
 
 
 

Journal of Engineering Science and Technology Review 11 (3) (2018) 31 - 41 
 

Research Article 
 

Analytical Calculation on the Load-Displacement Curve of Grouted Soil Anchors 
 

Zejun Yang1,2, Jiangong Chen1,2,*, Haiquan Zhang1,2, Xinyao Zhao1,2 and Hao Li3 

 
1College of Civil Engineering, Chongqing University, Chongqing 400045, China 

 2Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, 
Chongqing 400045, China 

3School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom 

 
Received 7 January 2018; Accepted 2 May 2018 

___________________________________________________________________________________________ 
 
Abstract 
 

The load-displacement curve of anchors can be used as a basis for quality tests, and it is also important in the stability 
analysis of the combined supporting structure of anchors. Most of the existing analytical methods can only solve the 
partial pullout process of grouted soil anchors and obtain local load-displacement curves. To obtain a complete load-
displacement curve, mechanical differential equations for the anchoring section in each stage were derived in this study 
based on a softening shear model of the anchor-soil interface and a load transfer model of the anchoring section. 
Combined with boundary conditions, the displacement, axial force, and shear stress distributions along the anchoring 
section and the analytical solutions for the load-displacement curve in the entire pullout process of anchors were obtained. 
The accuracy of the proposed method was verified by a pullout test on a foundation pit in Chongqing, China. Results 
show that a complete load-displacement curve is obtained with the proposed analytical method and a theoretical curve is 
consistent with a field pullout curve. The shear stress on the anchoring section is irregularly and non-uniformly 
distributed with a single peak. The load-displacement curve is influenced by the changes in parameters, such as 
anchorage length, anchorage radius, elastic modulus of the anchoring section, and residual shear coefficient. The present 
study accurately simulates the entire pullout process of anchors, determines their ultimate bearing capacity, obtains a 
complete load-displacement curve, and provides a theoretical basis for the quality evaluation and modelling analysis on 
grouted soil anchors. 

 
Keywords: Load-displacement curve, Ultimate bearing capacity, Grouted soil anchors, Interface shear model, Entire pullout process 
____________________________________________________________________________________________ 

 
1. Introduction 
 
A large number of artificial slopes and underground tunnels 
have been built with the rapid construction of transport 
facilities, such as roads and railways. Although numerous 
engineering measures have been conducted to support the 
slopes and tunnels, the slope instability, tunnel collapse, 
serious deformation on the retaining structure of slopes and 
tunnels, and other problems are obvious. In this case, 
anchors have been utilized to support the slopes and tunnels. 
Anchors rationally use the strength and stability of 
geomaterials to control their deformation, and effectively 
prevent their collapse or instability. Anchors prevent the 
instability and serious deformation of slopes and tunnels and 
effectively reduce the sectional size of retaining structures, 
such as slope retaining walls and tunnel linings. Thus, 
anchors are widely used in landslide control, high slope 
support, and reinforcement on surrounding rocks of tunnels 
and other projects [1, 2]. 
 For the reinforcement with anchors, the quality of 
anchors plays a crucial role in the reinforcement stability. 
For the quality test of anchors, a bearing capacity test is an 
important link and its fundamental purpose is to determine 
the load-displacement curve and ultimate bearing capacity of 

anchors. For the stability analysis on the combined 
supporting structure of anchors, the effect of anchors on the 
retaining structure is generally equivalent to a tension spring 
and the constitutive relation of the spring is quantitatively 
described by the load-displacement curve of anchors. To 
evaluate the quality of anchors and analyze the stability on 
the combined supporting structure of anchors, the complete 
load-displacement curve of anchors in the pullout process 
should be accurately obtained. 

Three types of anchors, namely, mechanical, grouted, 
and friction anchors, are used [3]. Among the anchors, 
grouted anchors are widely used in engineering practice due 
to their convenient construction, low cost, and flexible 
application. This study mainly focuses on grouted anchors in 
soil. A grouted soil anchor is a composite system composed 
of an anchoring section (bolt and grout), surrounding soil 
mass, and the contact surface between them [4]. The shear 
properties of the interface between the anchoring section and 
soil mass are important for the study on the pullout 
characteristics of grouted soil anchors. The analytical 
solutions for the load-displacement curve of anchors can be 
obtained by using a shear model of anchor-soil interface [5]. 
However, existing analytical methods only solve the partial 
pullout process of grouted soil anchors, obtain the local 
load-displacement curve, and cannot obtain a complete load-
displacement curve. 

On this basis, the mathematical model for the entire 
pullout process of grouted soil anchors was established 
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based on the softening shear model of anchor-soil interface 
and the load transfer model of anchoring section in this 
study. The pullout force of anchors was calculated by 
numerical simulation, and a complete load-displacement 
curve was obtained, which provide reference for the quality 
test and modeling analysis on anchors. 
 
 
2. State of the art 
 
Anchors as practical reinforcements are widely used in 
engineering constructions because of their reliable 
technology and good economic benefits [6-8]. However, the 
theoretical research on anchor system is relatively 
inadequate because it has a complex stress mechanism that 
involves many factors. The transmission of pulling force is 
gradual in the pullout process of anchors. The pulling force 
of anchors is transferred from the anchor rod to the 
anchoring section and is spread to the surrounding rock-soil 
mass through the bonding force between the anchoring 
section and rock-soil mass [9, 10]. Pullout failure mainly 
occurs along the interface between the anchoring section and 
surrounding rock-soil mass [11-12].  Thus, the shear 
properties of the interface between the anchoring section and 
rock-soil mass are particularly important for investigating 
the load-displacement curve and ultimate bearing capacity of 
anchors. 

Chen et al. [13] adopted a tri-linear shear model to 
completely consider the bonding, softening, and debonding 
processes of the interface, theoretically analyzed the pullout 
properties of fully grouted anchors, and verified the results 
of theoretical analysis by a tension test. The results showed 
that the theoretical method obtained the ultimate pullout load 
of anchors with different anchorage lengths and shear stress 
distribution of the anchoring section in the pullout process, 
which coincided with the test results. However, no specific 
calculation method was given for the load-displacement 
relationship of anchors in the study. On the basis of the tri-
linear shear model of the interface, Nemcik et al. [14] 
conducted a numerical simulation analysis on the pullout 
process of anchors using FLAC2D and obtained the shear 
stress distribution of the interface and load-displacement 
curve of anchors. On the basis of a softening shear model of 
the interface, Martin et al. [15, 16] obtained the shear stress 
distribution and load-displacement curve of rock bolts 
combined with the load transfer differential equation of the 
anchoring section. The load-displacement relationship of 
anchors in the pullout process was easily obtained by using 
the abovementioned analytical methods. However, the 
abovementioned studies were all based on rock bolts, and 
few studies were reported on soil bolts. To improve the 
application of anchorage theories in geotechnical 
engineering, the shear model of the anchor-soil interface and 
load-deformation characteristics of anchors in soil should be 
investigated. 

Considering the similarity between the anchor-soil and 
pile-soil interfaces and mature research on the shear model 
of pile-soil interface [17, 18], most previous studies on the 
shear model of anchor-soil interface utilized the relevant 
conclusions of the shear model of pile-soil interface. To 
investigate the shear characteristics of the anchor-soil 
interface, Chen et al. [19] developed a tester that simulated 
the bonding characteristics of anchor-soil interface under 
various environmental conditions in batches and proposed a 
new shear model of anchor-soil interface. On the basis of the 
shear model of anchor-soil interface, the load-deformation 

characteristics of the soil anchor in the pullout process were 
investigated. 

Duan et al. [20] utilized the shear model of anchor-soil 
interface and the basic method of shear displacement to 
establish a mechanical differential equation and to deduce 
the theoretical expressions for the critical load of pullout 
loosening and the relationship between the pullout load and 
loosening length of soil anchors. They obtained the load-
displacement curve of anchors by using the pullout test data 
of anchors. However, they assumed that the shear model was 
a single-drop type and only considered the elastic and 
debonding stages without considering the softening stage in 
the transition stage. Their assumption only met the bonding 
characteristics of anchors in special soil layers and did not 
represent the bonding characteristics in general soil layers. 
For general soil anchors, Guo et al. [5] deduced the 
mechanical differential equation of soil anchors, obtained 
the internal relations among shear stress distribution type, 
ultimate pullout load, and failure characteristics, and 
obtained the analytical solution on the load-displacement 
curve of anchors based on the shear model of bonding-
softening-debonding of anchor-soil interface. Their study 
expanded the application range of anchors in soil layers. 
However, their study only considered the elastic, elastic-
softening, and elastic-softening-debonding stages in the 
pullout process of anchors and ignored the pullout process of 
anchors in the softening-debonding and complete debonding 
stages. Thus, a complete load-displacement curve was not 
obtained. On this basis, the entire pullout process of anchors 
was divided into five stages, namely, elastic, elastic-
softening, elastic-softening-debonding, softening-debonding, 
and debonding stages. The mechanical differential equation 
of anchors in each stage was deduced based on the tri-linear 
softening model of anchor-soil interface and the load 
transfer model of anchoring section. A mathematical model 
for the entire pullout process of anchors was established 
combined with boundary conditions in this study. Numerical 
optimization calculation was conducted in MATLAB, and 
the complete load-displacement curve of anchors was 
obtained, which provide a basis for the quality test and 
modeling analysis on grouted soil anchors.  

The rest of this study is organized as follows: Section 3 
establishes a mathematical model for the entire pullout 
process of anchors and calculates the load-displacement 
curve. Section 4 obtains the pullout load-displacement curve 
of anchors by using the theoretical analysis method in 
Section 3 based on a specific project case. The curve is 
compared with the pullout test curve. Section 5 provides the 
relevant conclusions. 
 
 
3. Methodology 

 
3.1 Mechanical Model of Anchors under Pullout Force 
Under normal circumstances, the shear strength of the 
interface between the grout and soil is smaller than that 
between the grout and bolt. Thus, pullout failures mainly 
occur along the interface between the grout and soil. For the 
convenience of calculation, the bolt and grout are regarded 
as a whole (anchoring section) that is equivalent to a solid 
rod. The effect of surrounding soil on the anchoring section 
is regarded as a series of nonlinear bonding springs that acts 
on the interface. The mechanical model of anchors under 
pullout force is shown in Fig. 1. 
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Fig. 1. Mechanical model of the anchors 
 
3.1.1 Softening Shear Model of Anchor-Soil Interface 
This study assumes that anchor damages mainly occur at the 
interface between the anchoring section (including the bolt 
and grout) and soil, and the anchoring section remains in a 
linear elastic stage during the pullout process. The shear 
model of bond springs that act on the anchoring section is 
quantitatively described by the shear stress-displacement 
relationship of anchor-soil interface. The shear stress at any 
point on the anchor-soil interface is composed of bonding 
force, mechanical interlocking force, and friction. The shear 
stress-displacement curve of the anchor-soil interface is 
obtained by fitting the experimental data, which is generally 
represented by a piecewise linear function, as shown in Fig. 
2.  
 

 
Fig. 2.  Softening shear model of the anchor-soil interface 

 
Stage I is the elastic stage, where the deformation 

between the anchoring section and surrounding soil is 
coordinated. The shear stress is linearly increased with the 
shear displacement, and the point on the anchor-soil 
interface is in a non-destructive bonded state. The shear 
stress reaches peak shear strength 

 
τ f  when the shear 

displacement increases to 	 u1 . The surface enters Stage II 
with the increase of shear displacement, which is called the 
softening stage. At this stage, uncoordinated deformation 
occurs between the anchoring section and surrounding soil. 
The bonding and mechanical interlocking forces gradually 
fail, and shear stress decreases. The bonding and mechanical 
interlocking forces completely fail and only friction exists 
when the shear displacement reaches 	 u2 . The shear stress 

reaches residual strength  τ r . The shear stress maintains its 
residual strength with the arbitrary development of shear 
deformation when the shear displacement exceeds 	 u2  . The 
interface enters Stage III, which is the debonding stage. The 
softening shear model of the anchor-soil interface is 
expressed as 

 

	  

τ u( ) =

τ f

u1
u

; 0≤ u ≤ u1 (a)

τ r u−u1( )+τ f u2 −u( )
u2 −u1

; u1 ≤ u ≤ u2 (b)

τ r = kτ f ; u ≥ u2 (c)

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

    (1) 

 
where 
 

 
τ u( ) is the shear stress of the interface;  

 
τ f  and 	 u1  are the peak shear strength of the interface and 

corresponding shear displacement;   

 τ r  and 	 u2 are the residual shear strength of the interface and 
corresponding shear displacement; and   
 k  is the residual coefficient, which is equal to the ratio of 
residual shear strength to peak shear strength with a value 
range of 	 0≤ k ≤1 . 
 
3.1.2 Fundamental Differential Equation for the Load 
Transfer of Anchoring Section 
The radius of anchoring section is set as  r , and an element 
with a length of  dx  is used for stress analysis, as shown in 
Fig. 3. 
 

 
Fig. 3. Mechanical model of the element 

 
 The static equilibrium equation for the element is: 
 

	  πr 2σ +2πrτ u( )dx=πr 2 σ +dσ( )                    (2) 

  
 This equation can be simplified as: 

 

	 
dσ
dx

=
2τ u( )

r
                                 (3) 

  
 The physical equation for the element is: 
 

 

du
dx

=
σ
E

                              (4) 
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Where  

 
E =

Eg Ag + Eb Ab

Ag + Ab

; 

 E  and  A  are the elastic modulus and cross-sectional area 
of the anchoring section;  

 
Eg  and 

 
Ag  are the elastic modulus and cross-sectional area 

of the grout; and  

 Eb  and  Ab  are the elastic modulus and cross-sectional area 
of the bolt. 

The fundamental differential equation for the load 
transfer of the anchoring section can be obtained by 
combining Equations (3) and (4), which is expressed as  
 

	 
d2u
dx2

−
2τ u( )

rE
=0                          (5) 

 
3.2 Analytical Solutions for the Entire Pullout Process of 
the Anchors 
With the increase on the pullout displacement of the anchors, 
the pullout process of the anchoring section can be divided 
into five stages, namely, elastic, elastic-softening, elastic-
softening-debonding, softening-debonding, and debonding 
stages. The shear stress distribution at each stage is shown in 
Fig. 4. 

 
(a) Mechanical model 

 

 
(b) Stage I 

 
(c) Stage II 

 
 

(d) Stage III 

 

 
(e) Stage IV 

 
 

(f) Stage V 
Fig. 4. Evolution of shear stress distribution along the anchor-soil 
interface in the pullout process 

 
 

3.2.1 Stage I (Elastic Stage) 
At the initial stage of tensioning, the pullout displacement is 
small and the entire anchor-soil interface is elastic. At this 
moment, anchor end displacement  uL  satisfies 	 0≤ uL ≤ u1 , 
as shown in Fig. 4(b). The fundamental differential equation 
for the first stage can be obtained by combining Equation 
(1a) with Equation (5):  
 

	  
d2u
dx2

−λ1
2u =0 ; 0≤ x ≤ L                  (6) 

 

where 
	 
λ1

2 =
2τ f

ru1E
. 

The general solution to Equation (6) is  
 

	  u(x) =C1e
λ1x +C2e

−λ1x                      (7) 
 

On the basis of boundary conditions 	 σ x=0 =0  and 

10 Lu u≤ ≤ , the solution is obtained as 
 

	  
C1=C2 =

uL

2cosh λ1L( )
                      (8) 

 
The displacement solution is 
 

	  
u(x) =

uL cosh λ1x( )
cosh λ1L( )

                       (9) 

 
The corresponding shear stress and axial force of the 

anchoring section are expressed as  
 

	  
τ (x) =

τ f uL cosh λ1x( )
u1 cosh λ1L( )

                   (10) 

 

	  
ε(x) =

uLλ1sinh λ1x( )
cosh λ1L( )

                    (11) 

 
3.2.2 Stage II (Elastic-Softening Stage) 
The anchor-soil interface inside and outside is in elastic and 
softening states when the pullout displacement increases and 
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displacement  uL  satisfies 	 u1 < uL ≤ u2  . The coordinates of 
boundary point A are  x = a , as shown in Fig. 4(c). The 
fundamental differential equations for the elastic and 
softening stages can be obtained by combining Equations 
(1a) and (1b) with Equation (5): 
 

	  

d2u
dx2

+λ1
2u =0 ; 0≤ x ≤ a

d2u
dx2

+λ2
2(1−k)u−λ2

2(u2 −ku1) =0 ; a ≤ x ≤ L

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (12) 

 

where 
	 
λ2

2 =
2τ f

rE u2 −u1( )
. 

The boundary conditions are 	 σ x=0 =0 , 

 
ε

x=a−
= ε

x=a+
 ,	 ux=a−

= u
x=a+

= u1  , and 	 u1 ≤ uL ≤ u2 . 

 
(1) Elastic section (	 0≤ x ≤ a ) 
 
The displacement, shear stress, and axial force in the elastic 
section are similar to that of Equations (9) to (11). Length L 
and displacement  uL  are replaced with a and 	 u1 . The 
general solution for the second equation in Equation (12) is  
 

	  
u(x) =

u1 cosh λ1x( )
cosh λ1a( )

                      (13) 

 

	  
τ (x) =

τ f cosh λ1x( )
cosh λ1a( )

                      (14) 

 

	  
ε(x) =

u1λ1sinh λ1x( )
sinh λ1a( )

                     (15) 

 
(2) Softening section ( a ≤ x ≤ L ) 
 
The general solution in the softening section is 
 

	  
u(x) =C3 sin λ2x 1− k( )+C4 cos λ2x 1− k( )+ M   (16) 

 
where, 
 

 
	 
M =

u1 − ku2
1− k

. 

 
 The following equations are obtained by inserting the 
boundary conditions: 

 

	  
u1 =C3 sin λ2a 1− k( )+C4 cos λ2a 1− k( )+ M    (17) 

 

	  
uL =C3 sin λ2L 1− k( )+C4 cos λ2L 1− k( )+ M    (18) 

 
The solution can be obtained by combining Equations 

(17) and (18): 
 

	  
C3 =

uL − M( )cos λ2a 1− k( )− u1 − M( )cos λ2L 1− k( )
sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

 (19) 

 

	  
C4 =

− uL − M( )sin λ2a 1− k( )+ u1 − M( )sin λ2L 1− k( )
sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

 (20) 

 
The following equations are obtained by combining the 

two above equations with Equation (16): 

 

	  
u(x) =

uL − M( )sin λ2 x − a( ) 1− k⎡
⎣

⎤
⎦+ u1 − M( )sin λ2 L− x( ) 1− k⎡

⎣
⎤
⎦

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

+M                         (21) 

 

	  
τ (x) =

τ f sin λ2 L− x( ) 1− k⎡
⎣

⎤
⎦−

τ f 1− k( ) uL − M( )
u2 −u1

sin λ2 x − a( ) 1− k⎡
⎣

⎤
⎦

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

                        (22) 

 

	  
ε x( ) =

λ2 1− k uL − M( )cos λ2 x − a( ) 1− k⎡
⎣

⎤
⎦− u1 − M( )cos λ2 L− x( ) 1− k⎡

⎣
⎤
⎦{ }

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

          (23) 

 
(3) Coordinates of boundary point A 
On the basis of boundary condition 

 
ε

x=a−
= ε

x=a+
, Equation 

(24) is obtained. The value of a can be obtained by Equation 
(24), which is a nonlinear equation with one unknown 
quantity. 

 	  

λ1u1 tanh λ1a( ) = λ2 1− k

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

× uL − M( ){

− u1 − M( )cos λ2 L− a( ) 1− k⎡
⎣

⎤
⎦}

(24) 

 
3.2.3 Stage III (Elastic-Softening-Debonding Stage) 
The anchor-soil interface inside and outside is in a stress 
state in the elastic, softening, and debonding stages, as 
shown in Fig. 4(d). The boundary points between the elastic 
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and softening sections and between the softening and 
debonding sections are set as B ( x = b ) and C ( x = c ), 
respectively. The fundamental differential equation for the 
anchoring section at this stage can be obtained by combining 
Equation (1) with Equation (5):  
 

	  

d2u
dx2

−λ1
2u =0 ; 0≤ x ≤ b

d2u
dx2

+λ2
2(1−k)u−λ2

2(u2 −ku3) =0 ; b ≤ x ≤ c

d2u
dx2

−λ3
2 =0 ; c ≤ x ≤ L

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  (25) 

 

where 
	 
λ3

2 =
2kτ f

rE
. 

The boundary conditions are 	 σ x=0 =0  , 
 
ε

x=b−
= ε

x=b+
 , 

	 ux=b−
= u

x=b+
= u1  , 

 
ε

x=c−
= ε

x=c+
 , 	 ux=c−

= u
x=c+

= u2  , and 

	 u2 < uL ≤ u3 . 

	 u3  is the pullout displacement of the anchor end in a 
critical transition state from the third to fourth stage. 

(1) Elastic section (	 0≤ x ≤ b ) 
The following equations are obtained by replacing length L 
and displacement  uL  in Equations (9) to (11) with b and 	 u1 , 
respectively: 
 

	  
u(x) =

u1 cosh λ1x( )
cosh λ1b( )

                      (26) 

 

	  
τ (x) =

τ f cosh λ1x( )
cosh λ1b( )

                      (27) 

 

	  
ε(x) =

u1λ1sinh λ1x( )
sinh λ1b( )

                     (28) 

 
(2) Softening section ( b ≤ x ≤ c ) 
The following equations are obtained by replacing a, L, and 

 uL  in Equations (21) to (23) with b, c, and 	 u2 , respectively: 
 

 

	  
u(x) =

u2 − M( )sin λ2 x −b( ) 1− k⎡
⎣

⎤
⎦+ u1 − M( )sin λ2 c− x( ) 1− k⎡

⎣
⎤
⎦

sin λ2 c−b( ) 1− k⎡
⎣

⎤
⎦

+ M                         (29) 

 

	  
τ (x) =

τ f sin λ2 c− x( ) 1− k⎡
⎣

⎤
⎦+τ f k sin λ2 x −b( ) 1− k⎡

⎣
⎤
⎦

sin λ2 c−b( ) 1− k⎡
⎣

⎤
⎦

                                   (30) 

 

	  
ε x( ) =

λ2 1− k uL − M( )cos λ2 x − a( ) 1− k⎡
⎣

⎤
⎦− u1 − M( )cos λ2 L− x( ) 1− k⎡

⎣
⎤
⎦{ }

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

      (31) 

 
(3) Debonding section ( c ≤ x ≤ L ) 
The general solution in the debonding section is 
 

	  
u(x) =

λ3
2

2 x+C5( )2 +C6                   (32) 

 
The following equations can be obtained after placing 

the boundary conditions in Equation (32):  
 

	 
u2 =

λ3
2

2 c+C5( )2 +C6                     (33) 

 

	 
uL =

λ3
2

2 L+C5( )2 +C6                     (34) 

 
The following equations can be obtained after combining 

Equations (33) and (34): 
 

	 
C5 =

uL −u2
L− c( )λ32

−
L+ c
2                    (35) 

 

	 
C6 = uL −

λ3
2

2
uL −u2
L− c( )λ32

+
L− c
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

           (36) 

 

	  

u(x) = uL +
λ3

2

2 x+
uL −u2
L− c( )λ32

−
L+ c
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

−
λ3

2

2
uL −u2
L− c( )λ32

+
L− c
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2        (37) 

 
 The corresponding shear stress and axial force are 
expressed as: 

 

  
τ (x) = τ r = kτ f                         (38) 

 

	  
ε(x) = λ3

2x+
uL −u2
L− c( )

−
L+ c
2 λ3

2               (39) 

 
(4) Coordinates of boundary points b and c, and 	 u3   

For different  uL  values, the corresponding coordinates of 
boundary points b and c can be obtained with the continuity 
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conditions of two points. Equation (40) can be obtained with 

 
ε

x=b−
= ε

x=b+
 and 

 
ε

x=c−
= ε

x=c+
. The values of b and c can be 

obtained by Equation (40), which is a nonlinear equation 
with two unknown quantities. The anchor is in a critical 
transition state from the third to fourth stage when b = 0. 

Equation (41) is obtained by combining b = 0 with Equation 
(40). The values of end displacement 	 u3  and boundary point 
c in the critical state can be obtained by Equation (41). 

 

	  

λ1u1 tanh λ1b( ) =
λ2 1− k u2 − M( )− u1 − M( )cos λ2 c−b( ) 1− k⎡

⎣
⎤
⎦{ }

sin λ2 c−b( ) 1− k⎡
⎣

⎤
⎦

λ2 1− k u2 − M( )cos λ2 c−b( ) 1− k⎡
⎣

⎤
⎦− u1 − M( ){ }

sin λ2 c−b( ) 1− k⎡
⎣

⎤
⎦

=
uL −u2
L− c( )

- L-c
2 λ3

2

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

                         (40) 

 

	  

λ2 1− k [ u2 − M( )− u1 − M( )cos(λ2c 1− k )]

sin(λ2c 1− k )
=0

uL −u2
L− c( )

- L-c
2 λ3

2 =
λ2 1− k [ u2 − M( )cos(λ2c 1− k )− u1 − M( )]

sin(λ2c 1− k )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

                              (41) 

 
3.2.4 Stage IV (Softening-Debonding Stage) 
The anchor-soil interface is in a stress state in the softening 
and debonding stages, which are distributed inside and 
outside of the anchoring section, as shown in Fig. 4(e). The 
boundary point between the two sections is set as D ( x = d ). 
Fundamental differential equations of the softening and 
debonding sections can be obtained by combining Equations 
(1b) and (1c) with Equation (5):  
 

	  

d2u
dx2

+λ2
2(1−k)u−λ2

2(u−ku1) =0 ; 0≤ x ≤ d

d2u
dx2

−λ3
2 =0 ; d ≤ x ≤ L

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (42) 

 
The boundary conditions are 	 σ x=0 =0  , 

 
ε

x=d−
= ε

x=d+
 , 

  
u

x=d−
= u

x=d+
= u2  , and 	 u3 < uL ≤ u4 . 

	 u4  is the pullout displacement of the anchor end when 
the anchor is in a critical transition state from the fourth to 
fifth stage. 

 
(1) Softening section (	 0≤ x ≤ d ) 
Based on Equations (21) to (23), the solutions are 
 

	  
u(x) = −

k u2 −u1( )
1− k

cos λ2x 1− k( )
cos λ2d 1− k( )

+
u2 − ku1
1− k

      (43) 

 

	  
τ (x) =

kτ f cos λ2x 1− k( )
cos λ2d 1− k( )

                (44) 

 

	  
ε(x) =

kλ2 u2 −u1( )
1− k

sin λ2x 1− k( )
cos λ2d 1− k( )

           (45) 

 
(2) Debonding section ( d ≤ x ≤ L ) 

Based on Equations (37) to (39), the solutions are 
 

	  

u(x) = uL +
λ3

2

2 x+
uL −u2

L− d( )λ32
−

L+ d
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

−
λ3

2

2
uL −u2

L− d( )λ32
+

L− d
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2         (46) 

 

  
τ (x) = τ r = kτ f                          (47) 

 

	  
ε(x) = λ3

2x+
uL −u2
L− d

−
L+ d
2 λ3

2               (48) 

 
(3) Determination of d and 	 u4  
On the basis of the continuity conditions of D, the following 
equation can be obtained:  
 

	  
kλ2 u2 −u1`( )

1− k
tan λ2d 1− k( ) = uL −u2

L− d
−

L− d
2 λ3

2   (49) 

 
The value of d can be obtained by Equation (49), which 

is a nonlinear equation with one unknown quantity.  
The anchor is in a critical transition state from the fourth 

to fifth stage when d = 0. On the basis of Equation (49), the 
displacement of the anchors in the critical state is 

 

	  
u4 =

λ3
2

2 L2 +u2                         (50) 

 
3.2.5 Stage IV (Softening-Debonding Stage) 
The anchor is gradually removed when the pullout 
displacement of the anchor end increases from 	 u4 , as shown 
in Fig. 4(f). The contact length between the anchoring 
section and surrounding soil decreases. The pullout load 
decreases with the increase of pullout displacement. The 
shear stress of the interface is the residual shear stress 
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τ (x) = τ r = kτ f                         (51) 

 
3.3 Computational Simulation of Load-Displacement 
Curve of Anchors 
On the basis of the mathematical model for the entire pullout 
process of the anchors established in 3.2, the computational 
simulation can be conducted to obtain the complete load-
displacement curve and determine the ultimate bearing 
capacity of the anchors.  

(1) In Stage I, the strain of the anchor end can be 
obtained with Equation (11) 
 

	  ε(L) = uLλ1tanh λ1L( )                     (52) 

 
Therefore, the load-displacement relationship of the 

anchor end is: 
 

	  
P = EAλ1tanh λ1L( )uL ; 0≤ uL ≤ u1           (53) 

 
 (2) In Stage II, the strain of the anchor end can be 

obtained with Equation (23) 
 

 

	  
ε(x) =

λ2 1− k uL − M( )cos λ2 L− a( ) 1− k⎡
⎣

⎤
⎦+ u1 − M( ){ }

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

(54) 

 
 Therefore, the load-displacement relationship of the 
anchor end is: 
 

	  

P = −λ2EA 1− k

sin λ2 L− a( ) 1− k⎡
⎣

⎤
⎦

u1 − M( ){

− uL − M( )cos λ2 L− a( ) 1− k⎡
⎣

⎤
⎦}

;u1 ≤ uL ≤ u2  (55) 

 
 (3) In Stage III, the strain of the anchor end can be 

obtained with Equation (39) 
 

	  
ε(L) = λ3

2L+ uL −u2
L− c

−
L+ c
2 λ3

2              (56) 

 
Therefore, the load-displacement relationship of the 

anchor end is: 
 

	  
P = EA λ3

2L+ uL −u2
L− c

−
L+ c
2 λ3

2⎛

⎝
⎜

⎞

⎠
⎟;u2 ≤ uL ≤ u3    (57) 

 
 (4) In Stage IV, the strain of the anchor end can be 

obtained with Equation (48): 
 

	  
ε(L) = λ3

2L+ uL −u2
L− d

−
L+ d
2 λ3

2              (58) 

 
Therefore, the load-displacement relationship of the 

anchor end is: 
 

	  
P = EA λ3

2L+ uL −u2
L− d

−
L+ d
2 λ3

2⎛

⎝
⎜

⎞

⎠
⎟;u3 ≤ uL ≤ u4    (59) 

 
(5) In Stage V, the strain of the anchor end can be 

obtained with Equation (48). The pullout load is balanced by 
the residual shear strength on the anchoring section, and its 
pullout load-displacement relationship is: 

 
 

	  
P =2kπrτ f L−u4 −u( ) ; u4 ≤ u ≤ L−u4     (60) 

 
In the above equations, the values of a, b, c, and d are 

determined by nonlinear equations or equation sets (24), (40), 
and (49). The fmincon function provided by MATLAB can 
be used for solution [21]. The function only requires an F-
function module and an initial value, and its minimum value 
can be searched without derivation. The search is quick 
provided that a suitable initial value is given. 

 
 

4 Result Analysis and Discussion 
 

To explain the specific application of the proposed method 
in engineering practice, a field pullout test was conducted in 
a deep foundation pit of a high-rise building in Chongqing. 
The theoretical analysis results and test results in Part 3 were 
analyzed to verify the accuracy of the proposed method. The 
maximum excavation depth of the foundation pit 
engineering was 22.5 m, and the supporting structure with 
anchor pile wall was adopted. The test anchor was buried in 
the piles. The inclination of the anchor was 15°, the drilling 
diameter was 150 mm and the design length L was 16 m, in 
which the lengths of the free section and anchorage were 4 
and 12 m. The anchoring section was located in a silty clay 
layer. The density of silty clay layer was ρ = 1930 kg/m3, 
the cohesion was c = 29.1 KPa, the internal friction angle 
was φ = 18.9°, the elastic modulus was 22.5 MPa, and the 
Poisson’s ratio was 0.3. 

The anchor adopted a Φ32 screw-thread steel with an 
elastic modulus of   Es = 200GPa . The grouting adopted a 
cement mortar in which the water-cement ratio was 0.5, the 
grouting intensity was M30, and the elastic modulus 
was  Em = 30GPa . The anchor was tensioned under various 
degrees of pullout force after the grout reached the design 
intensity. The position of measuring points on the anchoring 
section is shown in Fig. 5.  

 

 
Fig. 5. Position of measuring points on the anchoring section 

 
4.1 Shear stress-displacement curve of the anchor-soil 
interface 
During the tensioning process of the anchor, a tri-linear 
shear stress-displacement curve of the anchor-soil interface 
can be fitted by collecting data of measuring points on the 
anchoring section, as shown in Fig. 6. The corresponding 
model parameters are 	  τ f = 75.3 KPa , 	  τ r = 33.9 KPa , 

	  u1 = 3.5 mm , and 	  u2 = 5.8 mm . 
 



Zejun Yang, Jiangong Chen, Haiquan Zhang, Xinyao Zhao and Hao Li/ 
Journal of Engineering Science and Technology Review 11 (3) (2018) 31-41 

 39 

4.2 Load-Displacement Curve 
The experimental curves of load-displacement can be fitted 
by analyzing the collected data in the field, as shown by the 
solid blue line in Fig. 7. In addition, the load-displacement 
curve of the entire pullout process can be obtained by using 
the model parameters of the anchor-soil interface based on 
the proposed method in Section 3.3, as shown by the dotted 
red line in Fig. 7. By comparison, the obtained load-
displacement curve in this study is highly consistent with the 
field experimental data. This finding indicates that the 
proposed method accurately simulates the pullout process of 
grouted soil anchors and determines the ultimate bearing 
capacity of anchors. In addition, the proposed method 
predicts the descending and residual sections of load-
displacement to obtain the complete load-displacement 
curve. 
 
 

τ /

 
Fig. 6. Shear stress-displacement curve of the anchor-soil interface 

 
 

 
Fig. 7. Load-displacement curve of the anchors 
4.2 Distribution of Shear Displacement, Axial Force, and 
Shear Stress 
 
On the basis of the model parameters of the anchor-soil 
interface, the displacement, axial force, and shear stress 
distributions of the anchoring section for different 
displacements ( uL = 2.33, 3.50, 4.65, 6.30, and 7.16 mm) 
can also be obtained by using the method in 3.2, as shown in 
Fig. 8. The values of shear displacement and axial force 
reach the maximum at the end of anchoring section 
(	 x =12m ) and gradually decrease toward the inside of the 
anchoring section. The shear stress is irregularly distributed 
in the anchoring section. The entire anchor-soil interface is 

elastic, and the value of shear stress reaches the maximum at 
the end of anchoring section ( 	 x =12m ) and gradually 
decreases toward the inside of the anchoring section when 
the pullout displacement is small ( 	  uL =2.33mm ). The 
maximum shear stress reaches the peak shear strength when 

 uL  is equal to 	 u1  (	  uL =3.50mm ). The anchor-soil interface 
is in the elastic-softening stage and the shear stress reaches 
the peak shear strength at the intersection between the elastic 
and softening sections when  uL  increases (	  uL = 4.65mm ). 
The position of maximum shear stress moves toward the 
inside of the end of anchoring section when  uL  increases. 

 
(a) Displacement distribution 

 
(b) Axial force distribution 

/τ

 
(c) Shear stress distribution 

Fig. 8. Displacement, axial force, and shear stress distributions of the 
anchoring section 
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4.2 Parameter Analysis 
The mechanical properties of soil and the design and 
construction technologies of anchors affect the pullout 
properties of anchors. The effect of anchorage length L, 
anchorage diameter D, elastic modulus of anchoring section 
E, and residual coefficient k on the load-displacement curve 
shown in Fig. 9 is analyzed. The influence of different 
anchorage parameters on load-displacement curves is shown 
in Fig. 9.  

The ultimate pullout load linearly increases and the 
corresponding displacement gradually increases with the 
increase of anchorage length. The elastic section slope of the 
curve and the ultimate pullout load gradually increase when 
anchorage diameter D increases. The elastic section of the 
load-displacement curve does not change with the residual 
coefficient. The ultimate pullout load slightly increases and 

the corresponding displacement gradually decreases when 
residual coefficient k increases. The residual pullout load 
increases with the increase of length L, diameter D, and 
residual coefficient k, and does not change with elastic 
modulus E when the entire anchoring section is in the 
debonding state. This condition is because the pullout load 
in the debonding stage mainly depends on the friction on the 
anchoring section, which is determined by three factors, 
namely, anchorage diameter, anchorage length, and residual 
shear strength. 

The increase of length L, diameter D, elastic modulus E, 
and residual shear coefficient k enhance the ultimate pullout 
load of the anchors to some extent. However, the residual 
pullout load only increases with the increase of anchorage 
length L, diameter D, and residual coefficient k, and does 
not change with elastic modulus E. 

 

 

   
(a) Anchorage length L                                                                                  (b) Anchorage diameter D 

 

   
                      (c) Residual shear coefficient k                                                              (d) Elastic modulus of anchoring section E 

Fig.9. Effects of different parameters on load-displacement curve 
 

5 Conclusions 
 

A mathematical model for the entire pullout process of 
grouted soil anchors was established to obtain a complete 
load-displacement curve. The pullout force of anchors was 
calculated by numerical simulation based on the softening 
shear model of the anchor-soil interface and load transfer 
model of the anchoring section. The following major 
conclusions are summarized as follows:  
 

(1) The entire pullout process of the anchor bolt is 
accurately simulated in this study. The complete load-
displacement curve is obtained with the proposed method, 
and the theoretical curve is consistent with the field pullout 
curve.  

(2) In the pullout process, the shear stress on the 
anchoring section is irregularly and non-uniformly 
distributed with a single peak. The peak point moves to the 
inner end from the anchor head when the pullout load 
increases. However, the shear stress on the anchoring section 
is evenly distributed in the engineering design of anchors. 



Zejun Yang, Jiangong Chen, Haiquan Zhang, Xinyao Zhao and Hao Li/ 
Journal of Engineering Science and Technology Review 11 (3) (2018) 31-41 

 41 

This assumption is inconsistent with the actual situation. 
Therefore, modifications should be conducted in the design 
of anchors.  

(3) The changes in anchorage length L, diameter D, 
residual coefficient k, elastic modulus of anchoring section E, 
and other parameters influence the load-displacement curve 
of anchors. The ultimate bearing capacity of anchors 
increases when L, D, k, and E increase. In the debonding 
state, the residual pullout load only increases with the 
increase of anchorage length L, diameter D, and residual 
coefficient k, and does not change with elastic modulus E. 

 
 In summary, a mathematical model for the entire pullout 
process of grouted soil anchors was established and 
MATLAB was used for numerical optimization calculation 
to facilitate programming realization. The proposed method 
simulates the pullout process of anchors and obtains the 
complete load-displacement curve, which provides a basis 
for the quality test and modeling analysis of anchors. 
However, the theoretical analysis method of the present 

study is based on the softening model of anchor-soil 
interface that is significantly influenced by the surrounding 
soil of anchors. The model parameters of the anchor-soil 
interface are different in different soil conditions. Therefore, 
the application scope of the proposed method should be 
expanded in future research by introducing the soil 
parameters in the anchor-soil interface, which will 
significantly facilitate the understanding on the anchorage 
mechanism of grouted soil anchors. 
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