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Abstract 
 

Multibeam echosounder system is a dynamic measurement under the continuous motion of measurement platform. 
Contaminated sporadic outliers are inevitably generated during bathymetric data acquisition due to the interference of 
underwater environmental effects, such as ocean waves, wind, and tides. A filtering model of robust multi-quadric 
method based on median parameter was proposed in this study to detect and eliminate the outliers in bathymetric datasets. 
The submarine topography trend surface model was constructed by the multi-quadric function. Known node parameters 
in the function were obtained by the threshold extraction method of joining angle, chord with dispersion. The robust 
iterations of residual error initials and the weight-weakening process of outliers were studied by median parameters and 
IGGIII equivalent weight function. The validity of the proposed filtering model was verified by experimental datasets of 
offshore waters, which were collected by BV5000 multibeam side scan sonar. Results demonstrate that the known node 
selection strategy in this study can remove redundancy information in point set and extract regional characteristic points 
to the maximum extent. The fitting errors at normal bathymetric points are all below 0.06 m, which are decreased 
compared with the corresponding magnitude of other schemes (0.16 m, 0.12 m). The residual initial value of robust 
iteration based on median parameters exhibites relatively high estimation accuracy and detection efficiency. The errors of 
bathymetric points are relatively small (0.019 m), and the detection number of outliers (150) is efficient in the entire 
detection region. This work can improve the accuracy and efficiency of underwater terrain detection and lay a foundation 
for later scientific research and marine exploration. 
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1. Introduction 
 
The availability of reliable bathymetry data has been of 
significant implications for marine applications, such as 
marine environment protection, offshore development and 
management, marine navigation, and submarine science [1-
5]. Multibeam echosounder system (MBES) is the most 
widely employed in underwater topographic detection 
equipment at present. This system is a highly integrated set 
of various technologies, such as computer technology, 
navigation positioning technology, and digital sensor. 
According to the round-and-trip beam signals and data 
information of the auxiliary sensor, MBES can acquire a 
dataset with high accuracy, high density, and full-coverage 
sounding points [6-7]. Nevertheless, the detection process 
has abundant instable factors due to harsh underwater 
measurement conditions and the compatibility and 
comprehensiveness of combined subsystem, thereby 
resulting in differences between measured and actual depths 
in some places. Inaccurate detection and filtering may affect 
the accuracy of measurements. 

The effects of bathymetric data are generally a 
comprehensive process. The real-time navigation positioning 
information, posture and sound velocity data, and echo 
signals of vessels should be edited or corrected to recognize 
and reject false signals and to recover and retain real 
information for improving the sounding accuracy and 
ensuring the drawing quality of seafloor topographic map [8-
9]. These steps are essential preparations to the subsequent 
data processing and mapping control. In particular, the 
production of electronic navigational charts (ENCs) requires 
that the density of bathymetry data should be reduced to a 
certain extent to save storage space [10]. 

In addition to the influences of occasional errors, the 
collected swath sounding data often result in bathymetry 
outliers due to installation deviation, acoustic line tracking, 
vessel posture, and complex hydrological conditions in sea 
area [11-13]. These individual errors increase the 
accumulated total error budget of soundings. The quality of 
modified bathymetric data may not meet the international 
hydrographic organization normative requirements (IHO 
2008) of seafloor mapping, although these errors have been 
corrected accordingly. Therefore, abnormal detection and 
filtering of bathymetric data must be executed accurately 
[14-15]. 
 To this end, the purpose of this study was to provide an 
automatic filtering method for detecting outliers in 
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soundings. The trend surface of seabed was constructed by 
the multi-quadric (MQ) function, and a robust bathymetric 
estimation model was constructed through continuous 
iteration of equivalent weights. Representative characteristic 
points in the study area were selected according to multiple 
threshold criteria to provide parameters of known nodes for 
the combined equation in the MQ function. The median 
parameter model was applied to provide the optimal initial 
value of residual error in the iterative robust estimation. 
Therefore, the performance of overall observation equation 
contaminated by bathymetry outliers was reduced. 
 
 
2. State of the art 
 
The traditional interactive drawing generally processes 
abnormal bathymetric data by manual edition, which 
decreases operation efficiency and increases time 
consumption significantly. Early automation methods have 
realized the judgment and rejection of swath Ping space 
according to the threshold criteria, such as depth threshold, 
beam angle, and gradient [16]. Later, many experts have 
proposed a number of methods based on the statistical 
characteristics of neighborhood soundings, such as Cop, 
Ware, and Du’s methods [17-19]. Although these methods 
are easy to operate, the parameters in these filter models 
need to be artificially set, and the degree of automation is 
not high. Huang and Vojinovic et al. applied the 
classification theory of support vector machine (SVM) into 
the detection of bathymetry outliers and recognized 
calibration of abnormal values accurately by constructing a 
continuously changing topological trend surface, which 
avoided annihilation of effective seabed topography [20-21]. 
Dong et al. proposed the filtering method of local trend 
surface based on polynomial fitting (PF) [22]. However, this 
method was only applicable to flat terrain and required 
blocking process of the survey area. This method led to 
incomplete filtering under complicated and continuously 
changing topography. In addition, this method lacked of 
robustness, and the presence of outliers might interfere with 
the overall operation performance and decrease the accuracy 
of abnormal detection. 

Therefore, many studies on robust estimation and 
applications of robust filter have been reported to reduce the 
local outlier pollution of the entire bathymetric data. Debese 
et al. proposed a hierarchical adaptive robust method to 
build the seabed surface and separate out the sounding 
outliers [3]. This method was based on a parameter set 
analysis derived from space and quality, and the total surface 
outliers over 96.6% of the total surface could be processed in 
the study areas of Lexartec Rock Belt. Calder et al. 
combined the median filter method with Kalman filtering to 
smooth multibeam sounding data [23]. They also proposed 
the combined uncertainty and bathymetry estimator (CUBE) 
algorithm. On the basis of Bayes dynamic linear model, 
Kalman filtering, and the theory of multiple estimations, the 
CUBE algorithm calculated the robust estimation values of 
grid bathymetric nodes, which was used to realize real-time 
and high-precision outlier removal [24]. The latest phase of 
improvement model was conducive to perform bathymetric 
estimation effectively on large-scale mass datasets under 
limited computing resources. The model was adaptive to 
different depths and sensor-driven data densities [25]. 

Rezvani et al. provided an automatic filtering method with 
robust M estimation, which calculated the estimated value of 
each grid point by iterative derivation, and obtained the 
corresponding residual to discriminate outliers [26]. The 
model adopted segmented processing to mitigate the adverse 
effects of outlier observations. The reliability and working 
efficiency of this method verified the simulation and actual 
datasets. Chen et al. proposed the adaptive robust estimation 
based on least square (ARELS) [27]. However, this 
algorithm did not fully consider that using the least square 
estimation as the initial value might weaken the equivalent 
weight robust estimation. 

On the basis of the above robust estimation methods, the 
topographic trend surface was constructed by polynomial 
surface fitting, which could not realistically close to the 
seabed topography. Besides, the key of robust estimation 
based on equivalent weight was to select the initial value 
with robustness and appropriate equivalent weight function 
[28-29]. Moreover, the median parameter model [30] 
exhibited strong robustness, and the MQ function [31] fitted 
to the characteristics of complicated topographic changes. 
As a result, a robust multi-quadric method based on median 
parameter (RMQMP) was proposed to detect bathymetry 
outliers generated from the process of multibeam sounding. 
First, the base of seabed terrain was constructed by the MQ 
function. Second, the threshold restriction method of joining 
angle, chord with dispersion (JACD) [32] was given to 
extract and obtain the known nodes of MQ function in the 
process of solving the initial value equations. Third, the 
initial value of robust iteration was calculated on the basis of 
median parameter model and the least squares criterion. 
Finally, the residual errors of different observations and 
corresponding equivalent weights were calculated according 
to robust iterative estimation based on IGGIII equivalent 
weight function [33], thus realizing detection and automatic 
filtering of abnormal values. 

The remainder of this study is organized as follows. 
Section 3 introduces the research process of the proposed 
method and the detailed contents of modular algorithms. 
Section 4 presents the conducted experiment on measured 
bathymetric data. Contrast analysis and discussions of three 
schemes are performed. A series of indicators are used to 
evaluate and verify the credibility, validity as well as 
detection accuracy, and efficiency of the proposed algorithm. 
Section 5 summarizes the advantages of the designed 
method and what remains to be studied. 
 
 
3. Methodology 

 
Existence of bathymetric outliers may change the seabed 
topographic relief, which causes misjudgment on underwater 
topographic mapping and interferences in seabed exploration 
and scientific research significantly [34]. RMQMP method 
is accordingly proposed to solve the complex area of seabed 
topography. The module part of the algorithm mainly 
includes the MQ functional model of seabed topographic 
trend surface, known node selection strategy in MQ function, 
initial value acquisition of residual error based on median 
parameter model, and adaptive iterative process of 
equivalent robust estimation. The specific research route is 
shown in Fig. 1. 
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Fig. 1. Bathymetry Outlier Detection Procedure of RMQMP method 
 

3.1 Construction of basic function 
For complicated topography, PF model often can not reflect 
the real seabed topographic changes accurately. Through its 
constructed surface, using the fitting residual estimations as 
initial values for robust iteration has a high collapse rate. 
However, the MQ function establishes a functional 
relationship between each sampling point and all known 
nodes. Contributions of known nodes to each sampling point 
are iterated to represent the best surface fitting value and 
conform to the real topography [31]. One Ping bathymetric 
data are taken as an example, and PF and MQ method are 
used to fit them respectively, as shown in Fig. 2. 

Therefore, the MQ model is used as a basis function to 
construct the regional seabed terrain, and the fitting equation 
is: 
 

  
Z x, y( ) = Ci Ai x, y,xi , yi( )

i=1

n

∑                          (1) 

 
Where  
( ),Z x y  = water depth value of fitting area, 

( ),x y  = coordinates of actual sampling points,  

( ),i ix y  = coordinates of known points, 
n  = number of known nodes,  

iA  = kernel function, and 

iC  = undetermined coefficient, i.e., it represents the 
contribution of i th− kernel function to the 
multilayer curve surface. 

The selection of kernel function is usually symmetric, 
i.e., 

 

( ) ( ) ( )2 2, ; ,i i i iA x y x y x x y y
β

δ⎡ ⎤= − + − +⎣ ⎦
           (2) 

Where 
δ  = smooth factor, and 
β  = power index, usually election as -0.5, 0.5, and 1.5. In 
this paper, smooth factor δ  = 1e-6, power index of kernel 
function k  = 0.5. 

The central beam area data collected by transducer is of 
high accuracy and reliability in general. Therefore, several 
adjacent swath depth data from central beam area are 
selected, which represent a total of m observations, of which 
n denotes known nodes (for its selection, see Subsection 3.2). 
The matrix expression of Formula (1) is: 
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1 2
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L
L

g
M M M M M M

L

       (3) 

 
According to the principle of least squares criterion, 

when m  (number of observations) is not less than 
n (number of known nodes), the equation of fitting residual 
error is: 
 

( ) 1T TV AC Z C A PA A PZ
−

= − ⇒ =                  (4) 

 
The accuracy evaluation of residual error is: 

 

[ ] ( )/ 1vv mσ = −                                 (5) 
 
Where  
σ  = root mean square error (RMSE), and 
v  = difference between the fitting and measuring 
bathymetric data. 
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Fig. 2. Sounding fitting errors of 1 Ping bathymetry data under PF and MQ model 
 
3.2 Selection of known nodes 
Multibeam swath bathymetric data have the characteristics 
of mass size and dense point distribution. Three key 
problems, namely, kernel function, smooth factor, and node 
position, have to be solved when selecting MQ model as the 
primary function to construct the surface. Among them, 
node position is the most difficult to be determined. Nodes 
are traditionally calculated by equal distance or equal 
interval [35]. The gained nodes have high data redundancy 
and repetitive rate. Some nodes are vulnerable to be 
contaminated by abnormal bathymetric data. Therefore, the 
strategy of joining angle, chord with dispersion (JACD) is 
adopted to comprehensively extract the regional feature 
points and use them as known nodes in this study. 
 
3.2.1 Joint angle and chord criterion 
Observation points (or their spatial interpolation points), 
which are used as the known nodes, must be satisfied such 
that observation points are not points of outliers generated in 
the detection process. The joint angle and chord criterion is 
used to preliminary screen outliers for each Ping observation 
data and obtain relatively credible bathymetry points. The 
steps are as follows: 

Step 1) the limited error of angle ( )αΔ and chord error 

threshold ( )hΔ , as shown in Fig. 3. The limited angle is 10°, 
and the chord threshold is 10% of the mean value of each 
Ping bathymetric data. 

Step 2) From the starting point, the adjacent sounding 
points 1P , 2P  and 3P  are taken, the angle ( )α between 1 2PP  

vector and 2 3P P  vector is calculated, and the chord height 

( )h  between sounding point 2P  and 1 3PP  vector is obtained. 
Step 3) whether α α> Δ  and h h> Δ  are true is judged. 

If yes, 2P  is marked abnormal point. Meanwhile, 1 1P P= , 

2 3P P= , and 3 4P P=  are set. If not, 2 1P P= , 2 3P P= , and 

3 4P P=  are set. Whether α  and h  are higher than the 
corresponding threshold is continuously judged, and the 
abnormal value is calibrated until observation points in this 
Ping data are processed. Similar processing is performed in 

the next Ping data. Finally, reliable observation points in the 
region after preliminary screening are gained. 
 

 
 
Fig. 3. Schematic of joint angle and chord criterion 
 
3.2.2 Dispersion of point 
The above preliminarily selected reliable points will form a 
certain area, among them, the bathymetric observation value 
of one point is set ( ),i iz x y , and z  is the mean bathymetric 
value of all points in the region. Therefore, dispersion of this 
point in the region can be defined as [32]: 
 

( )
( )( )

( )( )
1

,
,

,

i i
i i k

i i
i

z x y z
D x y

z x y z kε
=

−
=
⎧ ⎫⎛ ⎞

− +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
∑

             (6) 

 
where  
ε  = a small positive value and is used to prevent situation of 
zero denominator, and  
k  = the total number of regional trusted sampling points. 

Based on the concept of point dispersion, the above 
credible observation points are treated by sparse processing, 
and the sparse feature points are used as known nodes of 
MQ function. The thinning process is as follows: 

Step 1) The threshold of height difference and the 
minimum distance limit among points are given. The 
threshold of dispersion is 150% of water depth. 

Step 2) Reliable observation points are arranged in a 
proper order according to bathymetric values. If the 
difference in extreme bathymetric values of observation 
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points is higher than the dispersion threshold, the maximum 
and minimum points are used as candidate points of 
topographic feature and are reserved. Dispersion of other 
points in the computing region is calculated. Points with 
dispersion higher than the threshold are reserved markup, 
otherwise, they will not be processed. 

Step 3) The adjacent region is searched according to 
marked dispersion points. The points in the adjacent domain 
close to the current candidate characteristic point and with 
dispersion smaller than the threshold are deleted, and the 
rests comprise the characteristic point set. 

Dispersion of point reflects the contribution of this point 
to regional topographic relief [32]. Therefore, points with 
great contributions to topographic relief (positive and 
negative) in the evacuation process are retained, which is 
conducive to maintain topographic relief features in the 
survey area. Fig. 4 shows that the equal interval of 4 to 1 is 
compared with the proposed algorithm, and residual errors 
after MQ fitting are used to evaluate the accuracy. The 
diagram shows that corrected residual errors of the proposed 
algorithm are closer to the middle value 0 for the normal 
sounding values, and the outstanding depth position value 
can be more prominent for the bathymetry outliers. 

 

 
 

Fig. 4. Residual error values of different selection methods about known nodes 
 
Note: Residual errors of 1 Ping data after fitting for protruding the change in regional detail features. 

 
3.3 Calculation of robust iterative initial values 
Median parameter method is used when constructing a 
terrain trend surface by the MQ model as a basis function to 
solve the model parameter coefficients in Equation (4), i.e., 
the contribution value of each known node Ci. Subsection 
3.2 shows that n known nodes in MQ function are obtained. 
In the observation Equation (4), ( )1n +  ( ( )1m n> + ) 
equations are selected randomly from m  observation 
equations. Under the premise that the accuracy of parameter 
estimation can be guaranteed, the parameter estimation 
vector C  is solved, which yields +1n

mp C=  groups of 
combined solutions. The i th−  model parameter value ic  is 
reconstructed into 1p ×  dimensional vector as: 
 

1 2, , ,i i i i
pc c c c

∧ ∧ ∧ ∧⎡ ⎤
= ⎢ ⎥
⎣ ⎦

L                                (7) 

 

The median of the parameters (median ( ic
∧

)) is achieved 
in Formula (7). The other model coefficients are similar. 
Finally, the median vector of the constituent model 

parameters is medC
∧

, 
 

1 2, , , n
medC median c median c median c

∧ ∧ ∧∧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
L

 
 (8) 

 
The difference between different groups of solutions and 

median vector is calculated. For the p  groups of solutions, 

{ }1 2, , ,

medj j

p

dc C C

min_dc= min dc dc dc

∧⎧ = −⎪
⎨
⎪⎩ K

                    (9) 

 
where  

1j p= L , jdc = secondary norm of jdc , and min_dc = the 

minimum value of corresponding model parameter vector, 
i.e., the solution of median parameter method in this study. 

Correction of residual error that corresponds to the 
1m×  dimension of the entire observation vector can be 

calculated from Equation (4). In this case, the residual error 
is used as the initial value of robust estimation. The mean 
square error of the initial unit weight (σ0) is recorded as: 
 

{ }1 2

0

, , ,

/ 0.6745
med m

med

v median v v v

vσ

⎧ =⎪
⎨

=⎪⎩

L                       (10) 

 
3.4 Iterative estimation of equivalence weight 
 
The residual error matrix 0V  and the initial value of unit 
weighted error 0σ  in bathymetry data are obtained from the 
median parameter method in Subsection 3.3. On the basis of 
the principle of robust estimation 0TA PV = , the iteration 
process of equivalent weight robust estimation is: 
 

( ) ( )( ) ( )

( ) ( )

1
1

1 1

k kk T T

k k

C A P A A P Z

V AC Z

−
+

+ +

⎧
=⎪

⎨
⎪ = −⎩

                   (11) 
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The equivalent weight matrix is: 
 

( )

( )

( )

( )

1

2

k

k
k

k
m

p

pP

p

⎡ ⎤
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⎢ ⎥
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⎢ ⎥
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O
                  (12) 

 
Many types of equivalent weight functions exist. The 

IGIII weight function [36] is used to determine the weights 
for each sounding value in this study, i.e., 
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    (13) 

 
where  

( ) ( ) ( )' k k k
i i iv v σ

∧

= , i.e., the standardized residual error, 

( ) ( )( ) 0.6745kk
i imedian vσ
∧

= , and 0k  = 1.0 to 2.5 and 1k  = 

3.0 to 8.0, which are from Literature [37]. However, the two 
parameters depend on the fluctuation of seabed topography 
actually. 

The estimated parameters and corrections are calculated 
according to continuous iteration of Equation (11). The 
iteration termination condition is 1max k k

i ii
C C ε+ − ≤  ( ε  is 

a small positive). In the iteration process, weights of 
abnormal bathymetric points are decreased continuously, 
and the calculation accuracy of model coefficients is 
increased by changing the standardized residual error 
continuously [26]. Consequently, the abnormal bathymetric 
points can be recognized accurately. The bathymetric data 
when the weight is close to 0 after iteration termination are 
determined as the abnormal values. 

 

4 Result analysis and discussion 
 

The experimental data were obtained from the bathymetric 
data of a shallow sea area by the BV5000 multibeam side 
scan sonar. Ten Ping continuous data that can reflect 
detailed features significantly were selected as test data. 
Footprint points with poor beam accuracy at edges of 
different Ping were abandoned, and a total of 1904 
bathymetric points were selected. The water depth ranged 
from 4 m to 8 m in the test area. 

An MQ model was used as a basis function to construct 
the regional terrain trend surface, and the number of known 
nodes was obtained ( n  = 635) through the JACD algorithm. 
Considering this fact that the bathymetry outliers do not 
exceed 10% of the total number, moreover, the single-
parameter median method’s crash pollution rate is close to 
50%, that is, if more than half of the observations are normal, 
the median must be normal values [37]. Therefore, when the 
median parameter method was used to solve the initial value 
of robust estimation for fully improving the program 
efficiency, it determined p  = 1000 times to solve each 
parameter estimation vector iC  and obtained the final 

median vector 
∧

medC  and residual error initial matrix 0V . In 
addition, two parameter boundaries were selected as 0k  = 3 
and 1k  = 6 in the robust iterative process. Unlike the 
performance and validity of other strategic schemes, those of 
the proposed algorithm were analyzed and verified from the 
perspectives of residual error and detection efficiency, as 
well as digital elevation model (DEM) effect graph. 
 
4.1 Residual error and detection efficiency 
Three schemes were used to analyze the detection precision 
of bathymetry outliers. The residual error, RMSE, and 
number of detection points after correction were used to 
verify the feasibility and advantages of this design method 
(Table. 1 and Fig. 5). 

Scheme 1: traditional multi-quadric fitting (MQ), 
Scheme 2: adaptive robust estimation based on least 

square (ARELS), and 
Scheme 3: robust multi-quadric method based on 

median parameter (RMQMP). 

Table. 1. Evaluation of statistical parameters 
Method Residual of all points/m Residual of normal points /m Number of outliers Max Min RMSE Max Min RMSE 

MQ 0.475 −0.350 0.051 0.150 −0.151 0.032 55 
ARELS 0.629 −0.527 0.029 0.102 −0.101 0.022 97 

RMQMP 0.504 −0.390 0.019 0.053 −0.054 0.013 150 
 

Table. 1 and Fig. 5 indicated five main findings. First, 
compared with Scheme 1, Schemes 2 and 3 are robust 
estimation methods. For normal bathymetry points 
(Columns 5 to 7), their maximum and minimum values of 
residual error and RMSEs were very small, which implied 
that their fitting precision was close to the theoretical 
bathymetry values and conformed to their definition. Second, 
for the sounding points of the entire survey area (including 
outlier depth values, Columns 2 to 4), the maximum and 
minimum residual errors obtained after the iteration were 
prominent, and they are shown in Lines 3 to 4 of Tab. 1. The 
plot map analysis presented that this part of outstanding 
points was mainly the bathymetry outliers and thus could 
better illustrate the superiority of robust estimation methods 

in Schemes 2 and 3. Third, unlike the RMSE obtained from 
Scheme 1, the smaller RMSEs obtained from Schemes 2 and 
3 were below 0.03 m, which provided a basis for 
determining the abnormal value. The detection efficiency 
was also improved. Fourth, from Columns 2 to 4, unlike the 
residual values of outliers in Scheme 2 (least-square initial 
value), those in Scheme 3 (initial value of median parameter 
method) were not so obvious, but the abnormality was 
judged on the basis of whether the equivalence weights were 
close to 0 after iteration in the robust estimation. Fifth, from 
Column 8 and Line 4, the RMQMP method (Scheme 3) 
exhibited relatively high estimation accuracy and detection 
efficiency in terms of fitting residuals and the judgment of 
normal sounding points. 
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Fig. 5. Residual error values of normal sounding points 
 

4.2 DEM effect diagram 
First, the unprocessed multibeam bathymetric data were 
gridded, as shown in Fig. 6 (a). Afterward, the abnormal 
bathymetry data were eliminated by RMQMP method, and 
the remaining bathymetric data were gridded to generate the 
DEM, as shown in Fig. 6 (c). Finally, the robust multi-
quadric method based on the least squares initial value was 
compared, and its DEM effect is shown in Fig. 6 (b). Some 

prominent abnormal values exist at the center of Fig. 6 (b). 
This figure also has features of over filtering, such as the red 
frame, which determined the characteristics of the submarine 
undulations as the sounding outliers and filtered them out. 
Fig. 6 (c) displays that basically no abnormally prominent 
undulations occurred, and the features of the submarine 
details with topographic changes were preserved in 
measurement area. 
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(a) Unfiltered original area DEM 
 

  
4.6
4.8
5
5.2
5.4
5.6
5.8
6
6.2
6.4
6.6
6.8
7

 
 

(b) DEM corrected by robust multi-quadric method based on the initial value of least squares 
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(c) DEM corrected by RMQMP model 
Fig. 6. Original and corrected surveyed area DEM 

 
5. Conclusions 
 
In order to improve the detection efficiency and accuracy of 
bathymetry outliers in multibeam sounding data, this study 
started with the construction of the fitting trend surface 
model. And the median parameter method was used to 
obtain the initial value of residual error in the robust 
iteration for weakening the weight of outliers and the overall 
contamination. As a result, a robust estimation of regional 
water depth was achieved, and bathymetry outliers were 
eliminated. Bathymetric data were estimated by combining 
the difference between residual error and mean square error, 
the number of abnormal detection, and the DEM effect 
diagram after correction by different schemes. Some major 
conclusions could be drawn. 

(1) The JACD method can remove the redundancy 
information points and coarse error bathymetric points to the 
maximum extent. The characteristic changing points of 
multibeam bathymetric data are retained through the 
secondary dilution. Therefore, the simplified feature points 
can basically meet the requirements of MQ function fitting 
and improve the operation efficiency, which lays the 
foundation for subsequent robust estimation to eliminate 
abnormal values. 

(2) When the residuals are calculated on the basis of 
least squares as the initial values, the residual errors are easy 
to be contaminated by the outliers in the solution process 
and often can converge to the ideal extremum, which affects 
the performance of subsequent robust estimation. However, 
the median parameter method assures the robustness of 
parameter estimation when solving MQ model parameters. 
The acquired residual values are optimal at this time. The 
experiment proves that using this residual error as the robust 
initial error can inhibit the abnormal values in equivalent 
weight robust iteration. 

This study concluded from the combination of 
theoretical research and actual dataset that the initial value of 
robust iterative estimation played an important role. The 
constructed initial value solving model could weaken the 
contamination effect of outliers and achieved satisfying 
detection efficiency and filtering accuracy of abnormal 
multibeam bathymetric data. The integrated RMQMP 
method achieved good results in the detection efficiency and 
accuracy of bathymetry outliers, which could provide 
accurate judgment references and reliable underwater 
information in follow-up marine scientific studies, such as 
coastal engineering and continental shelf structure. However, 
many aspects, such as the limited bathymetric range, 
different types of weight functions, and the setting 
parameters of each sub module, need to be further studied. 
Future studies will make further explorations and contrast 
analysis to provide an integrated model that can recognize 
and eliminate abnormal bathymetric values more accurately 
and effectively. 
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