean and wit
covariance matrices

whereas! M("), 1 C(",") and ! G(") are theparameters
uncertainies Q=E[w,,w] and R=E[v,,V;], respectively.

The dynamic mo.d‘?' dher'obonc manipulator6) V.V'th In this simulation, the nominal parameters of the robot
parameters uncertaintiesd disturbance can be rewritten as

following: are given as
=m, =1Kg, I, =1,=0.5m, |, =1_=0.25m,
Mo ()G, (1 #)A+G (1) +d(t) =" (g MM 170 o™l
l,=1,=0.1Kgm?, g=0.81m/s".

where dit)=tM(")+1c(" )+ 6(")+#D) $ R o ,

. o In what follows the proposed algorithmwill be applied
represents the sum of the parametric uncertainties angh the above twdink robot manipulator under PC
external disturbanced (t)). simulationusing Matlab software environment to shats

To control the robot system, the state variable vector is efficiency. A total of N =4000 measurement data are
-1 A 1T — imulated on a time interval from 0 fbseconds with ste
chosen to beX =[! .1, 1T =[X,%,%,%,]" . simuiate itten i °
size 1 t=0.001s. Note that all codes are written in Matlab

Choosing as output the positioy|=[!1,!2]T =#xlx3$% Languag in M-files.
The dynamic equations are given as: The desired reference trajectories far and x, are

choserto be x,(t) =70° and x,,(t) =90°. The initial values
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of the system were selected a&‘(O):O, XZ(O)ZO, matrix. Q andR matriceshavedimensions4! 4 and 2! 2,
respectivelyandare assumebaving the following form:
%(0)=0 and x,(0)=0. For comparison purposes, the performance of EKF with
Three types of uncertaintieseinjected in the structure diverse compositions d@ andR is evaluated by using the
to verify the robustness of the controllerl) Parameters Mmeansquareeerror EQ.23 of the positiorestimating

uncertainties(+10% over the vales of nominal model R 2
( ’ response whicls defined as:MSEz%' :‘lﬁ (K" Bk,

parameters)
|
(2) Randomexternaldisturbancesvhich are chosento be #9 0 0 0 ?
uniformly distributedas follows: d, =d, =rand with D=1. z 0 g 0 0 g
Note that both disturbances sum to and they will be ~Q=diag(q,.q,,q,,q, )=} 0 0 q o8 (34)
applied att > 2s. # % &
#0 0 0 g g
(3) Random Gaussian noises for the states and for the
measurements both with zero mean values and with
covarianceOs | $
q=102 andr =10°, respectively. R=diag(r,r,) =% n0g (35)
S A A
EKF is implemented as in EQ® to 22 where the
Jacobean matriceare defined in Appendix 1. EKF will L
. . i=12
provide the state estimate vector

bt BB O 19w 5 w17 L First, we simulate the system undére traditional
R=[0.F,0.F] =[8,%,%,9]". The initial state and feedhack linearization contrgh order to show its draback
initial covariance conditions of the EKF are chosen to bén presence of parametric uncertainties and external
ﬁm =[0,0,0,0]"and P, =ones(4,4), respectively. Inthe disturbances. Applying the control la&q.2 and after some

0/0
. . . . rials, we ch nk, , =[200l. .:;50I where |, is an
simulation, error covariance matri® is set to a4! 4 trials, we chosenk, [ 22 M] iti

i i identity matrix.

Table 1. EKF Performances for twhnk robot using trialerror estimation

Q and R entries

Case MSE_EKF Estimation
q, q, q, q, r [ - quality
1 1 1 1 1 1 1 1.6131 Poor
2 0.2 10* 0.2 10* 10" 1 3.3692'10°° Good
3 10* 10* 0.2 0.2 1 10" 3.258710° Good
4 10" 10" 10" 10" 1 1 3.182110° Very good

Tab. 1 and Tab. 2 (see MSE columns), we see cleaaly th
both methods gave small MSE, but MSE obtained by EKF
Table 1 shows typical EKF performancevith their  was smaller than that obtained with SMO observer.

corresponding covariance matrices@h entries qq1 ' q‘"ll Table 2.Performance of the SMO for twlnk robot with

0y, Gy, 1y and r,) obtained by triaerror methd. It is trial-error estimation

found that good estimation.performance results \I\QEHI'I.d SMO gains
R are equal (case 2 and 3 in Tab. 1), but a bad selection ofdase MSE_ SMO  Estimation quality
-0 0 G " and r,) can produce a poor estimation -’15 !23
performance (case 1). Note that the best estimatonl 107 10 1.3306 Poor
performance is obtained withQ and R matrices ( 2 1 1 7.1961"10° Goog

—q = = =101 e ; 3 2 10 4.3120"10 Goo
9, =0, =d, =g, =10" and r,=r,=1) (case 4) which 5, 75  35612710° Very good

correspondsa the smallest MSE. Simulation results relative
to the best case (case 4) are showed in Fig. 3 where we Note that the tracking performances are not very
present in Fig. 3(a) and (b) respectively, the positiolinéf  satisfactory especially after timet=2s when the
1 and position ofink-2. . perturbations were applied+{0% variation of parameters

To compare the performae of EKF observer with other 54 external disturbance). As can be seen also, the prediction
observers in terms of MSE, we give in Tab. 2 performancegecyracy of EKF is not quite satisfactory due to the-trial
relative to sliding mode observer (SMO) [19]e sliding  gror choice for EKFnatrices
gains of SMO were selected as in Tab. 2. By comparing
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Fig. 3. Position of the joint anglassing classical feedback linearization contwith EKF.

In the rest of tfs setion, the proposed method will be feedback linearization control. In this case and after some

applied in order to resolve above two problems. trials, we choserK =101,, and A=5/, ,, where /__is an

3.1. Robustness problem il i identity matrix. Simulatin results are shown in Fig. 4.

To solve the problem of robustness and acquire a better
response tohis system, control law given by Eq.4 is used in
which the discontinuous ootrol was added to classical
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Fig. 4. Simulation results using enhancement of feedback linearizatiatisgantinuous contro(a) Position of the joint angle oink-1 (b) Position
of the joint angle of link2 (c) Link-1 position estimation and tracking erroréd) Link-2 position estimation and tracking errors (e) Phase plane
portrait for the linkl (f) Phase plane portrait for the litgk (g) Control input applied to the lirk (h) Control input applied to thienk-2.

We present in Fig. 4(e&gnd (b)the position of the joint presented in Fig. 3(and (b) it appearsn this case that the
angles of link-1 and link2 using theenhanced feedback tracking performance of theint angles of link-1 and link-2
linearization via discontinuous controlAs we see the are satisfactory especially after timea=2 when the
performances under the occurrence of parameter variatioperturbation arisesFig. 4(e) and (f) represent the phase
and external disturbanaae satisfactory(seeFig. 4(9 and  plane portrait of the robot, in whiclie can clearly see that
(d)). Contrary to classical feedback linearization alonethe chattering phenomenon is appeared. Fig. 4(g) and (h)

9
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showcontrol inputsapplied to the robotwhere wenotethat  chattering effect. The memberships functions of and

the control performance is not satisfactory due to chatterlng< are choen as illustrated inFig. 5a) and (b)

phenomenon caused by the inappropriate selectiothef ) . . o .
switching gain. respectlvely, in which the following linguistic variables have

In order to tackle this problem, the smoothing propert)Peen usedNegative (N),Zero (Z), Positive (P) Small (S)

of fuzzy logic is exploited as seensaction 2 to reduce the andBig (B).
1 N z P 112 S B
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Fig. 5 (a) Input membership functions (b) Outpaémbership Rulel: If s is N, ThenK is B
functions. fuzy

Rule2: If s is Z,ThenK is Z

The rule set of the adopted FLS contains 3 rules defined as Rule3: If s is P, ThenK, s S

following:

These rules govern the inpotitput relationship betweesy  which the center of gravity method is used for
andKj,,,,by adopting the Mamdani-type inference engine, in defuzzification.
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Fig. 6. Simulation results using enhancement of feedbiaglarization via discontinuous control and F( Position of the joint angle of link (b)
Position of the joint angle of link (c) Phase plane portrait for the lirik(d) Phase plane portrait for the lix&(e) Control input applied to the link
(f) Control input applied to the lirR (g) Evolution of fuzzy gairK; w2y (h) Evolution of fuzzy gairkz zzy.

We show in Fig6 the simulation results corresponding 3.2.1. PSGEKF method
to improvement of switching gain, where we present in FigWe suggest searchingsimultaneously the optimal
6(a) and (b) respectivelyhé position of the joint angles. compination of six variancesqxl,qx .G, .1, and r,

From comparing the new obtained Phase plane portrait in . . ) ]
Fig. 6(c) and (d), with the old one Fig. 4(e) and (f), we car}'SiNgEQs.32and33 to find the optimal covariance matrices

clearly see that the chattering phenomenon is almo&g @nd R of the EKF, which will allow to obtain better
disappeared. And comparing the associated contmlitsn €stimates W|th higher precision than the' tspdor methopl.
presented in Fig. 6(e) and (f), with the old one Fig. 4(g) and After running the PSEEKF, the optimized covariance
(h), it is noted that the discontinuities amplitudes areMatricesQ and R and their corresponding performances

reduced. The estimated fuzzy gains are depicted in Fig. 6(}JSES are given inTab. 3.1t should be noted that the
and (h). convergence of the PSO method to the optimal solution

depends on the parametecs, ¢, and win which self-

3.2. Prediction problem

Note that in all above simulationshe EKF covariance
matrices were adjusted by using the tgador method which  Inertia weight varies betweew = 0.3 to 1. Since we have

is simple to achieve but takes a very longtiifie.getmore ~ Six parameters tbe optimized, therefore thedimension of
satisfactory performancethe adjustment will be done the simulation will be 6. Note also that the simulaedrm
automatically by PSO algorithm discussed abioveection haSOaOSize of 20 with a maximal number of generations equal
2.4 to 100.

recognition coefficientc, = 1.5, social coefficientc, = 2 and

11
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Table 3. Optimized EKFPerformances using PSO

Q and R entries

Swarm size Iterations q, q, q, q, r r, MSE_PSO
5 107 0.0316 107 0.0534 0.0685 0.0745 1.540110°

20 10 10* 0.0432 10* 0.0416 0.0515 0.0621 1.3712'10°°

50 10* 0.0005 10° 0.0001 0.0400 0.0601 1.2049'10°°

100 10° 10° 10° 10° 04800 0.8637 1.163710°°

algorithms with the following parametersPopulation
Tab. 3 illustrates the convergence of RERF algorithm, size=2Q Maximal number of  generation=100
where the MSE is decreased 10163710° after 100 Dimension=6 Crossover probability=0.8 and Mutation
iterations, which is less thahe value obtained by trirror  probability=0.01
method (MSE, =3.182110%) which confirms the  Optimized covariance matrices using GA algorithms are
) X given in Tab.4 where we see that the MSE is decredsed
effectiveness of this method. 2.4959107° after 100 iterations. Note that this MSE is close
to thetrial-errorMSE which is equal t8.1821'10°°.

ial! error

3.2.2. Genetic algorithms method
For comparison purposes, we will present in what follows
EKF optimization by using GAs. Nothat we used genetic

Table 4. Optimized EKFPerformances using GA

Q and R entries

Swarm size Iterations q, q, q, q, r [ MSE_GAs
5 0.0153 0.0416 10° 0.0456 0.0772 0.0753 7.453110°

20 10 0.0106 0.0112 10* 0.0324 0.0456 0.0568 6.223510°

50 0.01 0.0153 0.001 0.0248 0.0440 0.0654 2.750010°°

100 0.0010 0.1000 10* 0.0010 0.5000 04001 2.495910°

From theobtained resultshowed in Tables 3 and 4, approach. Note that the comparison wime underthe
comparison of PSE&KF and GAs approaches shows thatsame conditions (generation number, population size, initial
bothmethodsare able to find the optimum design covariancepopulation).
matricesQ andR. It can be easily seen that PEBF gives Furthermore Fig. 7 shows the evolution of the fithess
more precise results than GAs approach when the number fainction for PSO and GAs methods, respetiywhere we
iteration (generation) increases. Therefore, it can beotice that the convergencef PSO is faster than the
confirmed that PSE&KF can gve better estimates than GAs convergencef GAs.

7 -6
5x 10 L L L \ 6x 10 L \ L L
5L i
45, ]
o (o%]
E 4 1
S 4l | o
g (3%]
|- \|3; i
3.5/ ]
2; ,
3% 20 40 60 80 100 15 50 40 60 80 100
[ "#$/&#()(*;+ (%) &H( DU HRBH( ) *+ , - (-*) &H(
a
(b)

Fig. 7. Evolution of fitness/objective functiorersus 100iterations. (a) PSO relative to Tad).(b) GA relative to Tab4.
In what follows we will present the final simulation Fig.8)

results relative to the improved feedback linearization
control with the best optimal values of EKF parameters (see

12
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Fig. 8 Simulation results using proposed control for different optimization algorifaySpeed of the joint angle of lirk (b) Speed of the joint
angle of link2, (c) Speedestimation errorgor the link-1, (d) Speed of the joint angle of lif (e) Speedtacking errordor the link1, (f) Speed
tacking errors for the lin2.

In Fig. 8(a) and (b) we presentespectivelythe Linkl  are presented in Fig. 8(e) and (f), respectively.
and Link2 speedresponses wit the optimal values of EKF In all these figures, we see that best results are obtained
covariance matrices given in Tables 1, 3 and 4 forérigr,  with the proposed PS@&KF method where it can be seen
PSO and GAs optimizationsThe correspondingspeed that PSGEKF fits the true state variables with higher
estimation errors are presented inFig. 8) and (), accuracy for tweink robot.
respectively.Also, the corresponding speed tracking errors

13
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4. Conclusions observer is also validated by comparing it with SMO. The
stability of the proposed approach was guaranteed by
In this paper, we have proposed an improaed optimized Lyapunov stability criterion. Simulation results confirmed
feedback linearization controlleThe approach combines the ability of proposed approach to ensure an acceptable

classical feedback linearization, discontinuous control andobustness and vyields superior control performances for

fuzzy systems. The introduced improvement on classicatonlinear system control against unceriamtand external
feedback liearization was guaranteed by a discontinuouglisturbance simultaneously.

control action which itself was also enhanced by a fuzzy
system. We assumed that not all states are measuréeldis is an Open Access article distributed under the terms of the

therefore an EKF system to observe the hidden states
introduced. The performances of EKF has be#itiently
improved by adjusting the covariance matriGeandR via
PSO technique, and the obtained results was validated by a

short compartive study with GA. The efectiveness of EKF

Wi i ative Commons Attribution Licence
@. BY NC
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ppendix 1: Jacobian matrices for the twalink robot
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f43 = I t(((g ICZ”ESIZ ) |1|(:2 n’ECZ l1112)(“5'12 +2rrE C2 I1|C2 + rn.l.lcl2 +n’E'C22 + I1+ I2) )/ (lll 2 + |12|022n’52 + |2|12n’5 + |2|(512#

m+1l, m+l2e mm " 12, m? C,%) " (4, (4,1, m C,+6,1],mC,)+gl,mS,+#d,1,mC,) (m#
lczz +I1 rnZCZ ch + IZ) ) / (lll 2 + |12|c22rnz2 + lzllzrnz + |2|c12rnl+ |1|c22mz + lclzlczzrqrnz " |12 IczzrnZZC22)+(|1lc2 mz Sz#

(q2 (dl1|1|(:2rnZSZ+ qZ IllczrnZSZ)" gCl(llrnZ-'-Iclrn.l.) " g ICZ rrEC12+q1q2 Il'cZ”ESZ) )/(I1I2+I 2| 2r’r122+ I2|12n.5+

1 'c2

LIAm+1 0 2m+1 21 2mm " 122 m2C ) + (21, m S (Ll ,m Sa2+gl ,mC,)) / (11, +1 21 2m?+
LI2m+ L Pm+ 12 m +1 %1 2mm, ™ 121 ,"m°C2) + (21,212 mC,S, (myl 2 +1,mC,l, +1,) (&, (411, m#
S,+a,11,mS,)" gC(ILm+I_m)" gl mC, +dd LI ,mS))/ (L, +22m2+112m+1] *m+1]| 2#
m,+12 ., 2mm, " 121,2m2C,2)*+(2121 ’m?C,S, (1] ,mS,a>+gl ,mC,)(m)*+2mC,LI_,+ml_ *+m]l_*+
L)) LA, 22+ 1 2my + L 2m+ Ll 2m+1 2 2 mm " LA 2mPC2) %)+ (Lt L, m 8, S,) / (1, #
L+ 2m2+ L Am+ L 2m+ 1 2my+ 1 2 2 mmy ™ 121 2m2C ) (2t ,m $,S) / (11, +1 A2 m2+1 #
L2my + 1 2m + 1 2m +1 21 2mm, L2 2m2C%) " (20 LA, Pm2 8,C.S,(my 1 2 +2mC, 1L, +ml 2+ml 2+
LA+ 2m2+ L 2my+ 1 2m+ 12 my+1 2 2mm, " 121 2 mC7) +(2! t1 21 ,2m$.C,S, (m, #
|71, mC I, + D))/ (1 L, +12 2 m2 + 1L Pmy+ 1] 2my+ 112 m, +1 21" mmy " 121,°m*C %)z,

cl ‘c2 1 'c2

Ju=1-(At(2 ¢l ,mS,+2 4,11, szZ)(mzlcz2 +ImCl, +1,))/(I1,+ llzlczzmz2 + Izllzm2 + Izlclzml + Illczzm2 + 113121022 X
mm, = llzlczzmzzczz)

S,=sn(@,*+q,), §=sn(q), S,=sin(q,), C,,=cos(q, +q,), C,=cos(q),C,=cos(q,) .
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