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 Abstract 

 
This work presents the design of active disturbance rejection control (ADRC) strategy to position control of a single-link 
flexible joint robot manipulator. Two schemes of ADRC are presented, Linear Active Disturbance Rejection Controller 
(LADRC) and Nonlinear Active Disturbance Rejection Controller (NADRC). A comparison study of transient 
performances, robustness characteristics and disturbance rejection capabilities has been made based on LADRC and 
NADRC. The robustness of both controllers is evaluated by measuring the amount of deviation is system performance 
due to uncertainty in system parameters, while the disturbance rejection capability of both controllers will be investigated 
under abrupt disturbance exertion.  One issue with NADRC and LADRC is they include various parameters and unless 
they are properly tuned, will have an adverse effect on the estimation process and in turn, on the system performance. 
The particle swarm technique (PSO) has been selected as an optimal tuner to improve the estimation process and thereby, 
to enhance the system performance. 

 
    Keywords: Flexible Joint Robot, LADRC, NADRC, PSO. 
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1. Introduction 
 
In flexible joint robot manipulators, the elasticity of the 
transmission devices on the joints has been taken into 
account. Considering the effect of joint flexibility would 
develop a more exact model of industrial robot. However, a 
further complexity is added to the robot model, which raises 
a new control problem and therefore motivated the 
researchers in this relevant field further indulge.  
 In the past three decades many researchers have worked 
in the control of flexible joint robots. In [1], the sliding 
mode control strategy has been applied to a flexible joint 
manipulator. However, for feasible implementation of this 
control scheme, the control design requires the knowledge 
of uncertainty bounds and also the complete information of 
all system states. In [2], a dynamic feedback control design 
is developed for the trajectory tracking control problem of 
robotic manipulators with flexible joints. In this control 
design, the position measurements of the link and motor are 
needed, such that a reduced-order observer is used to 
estimate the required velocities for control. However, in this 
work, the establishment of system robustness requires 
certain conditions to be imposed on the uncertainties. In [3], 
the proposed control is based on a singular perturbation 
approach and the measurements of elastic force and position 
are prerequisites for the control design. This work 
suggested a nonlinear sliding state observer to estimate link 
velocities and elastic force time derivatives required for this 
control strategy. A control design based on the integral 
manifold formulation [4], adaptive control [5] and a back-

stepping approach [6] are some other approaches reported 
in the literature. It has been seen that the majority of control 
designs in the literature require either information of 
complete states or at least the position state or some state on 
the motor side.  Moreover, the guarantee of robustness may 
be highly dependent on the systems model and requires the 
knowledge of some characteristics of uncertainties.  
 Active Disturbance Rejection Controller (ADRC) was 
firstly proposed by J. Han with nonlinear gains. The control 
design of ADRC focused on nonlinear systems and 
considered both uncertain dynamics and disturbances. The 
essential idea of ADRC is firstly to combine both internal 
uncertain dynamics and external disturbances into a total 
uncertainty and to then estimate this combined uncertainty 
by an extended state observer (ESO) and thereafter to be 
cancelled out using state feedback structure. This renders 
ADRC applicable for many practical systems [7]. The 
Nonlinear ADRC (NADRC) has been parameterized and 
modified to linear ADRC (LADRC) with linearized gains 
by Z. Gao [8]. ADRC requires little information of the plant 
and is not completely dependent on the mathematical model 
of the system, which makes it very robust against system 
uncertainty [7]. 
 Active Disturbance Rejection Control (ADRC) has 
recently attracted the interest of many researchers in 
robotics. A method using ADRC has been proposed for the 
control of a flexible joint robot in the control design, using 
cascade Nonlinear ADRC [9] and a feedback linearization 
(FL) based control law based upon ESO is presented in 
[10].  
 In the present work, two active disturbance rejection 
control schemes are presented, NADRC and LADRC, in 
order to control a single-link flexible joint robot 
manipulator; the work contribution can be highlighted by 
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the following points: 
 
(1) A performance comparison between linear and 
Nonlinear ADRC is made in terms of dynamic behavior and 
robustness capability.  
(2) The suggested controls have to control the nonlinear 
system structure of the flexible joint manipulator without 
linearization. 
(3) A second order ADRC has been used to control a fourth 
order system.  
(4) The PSO technique is included to improve the closed-loop system 
performance. 
 
 
2. Joint Flexibility and System Modeling 
 
The modeling, simulation and real-time control of flexible 
manipulators is still challenging and remains an open 
problem. Many academic and industrial researchers have 
considered flexibility at joints due to their significant effect 
and it may dominate over link flexibility of the majority of 
manipulators available nowadays. This is evident in many 
applications where industrial robotic manipulators are 
driven by harmonic drive gears [11].   
 The flexibility at a joint can be modelled by a linear, 
torsional spring as indicated in Fig. (1). It is clear that a 
motor drives the arm via a spring, attached to the motor 
shaft [12]. 

Rotation linkRotation 
Rotor

MotorApplied 
Voltage

αθ

Fig. 1. Flexible joint robot. 
 
The modeling of a single-link, flexible joint robot is 
considered, operating on a vertical plane and developed 
using the Lagrange method. The method is based on 
conservation of energy and is initiated by calculating the 
difference between kinetic energy K and the potential 
energy P of all system components [12] 
 
𝐿 = 𝐾 − 𝑃                                                                                (1) 
 
 Lagrange equations are configured as follows: 
 
𝑑
𝑑𝑡  

𝑑𝐿
𝑑𝛼 −

𝑑𝐿
𝑑𝛼 = 0                                                                    2  

 
𝑑
𝑑𝑡  

𝑑𝐿
𝑑𝜃

−
𝑑𝐿
𝑑𝜃 = 𝜏                                                                     (3) 

 
 Based on Fig. (1), the following equations can be 
derived [12]: 
 
 𝐽!  𝜃 + 𝐽!  𝛼 + 𝐾! 𝛼 −𝑚 𝑔 ℎ sin 𝜃 + 𝛼 = 0                  (4) 

 
𝐽! + 𝐽!  𝜃 + 𝐽!  𝛼 −𝑚 𝑔 ℎ sin  𝜃 + 𝛼 = τ                    (5) 

 
 Using Kirchhoff’s Voltage Law (KVL) and neglecting 
the motor inductance, the electrical side of the system gives: 
 
𝑣 = 𝑖 𝑅! + 𝐾! 𝐾! 𝜔                                              
𝑖 = (𝑣 𝑅!) − (𝐾! 𝐾!  𝜔 𝑅! )                                             (6)                                          

 
 Where ω is the angular velocity of the motor (θ = ω), v 
is the applied input voltage, R! is the armature resistance, 
K!, motor gain and K! is the gear ratio. The current is 
related to developed torque τ by the following equation:  
 
𝜏 = 𝐾! 𝐾! 𝑖                                                                             (7) 
 
 One can then deduce from Eq. (7) and (6) that: 
 
𝜏 = 𝐾! 𝐾! (𝑣 𝑅!) − (𝐾!!  𝐾!!  𝜔 𝑅!)                             (8) 
 
 Substituting Eq. (4) into Eq. (5) yields 
 
𝐽! 𝜃 − 𝐾! 𝛼 = 𝐾! 𝐾! 𝑣 𝑅! + 𝐾!!  𝐾!!  𝜔 𝑅! 
 
or,  
 

𝜃 = 𝐾! 𝐾! 𝐽! 𝑅!  𝑣 − (𝐾!!  𝐾!! 𝐽!𝑅!) 𝜃 +
𝐾!
𝐽!

𝛼   (9) 

 
 From Eq. (9) and Eq. (4), one can get 
 
𝛼 = − 𝐾! 𝐾! 𝐽! 𝑅!   𝑣 + (𝐾!!  𝐾!! 𝐽!𝑅!) 𝜃 − (𝐾!/𝐽!) 𝛼 

− (𝐾!/ 𝐽!) 𝛼 
+ (𝑚 𝑔 ℎ/ 𝐽!) sin 𝜃 + 𝛼                  (10) 

 
 The arm angle (tip angle) is composed of the sum α and 
θ. Letting 𝑥! = 𝜃, 𝑥! = 𝛼, 𝑥! = 𝑥! = 𝜃, 𝑥! = 𝑥! = 𝛼, then 
the system described by Eq. (9) and Eq. (10) can be written 
in state variable form [14]: 
 
𝑥! =  𝑥! 
 
𝑥! =  𝑥! 
 
𝑥! = 𝐾! 𝐾! 𝐽! 𝑅!  𝑣 − (𝐾!!  𝐾!! 𝐽!𝑅!) 𝑥!                    

+ (𝐾!/𝐽!) 𝑥! 
 
𝑥! = − 𝐾! 𝐾! 𝐽! 𝑅!   𝑣 + (𝐾!!  𝐾!! 𝐽!𝑅!) 𝑥! 

   −(𝐾!/𝐽!) 𝑥! − (𝐾!/ 𝐽!) 𝑥! + (𝑚 𝑔 ℎ/ 𝐽! ) sin 𝑥! + 𝑥!   
 
𝑦 =  𝑥! + 𝑥!                                                                          (11) 

 
3. Active Disturbance Rejection Control 
 
3.1 Structure of the Nonlinear ADRC  
The Nonlinear ADRC control consists of two primary parts; 
the Tracking Differentiator (TD) and the Nonlinear 
Extended State Observer (NESO). The tracking 
differentiator’s function is to manage the transient process 
and in addition, if the input is corrupted by noise, then 
appropriate filters and a tracking differentiator are used to 
remove the noise effect. The mathematical description of 
TD is generally given by [13]:  
 
𝑧! = 𝑧! 
 
𝑧! = 𝑓!  
 
𝑓! = 𝑓!!" 𝑧! − 𝑣, 𝑧!, 𝑟, ℎ                                                      (12)  
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 Where 𝑣 is the input signal, 𝑟 is called the speed factor, 
ℎ is the filter factor and 𝑓!!"(𝑥!, 𝑥!, 𝑟, ℎ) is the integrated 
function of time optimum control, which is derived by: 
 

𝑓!!" =
𝑟. 𝑠𝑖𝑔𝑛 𝑎                              𝑦 > 𝑑

𝑟
𝑎
𝑑

                                           𝑦 ≤ 𝑑                 (13) 

 
Where, 
 

𝑎 =
𝑥! +

𝑎𝑜 − 𝑑
2

 𝑠𝑖𝑔𝑛 𝑦 ,        𝑦 > 𝑑𝑜 

𝑥! +
𝑦
ℎ  ,                                      𝑦 ≤ 𝑑𝑜

               (14) 

 
𝑑 = 𝑟. ℎ 
 
𝑑! = ℎ.𝑑 
 
𝑦 = 𝑥! + 𝑥! . ℎ 
 
𝑎! = 𝑑! + 8. 𝑟. 𝑦  
 
 For the position control of single-link flexible joint 
robot manipulator, the angle of flexible joint robot, 𝑧!, track 
the angle of flexible joint robot,  𝑧!, track the differential 
signal. 
 The second element of Nonlinear ADRC is Nonlinear 
Extended State Observer (NESO). This structure of 
observer was proposed by J. Han in 1995 and characterized 
by independency of a plant mathematical model, thus 
achieving inherent robustness. The descriptive model is 
given by: 
 
𝑒 = 𝑧! − 𝑦 
𝑧! = 𝑧! − 𝐿!. 𝑒 
𝑧! = 𝑧! − 𝐿!. 𝑓𝑎𝑙 𝑒,𝛼!, 𝛿! + 𝑏. 𝑢                                  15  
𝑧! = −𝐿!. 𝑓𝑎𝑙 𝑒,𝛼!, 𝛿!  
 
Where 𝑒 is the error between actual and estimated output of 
system, 𝐿!, 𝐿!, 𝐿! represent the gains of observer, 𝑧! , 𝑧! are 
the estimates of the states 𝑥! and 𝑥!. The state variable 𝑧! is 
the estimate state of combined uncertain and nonlinearity 
disturbances (external and internal) of the system. The 
function 𝑓𝑎𝑙 𝑒,𝛼, 𝛿  is a nonlinear function:  
 

𝑓𝑎𝑙 𝑒,𝛼, 𝛿 =
𝑒

𝛿!!!
,⃓𝑒⃓ ≤ 𝛿

⃓𝑒⃓!𝑠𝑖𝑔𝑛 𝑒 ,⃓𝑒⃓ > 𝛿
 

 
 Which yields high gain when error is small, 𝛼 is chosen 
between (0 and 1), 𝛿 is a small number used to limit the 
gain in the neighbourhood of origin.  
 The third element of NADRC is the Nonlinear State 
Error Feedback (NLSEF). The mathematical structure of 
NLSEF is written by: 
 
𝑒! = 𝑣! − 𝑧! 
 
𝑒! = 𝑣! − 𝑧! 
 
𝑢! = 𝑘!. 𝑓𝑎𝑙 𝑒!,𝛼!, 𝛿! + 𝑘! . 𝑓𝑎𝑙 𝑒!,𝛼!, 𝛿!                (16) 

 
𝑢 = 𝑢! −

𝑧!
𝑏  

 

 Where 𝑒!, 𝑒! represent the error between input signals 
and the estimate states of system, 𝑘!, 𝑘! are gains of 
NLSEF, 𝑓𝑎𝑙 𝑒!,𝛼!, 𝛿! , 𝑓𝑎𝑙 𝑒!,𝛼!, 𝛿!  are the nonlinear 
functions of NLSEF. 
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Fig. 2. A schematic representation of NADRC. 
 

3.2 Structure of the Linear ADRC  
The structure of the LADRC control is composed of ESO 
(Extended State Observer) and SEF (State Error Feedback). 
The tracking differentiator has been omitted in the present 
structure and due to simplicity in parameter tuning, the 
Linear Extended State Observer (LESO) has been used, 
which is a linear version of Nonlinear Extended State 
Observer (NESO). The mathematical structure of LESO can 
be described by the following:  
 
𝑒 = 𝑦 − 𝑧! 
 
𝑧! = 𝑧! + 𝐿!. 𝑒 
 
𝑧! = 𝑧! + 𝐿!. 𝑒 + 𝑏. 𝑢                                                         (17) 
 
𝑧! = 𝐿!. 𝑒 
 
 Where, 𝐿!,  𝐿! and 𝐿! are the observer gains and the 
variable 𝑧! stands for lumped disturbance and uncertainty, 
together with system nonlinearity. The second element of 
LARC is LSEF, which can be represented by the following 
set of equations:  
𝑒! = 𝑣! − 𝑧! 
 
𝑒! = 𝑣! − 𝑧! 
 
𝑢! = 𝑘!. 𝑒! + 𝑘! . 𝑒!                                                           (18) 
 
𝑢 = 𝑢! − 𝑧! 𝑏 
 
 Where 𝑒!, 𝑒! represent the error between input signals 
and estimated states of system and 𝑘!, 𝑘! are the gains of 
linear state feedback (LSEF). Fig. (4) shows the schematic 
diagram of Linear ADRC. 
 

 
 
 
 
 
 
 
 

Fig. 3. A schematic representation of LADRC 
 
3.3 ADRC-Based on PSO 
The original ADRC system possesses many parameters, 
which are required to be tuned to improve the control 
capabilities. Due to the complexity of ADRC and tight 
coupling of its constituting parameters, the trial-and-error 
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tuning process is exhaustive and does not lead to global 
optimizing solutions and as such, an alternative 
optimization technique is required. In the present work, a 
Particle Swarm Optimization (PSO) technique has been 
selected for tuning purposes. The PSO algorithm is based 
on the behavior of individuals of swarm. These individuals 
share information among themselves and this leads to 
increased efficiency of the group [14]. This optimization 
method will not only responsible for the tuning of all 
parameters but also to establish the best value for it, which 
will achieve minimum error between desired and actual 
states or between the inputs and outputs of the system. 
     Using the PSO technique, rather than trial-and-error 
methods will improve the estimation process and hence the 
closed-loop system dynamic is better enhanced, due to 
improved estimates of the observer. It is evident that the 
number of parameters associated with LADRC are much 
less than that of NADRC.  The numerical values presented 
in the above tables represent the optimal values of 
parameters, which are tuned based on estimation error 
minimization. The fitness function composed by the RMSE 
(Root Mean Square Error) index is adopted in 
comprehensive consideration of the rapidity, stability and 
accuracy of the system. 
 

𝐽 𝑅𝑀𝑆𝐸 =
𝑒!!

!!!
𝑛  

 
 A parameterization method proposed by Gao [8] is used 
to tune the parameters of LADRC. This parameterization 
method determines the gains value of both controller and 
observer, based on bandwidth of the observer 𝜔! and 
control 𝜔!. This can be clarified using the relationship 
between controller gains and its bandwidth frequency 𝜔!: 
 
𝜆 𝑠 = 𝑠! + 𝑘! 𝑠 + 𝑘! = (𝑠 + 𝜔!)! 
 
where, 𝑘! = 2𝜔!,  𝑘! = 𝜔!!. Similarly, based on the 
following equation, which relates observer gains and its 
bandwidth, the observer gains can be obtained: 
 
𝜆 𝑠 = 𝑠! + 𝐿! 𝑠! + 𝐿! 𝑠 + 𝐿! = (𝑠 + 𝜔!)!  
 
Where, 𝐿! = 3 𝜔!, 𝐿! = 3 𝜔!

!,  𝐿! = 𝜔!
!. Thus, this method 

could simplify the level of complexity to determine the 
optimal gain values of LESO and NESO, based on PSO. 
Table 1 lists the optimal parameters of NESO, NLSEF and 
TD, which have been tuned by the PSO algorithm. 
Alternately, Table 1 shows the optimal parameters of LESO 
and LSEF, resulting from the PSO optimizer.  
 
Table 1.  Optimal parameters of NADRC  
NESO. 
Param. Value NLSEF. 

Param. Value TD. 
Param. Value 

𝐿! 53.9 𝛽! 3.2324 ℎ 0.000001 
𝐿! 969.7  𝛽! 3.5958   
𝐿! 5811.6 𝛼! 0.9 
𝑏 46.3634 𝛿! 0.00001 
𝛼! 1 𝛼! 1.25 
𝛿! 0.1 𝛿! 0.00001 
𝛼! 0.98  
𝛿! 0.1 
𝛼! 0.78  
𝛿! 0.1 

 

Table 2.  Optimal parameters of LADRC 
LESO. Param. Value LSEF. Param. Value 

𝜔! 17.979 𝜔! 1.7979 
𝐿! 53.9 𝛽! 3.2324 
𝐿! 969.7  𝛽! 3.5958 
𝐿! 5811.6  
𝑏 46.3634 

 
 
4. Simulated Results 
 
In this section, the dynamic behavior of a flexible-joint 
system, based on ADRC, is established using 
MATLAB/Simulink. The numeric values of system 
parameters are listed in Table 3. The first comparison is 
made based on how well the transient characteristics could 
be given by such controllers. The controller reference input 
is assigned to be a step input of height 30! and the tip angle 
(θ + α) is the output response, which have to be controlled. 
Fig. (4) shows the dynamic behaviors of a flexible-joint 
system resulting from both controllers. The figure shows 
that NADRC offer better transient characteristics than 
LADRC. Table (4) makes a quantitative comparison based 
on simulation, which confirms that the response due to 
NLADRC outperforms the response resulting from 
LADRC. The key index of comparison is measured by root 
means square error (RMSE), which calculate the root mean 
square of error over the entire response. The response with 
less RMSE will address the best controller. 
 
Table 3. Numerical values of system parameters [12] 

Parameter Symbol Value 
Load Inertia  𝐽! 0.0059 [kg.m2] 

Inertia of hub 𝐽! 0.0021 [kg.m2] 
Link Mass m 0.403 [kg] 

Height of C.M. h 0.06 [m] 
Spring Stiffness 𝐾! 1.61 [N/m] 

Motor Const. 𝐾! 0.00767 
Gear Ratio 𝐾! 70 

Motor Resist. 𝑅! 2.6 [Ω] 
Gravity Const. g -9.81 [N/m] 

 
 

 
Fig. 4. Performance of NADRC and LADRC with nominal case 
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Table 4. Dynamic performance report of controllers  

Controller RMSE Maximum 
overshoot % 

Settling Time 
(sec.) 

LADRC 9.7576 3.8 7.133 
NADRC 2.9558 2.93 1.54 

  
 Another comparison is made to assess the robustness 
capabilities of the suggested controllers due to changes of 
system parameters. Two uncertainties are permitted to 
appear in the present work; internal uncertainty, represented 
by changing link mass and center of mass and external 
uncertainty given by disturbance exertion. Fig. (5) and Fig. 
(6) show the dynamic responses of tip angle and control 
signals resulting from LADRC and NLADRC, respectively. 
The responses indicated in the figures correspond to three 
values of masses (nominal value of mass, two times 
nominal value of mass, three times nominal value of mass). 
On the other hand, Fig. (7) and Fig. (8) show the transient 
responses of tip angle and control signals due to LADRC 
and NLADRC, respectively, and under a change of mass 
center (ℎ). In this scenario, two cases of mass centers have 
been addressed; the nominal value and 10% deviated value 
(from the nominal).  
 The next simulations are dedicated for evaluation of 
disturbance rejection capability of both controllers. The 
disturbance is injected as angle perturbation between time 
7-7.2 seconds with height of  20!. The performances of 
LADRC and NLADRC under this prescribed disturbance 
application have been illustrated in Fig. (9) and Fig. (10), 
respectively.  

 

 
Fig. 5. Dynamic responses of LADRC with three different settings of 
mass 

 
 Table (5) gives a summary of robustness characteristics 
for both controllers. The table reports the deviation in 
transient response from the nominal case, measured in 
RMSE, when the system is subjected to parameter 
variations (change in mass, change in the length of C.M). It 
is evident from the table that the minimum deviation from 
the nominal occurs with LADRC and this indicates that this 
controller have better robustness characteristics than 
NLADRC. In Table (5), the disturbance rejection capability 
of both controllers are evaluated in terms of how the 
response has been deviated upon abrupt disturbance change. 
RMSE measure is also used here to quantify the deviation. 
It is clear from the table that LADRC has better disturbance 

rejection capability than its opponent.  

 

 
Fig. 6 Dynamic responses of NADRC with three different setting of 
mass 

 

 
Fig. 7 Dynamic responses of LADRC with two different setting of link 
length  

 

 
Fig. 8. Dynamic responses of LADRC with two different setting of link 
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length  
 

 

 

 
Fig. 9 Dynamic responses of LADRC with disturbance 

 

 
Fig. 10 Dynamic responses of NADRC with disturbance 
 
Table 5. Robustness evaluation of controllers  

Percentage change of 
system parameters  

Percentage Change from 
nominal 

LADRC NADRC 
+100% of nominal mass 2.9444 % 10.9683  % 
+200% of nominal mass 6.6348 % 32.9454  % 
+10% of nominal C.M 0.3105 % 2.5746  % 

Disturbance Application 7.6156 % 47.1344 % 
 
5. Conclusion 
 
This paper presents a comparison study between two active 
rejection disturbance controllers in terms of transient 
characteristics and robustness. Based on simulated results, 
one can conclude that NLADRC offer better dynamic 
behavior than LADRC under nominal condition. However, 
LADRC possesses better robustness characteristics and 
disturbance rejection capabilities than NLADRC when the 
system is subjected to a variation of parameters and sudden 
change in disturbance. PSO has played a vital role in 
optimization and performance enhancement of an overall 
active rejection disturbance controlled system. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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