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Abstract 
 

: Internal model control (IMC) is an established technique in continuous time linear control, but it is less used for 
discrete-time systems. Most of the existing solutions do not cover all the situations and, in any case, they lead to complex 
procedures to design the controller. In this paper, a IMC technique able to control over-actuated systems is used to deal 
with a discrete-time Non-Minimum-Phase (NMP) process with multiple time delays and uncertain parameters. The 
proposed IMC control scheme is based on the system augmentation with a suitable number of virtual outputs to the model 
matrix, in order to create a square matrix, so that the realization of an approximate inverse of the model plant is possible. 
Robust stability analysis is provided via combination of the value set concept and the zero exclusion conditions. Internal 
stability is verified using Linear Matrix Inequalities (LMI). Simulations are reported to demonstrate the suitability of the 
proposed design, as regards robust stability, performance, parametric uncertainties and load disturbances. 
 
Keywords: Internal model control; LMI stability; parametric uncertainty; Value set concept; Zero Exclusion Condition; Over-Actuated 
Systems. 
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1. Introduction  

 
The processes with more inputs than outputs, known as 
over-actuated systems, are difficult to control due to the 
presence of the interactions between several outputs 
variables and the manipulating inputs channels. This class of 
system arises in a wide range of applications including many 
chemical processes, (chemical reactors, distillation column), 
thermal systems, (heat exchangers), road vehicles, mobile 
robots, transportation and communication systems, etc ... [1]. 
 The large majority of processes are multivariable in 
nature, exhibiting some strong coupling and occasionally a 
non-minimum phase (NMP) character that makes the control 
design problem a challenging task [2]. Discrete system 
having at least one transmission zero outside the unit circle 
are termed as NMP systems [3]. For instance, the invertible 
minimum phase (MP) system can provide good regulation, 
which an NMP system lacks, these systems can become 
unstable in closed-loop form. This makes some NMP 
systems almost uncontrollable [4]. Despite the coupling 
problems to maintain several controlled variables at 
independent set points with over-actuated systems, a non-
minimum phase system with time delays and parameter 
uncertainty is even more difficult to control.  
 When employ controllers which require the inverse 
model of the system, is possible to talk about the internal 
model control (IMC), which was introduced in the 80's by 
Manfred Morari and his co-workers, (Morari and Zafirou 

1989, Garcia and Morari 1982 etc), has already proved to 
provide an effective framework for robust control of various 
classes of delay-free systems [5]. It is therefore usual to 
extend this concept to control over-actuated systems. 
 IMC has been proved to be successful in a wide area of 
control applications, such as process control [6], electrical 
drive systems [7], signal processing and power electronics 
[8] and [9]. Internal model control (IMC) structure is derived 
from classical control by introducing the model of process in 
the control loop and thereby having significant advantages 
over classical control such as stability, perfect control loop 
and zero-steady state offset. The basic one degree of 
freedom IMC provides good compromise between set-point 
tracking and disturbance rejection and works well for NMP 
system [10].  Pedro [11] proposed an output estimator for 
NMP MIMO plants. The non-delayed output plant is 
predicted. The predictor is a stable dead-time-compensator 
coping with multiple and arbitrary delays in all the signal 
channels. The controller is designed for the resulting non-
delayed plant and the proposed scheme is based on a new 
smith predictor. 
 Jing [12] proposes a simple design method of IMC for 
NMP non-square processes with different time delays, it is 
realizable by adding additional low-pass filters and provides 
a model reduction method to find a good approximation of 
the theoretical controller. 
 Jian [13] presented a modified two-degrees-of-freedom 
IMC for non-square systems with multiple time delays and 
right-half-plane zeros. In this approach, pseudo-inverse 
method is used to design the internal controller. The 
obtained control system was sensitive to the change of time 
delays. 
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 Ricardo [14] present an internal model control based 
proportional-integral-derivative (PID) control for a 
benchmark system presented at the 3rd IFAC conference on 
advances in proportional-integral-derivative control (PID18). 
The design of the internal controller was based on a 
linearized model of the benchmark system around the 
normal operation point, using the prediction error estimation 
algorithm, then the interaction effects are neglected based on 
decentralized approach. The authors in this paper are carried 
out to solve the application problem of PID controller in 
MIMO systems, the IMC based PID controller validate the 
performance of the proposed method. 
 In this paper, the approach previously developed in [15] 
and [16] is extended to NMP discrete-time over-actuated 
systems with time delays. Robust stability is also analyzed 
by considering parameters uncertainty. 
 IMC based virtual outputs controller for over-actuated 
systems is proposed. Firstly, using a suitable number of 
virtual outputs, an augmented model is obtained to ensure 
the approximate model inversion and to deal with the over-
actuation problem. Then the virtual adding will be neglected. 
The stability of the proposed controller is analyzed using the 
matrix inequality approach (LMI) [17] and the internal 
stability of IMC structure in the presence of uncertainty at 
the level of the system is verified using the graphical 
approach [18]. IMC controller based on virtual outputs is 
designed for non-square system to validate the results of the 
proposed approach 
 This article is structured as follows. In section 2 the 
approach for an internal model controller design, directly 
applicable to discrete-time over-actuated systems, is 
described, and the augmented model is designed. The robust 
stability approach for system with uncertainty parameters 
used in the paper is reported in section 3. In section 4, an 
example is reported to illustrate the efficiency of the 
proposed controller. Some conclusions are given in section 
5. 
 
 
2. Internal model control design for over-actuated 

systems 
 

2.1. The Virtual Outputs approach  
The basic control block diagram of IMC structure for 
multivariable systems is shown in Figure 1, where G(z) and 
M(z) are the process and the process model respectively. 
C(z) is the internal model controller [19].  
If the process model is perfect, the difference between 
process output and model output (i.e., feedback signal) is not 
affected by the action of the manipulated variables but it is 
influenced only by the disturbance. Consequently, the 
control system is effectively open-loop and C(z) plays the 
role of feedforward controller. 

 
Fig. 1. The IMC basic structure 
 
 The synthesis of an IMC controller C(z) is equal to the 
inverse of the internal model M(z) with more control inputs 

(m) than outputs (n) in order to ensure a perfect set-point 
tracking. The approximate inverse represents the major 
problem of the IMC approach, because the realization of the 
direct inversion is difficult for non-square systems 
(rectangular matrix) [19]. This difficulty becomes more 
complicated in the presence of unstable zeros or/and time 
delay. 
 A new inversion technique of the over-actuated model 
M(z) using virtual outputs is proposed. It consists on 
attaching lines to the rectangular transfer function matrix of 
the process model, which allows the inversion technique to 
be realizable. To maintain the original characteristics of the 
process, we have to remove the adding lines. The virtual 
outputs are only used to square the model transfer matrix 
[20].  
 Once the virtual outputs technique is applied, we need 
now to modify the basic IMC structure previously 
mentioned in Figure 1, so that it becomes applicable to over-
actuated systems. 

 
Fig 2. The proposed IMC design for discrete over-actuated systems 
 
 
 The modified IMC structure presented in Figure 2 is 
characterized by two more blocks [20], [21]. The first added 
one present the Augmentation Virtual Outputs AVO(z) 
block which is used to augment the model outputs inserting 
virtual (( ) )m n m- lines to the transfer matrix of the 
rectangular process model in order to make it of dimension 

   (m×n) , so that it can be inverted. The second added one is 
the Removing Virtual Outputs RVO (z) block which is used 
to eliminate the exceeding virtual outputs by means of the 
usual logical operators [21]. 
G(z) is a process with 'm' inputs and 'n' outputs    (m〉n)  
given as: 
 

    

G(z) =

g11(z) g12(z) … g1m(z)

g21(z) g22(z) … g2m(z)

! ! " !

gn1(z) gn2(z) … gnm(z)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

                         (1) 

 
 The virtuals ((m-n), m) added lines are expressed as: 
 

    

G+(z) =

gn+1,1(z) gn+1,2 (z) … gn+1,m (z)

gn+2,1(z) gn+2,2 (z) … gn+2,m (z)

! ! " !
gm1(z) gm2(z) … gmm(z)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

            (2) 

 
where the transfer function from j-th input to i-th output is 

   
gij (z) = g0ij (z)z−τij , 0ijg is strictly proper, stable and 

G(z)C(z)

M(z)

+ - ++
e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

Controlleur Process

Model

G(z)CVO(z)

Gm(z)

+ - ++
e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

RVO(z)AVO(z)G(z)CVO(z)

M(z)

+ - ++
e(z)r(z) u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

RVO(z)AVO(z)
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possible non-minimum phase and ijt  is the time delay 

which is a non-negative constant. 0 ( )ijg z  is defined as 

 

   
gij (z) =

Kij N NMP(z)N MP(z)
Ds(z)Du (z)

                                            (3) 

 
where, ijK is the gain of the each (z)ijg  , (z)NMPN  and 

( )MPN z are the non-minimum phase (NMP) and minimum 

phase (MP) numerator polynomials. ( )sD z  and ( )uD z are 
the stable and unstable denominator polynomials. The 
presence of non-minimum phase elements, namely time 
delays limits the ability for perfect control. 
 However, the control object in our case is an over-
actuated system that can be NMP, so it does not have the 
traditional inverse. Thus, the Virtual Outputs approach is 
introduced. The virtual output controller ( )voC z  presented 
in Figure 3 is expressed as: 
 

  
CVO z( ) = ue−1 = (Im+ K1M (z))−1 K1 = (K1

−1+ M (z))−1        (4) 

 
where mI is the identity matrix and 1K  is an invertible 
square diagonal matrix; it must ensure the stability 
conditions of the controller [22]. 1K  is an invertible (  m×m
) square matrix, it can be expressed by: 
 

  K1 = β × Im ,β ∈ R+                                                            (5) 
 

 
Fig. 3. Virtual Output Controller structure 
 
 If we choose a high value of b  in (5), we obtain a small 

value of 
1
b

 which allows to approximate   (K1
-1+ M (z))-1  

with 1( )M z − . In this case, ( )voC z  is approximately equal 
to the model expression inverse as follows: 
 

( ) 1(z)VOC z M −=                                                             (6) 
 
Proof (case of a square system   (2×2) ) 
We consider a multivariable discrete system with 2-inputs, 
2-outputs, whose the matrix 

   
M (z) = (mij (z))i, j=1,2  is the 

transfer matrix relating to the model describing the system, 
and     K1 = βI2 . 

The transfer matrix of the controller   Cvo(z)  is defined as: 
 

   

Cvo(z) =
β

(1+βm11)(1+βm22 )−(β2m12 m 21)
1+βm22 −βm12

−βm21 1+βm11

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
             (7)

 With a sufficiently high chosen of b , we obtain: 

 

    

Cvo(z)! 1
(m11m22−m12 m 21)

m22 −m12

−m21 m11

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

!
com( M (z))
det( M (z))

! M (z)−1

                (8) 

 
 This result coincides with that obtained by equation (6). 
 The block diagram of the IMC structure, proposed in the 
case of discrete over-actuated systems, is illustrated in 
Figure 4 where the inversion approach is that described in 
this section. 
 

 
Fig. 4. The proposed IMC controller design 
 
 According to the Figure 4, we can deduce the equations 
(9) and (10) that describe 
respectively the output vector ( )y z (

( ) ( ) ( ) ( ) ( )r dy z y z r z y z d z= + ) without considering the 

blocks ( )AVO z and ( )RVO z : 

   yr (z) = G(z)(Im+ (Im+ K1M (z))−1 K1(G(z)−M (z)))−1(Im+ K1M (z))−1 K1                                      (9) 
 

e(z) +
-

M(z)

K1(z)
u(z)

CVO(z)
e(z) u(z)

G(z)

Gm(z)

++
u(z)

y(z) - ym(z)

y(z)

d(z)

+
-

RVO(z)AVO(z)G(z)K1

M(z)

++
e(z)r(z)

y(z) - ym(z)

y(z)

d(z)

+
-

RVO(z)AVO(z)+ -+ -
+ -+ -

M(z)
ym(z)

Cvo(z)
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   yd (z) = Im−G(z)(Im+ (Im+ K1M (z))−1 K1(G(z)−M (z)))−1(Im+ K1M (z))−1 K1                              (10) 
 When the model is perfect and if we assume that the 
process is not subject to any disturbance, the output vector 
becomes: 
 

   

y(z) = G(z)(Im + K1G(z))−1 K1r(z)

= M (z)(Im + K1M (z))−1 K1r(z)
                        (11) 

 
 This expression (11) allows us to conclude that the 
robustness of the proposed internal controller approach 
depends only of the matrix gain 1K  and ( )M z .  
 For the case of systems with NMP and/or delay, the 
coefficient b  cannot be chosen sufficiently high, this can 
lead to degradation of system accuracy. In fact, in order to 
ensure the system accuracy, i.e., a zero static error, the 
controller static gain matrix (1)voC  must be very close to the 

inverse of the model static gain matrix (1)M  as shown in 
(12).  
 

( ) 11 (1)VOC M −=                                                               (12) 
 
 In order to remedy this problem, the gain matrix 2K  
presented in Figure 4 is added. It allows to compensate the 
system static errors. Its expression is given by (13) and it 
ensures that 

  
CVO z( )M (z) = Im . 

 

  K2 = K1
−1(Im + K1M (1))−1 M (1)−1                                   (13) 

 
Figure 5. Generalized Virtual Output Controller structure 
 
 

 2K  is used to compensate the static errors, while 1K  is 
chosen to ensure the stability of the loop to achieve the goal 
of the inversion. 
 The new generalized Virtual Outputs Controller 
expression for over-actuated systems with NMP is the 
following: 
 

1
2 1 1( ) ( ( ))vo mC z K I K M z K−= +                                       (14) 

 
2.2. Study of the stability of the controller ( )voC z  

The IMC controller ( )voC z  expressed by equation (14) can 
be reforumlated using the state space representation as 
follows: 
 

  

xc (k +1) = Fcx(k)+Hce(t)
yc (K ) =Ccx(K )

⎧
⎨
⎪

⎩⎪
                                            (15) 

 
where: ( ) ( )n mx k R and y k R∈ ∈ are respectively the state 

vector and the system output vector. The matrices cF , cH  

and cC  are known constant matrices. The stability analysis 

can be processed by the knowledge of the state matrix cF  
which depends of the gain matrix K1.  
 The system presented by equation (15), is asymptotically 
stable in the Lyapunov sense [22], if there exists a positive 
definite matrix 0TP P= > , satisfying the following 
Lyapunov inequality. 
  

0P > , 0T
c cPF P F+ <                                                    (16) 

 
 
3. Uncertain system stability 
 
Many sources may influence processes during their life-
cycles, such as the variation of real parameters or the 
inherent non-linearity characteristic. In this paper, we give a 
possible approach to solve the problem of robust stability of 
a family of interval polynomials, whose parameters are 
stochastically and independently varying in some given 
range, using a simple graphical approach [23]. 
 The parametric description of uncertainty is given by a 
known structure but imprecise knowledge of real physical 
parameters of the system. Their possible values are usually 
bounded by intervals. We first give the form of interval 
polynomials: 

 

   

P(z,q) = p(qn−i )zi

i=0

n

∑ , q∈Q = qn−i ≤ qn−i ≤ qn−i
⎡
⎣⎢

⎤
⎦⎥

     
(17) 

 
where z  is the complex variable, q  is the vector of 
uncertain parameters, and n is the order of the system. The 
discrete-time characteristic polynomials (17) is stable if and 
only if ( , )P z q  is stable for all   q∈Q , i.e. all roots of 

( , )P z q  are located inside the unit circle. The entries n iq -  

of (z,q)P  are independent and have uncertainty bounds 

n i
q
-

 and n iq -  respectively. 

 The direct calculation of the roots can be impractical, so 
more efficient technique to analyze the stability are used. 
Among existing methods [18], [23], the graphical approach 
based on the combination of the value set concept and the 
zero-exclusion condition is used in this paper. 
 The value set construction requires to substitute z  in 
( , )P z q  with jw , then we fix the frequency w  and let the 

vector q  range over the set Q . The zero exclusion 
condition states that, the uncertain characteristic polynomial 
P  is robustly stable if and only if the complex plane origin 
is excluded from the value set ( , )P jw Q , at all frequencies 
jw , i.e. P  is robustly stable if and only if 

  0∉ P( jω,Q) ∀ω ≥ 0 . 
 The IMC structure, whose fundamentals are described 

CVO(z)
e(z) u(z)

e(z) +
-

M(z)

K1(z)
u(z)

K2(z)
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here, have to offer as good a performance as can be 
achieved by an “optimal internal controller”. The quality of 
the designed controller should be judged according to the 
following criteria: 
 

- Regulatory behavior: the output variables are to 
be kept at their set point despite disturbance 
affecting the system; 

- Robustness: stability and acceptable control 
performance should be maintained in the face of 
all the changes in the process model; 

- Servo behavior: changes in the set point should 
be tracked fast; 

- Ability to deal with constraints on the inputs, 

states and outputs. 
 
 The effectiveness of the approach is shown in the 
following section trough a numerical example. 

 
 

4. Numerical Example 
 
In this section, an example is considered to 
demonstrate the possibility of the proposed approach. 
A non-square system with time delays and NMP is 
considered which has 3 inputs and 2 outputs, where 
the transfer function matrix is given as [24]: 

   

G( p) =
g11 g12 g13

g21 g22 g23

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

1
s+1

e−s 1
(s+1)(s+ 3)

e−2s 1
s+ 3

e−2s

1
s+1

e−s s−2
(s+1)(s+ 3)

e−2s 1
s+ 3

e−2s

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

                                          (18) 

 
 Let us consider the case of perfect modeling 
( ) ( )G p M p= . The augmented model transfer matrix is of 

dimensions    (m×m) , where the model transfer functions 

11m , 12m  , 13m , 21m , 22m and 23m  are chosen equal to 11g ,

12g  , 13g , 21g , 22g and 23g . The augmenting (( ), )m n m-

virtual transfer functions 31m , 32m  and 33m , can be simply 
chosen as constant a . 
The transfer function of the augmented process model 
using the virtual outputs approach is given as: 

 

   

M ( p) =

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=

1
s+1

e−s 1
(s+1)(s+ 3)

e−2s 1
s+ 3

e−2s

1
s+1

e−s s−2
(s+1)(s+ 3)

e−2s 1
s+ 3

e−2s

α α α

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

                                         (19) 

 
 The bilinear method of discretization is applied for the 
process ( )G p  and the model ( )M p . The interval of the 

gain 1K  which assures the stability of the IMC structure is 

   0≤ K1≤1.5× I3  which satisfies the necessary conditions of 
stability previously mentioned with LMI approach. Two 
different value are considered, corresponding to 0.1b=  
and 0.9b= . We can notice that the value of b  is not high 
enough because we consider an NMP system with time-
delay. 
 

 The gain matrix 2K  relative to    K1 = 0.1× I3  is given 
by: 
 

 2

0.798 0.199 1.9948
0.1 0.1 0
2.1942 0.6986 5.985

K
− −⎛ ⎞

⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

                        (20) 

 
 The gain matrix 2K  relative to    K1 = 0.9× I3  is given 
by: 
 

2

9.866 2.2167 22.1646
1.1112 0.1112 0
24.38 7.7619 67.5004

K
− −⎛ ⎞

⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

                       (21) 

 
 Figure 7 show the system outputs signal 1y  and 2y in 
the case where we use the virtual outputs controller 
( )voC z  for two different values of β as previously 

mentioned. 
 It can be shown in these, that the system control effect is 
not satisfactory, for the output 1y  the static error is 

  ε1(∞) = 0.17 for 0.1b= and  ε1(∞) = 0.8 for 0.9b=  

the output y2 the static error is  ε1(∞) = 0.05  for 0.1b=  

and  ε2(∞) = 0.37 for 0.1b= , so for the both values of b  
the system has not good tracking. These two simulations 
show the effect of the choice of b , the more this last 
increase, the more the system gains in precision and speed. 
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Fig. 6. Control signal, NMP over-actuated system 
 

 
(a) 

 
(b) 
Fig. 7. System outputs, NMP over-actuated system: (a) Step response 
of the system for b=0.1(b) Step response of the system for b=0.9. 
 

 Figure. 9 show the system outputs signals using the gain 
matrix 2K  in the cases 0.1b=  and 0.9b= , 
respectively. We can note that the system responses y1 and 
y2 start negatively with a little delay because the system is 
non-minimum phase with time-delays and we can notify 
than, the more the value of b  increases, the more the peak 
in the transitional regime is high. We can notice that the 
insertion of the gain matrix 2K  has notably improved the 
precision. 

 

 
Fig. 8. Control signal, NMP over-actuated system, presence of K2 

 
(a) 

 
(b) 

Fig. 9. System outputs, NMP over-actuated system, presence of K2 

(a) Step response of the system for b=0.1 (b) Step response of the 
system for b=0.9. 

 
 The response of the perfect controller ( ) 1(z)VOC z M −=  
to the set-point is shown in Figure 9. This deadbeat 
response shown is obtained through relatively strong input 
action. A tuning parameter bwhich has a direct effect on 
the closed-loop response can alleviate the strong input 
action (Figure 6,8). 

 Results prove the effectiveness of the presented approach 
to ensure a fast set-point tracking and to preserve the system 
performances in spite of the presence of disturbance and 
non-minimum phase with time-delays behavior. In the 
following the effect of disturbance and parameters variations 
are considered. 
 In order to validate the robustness of the proposed IMC 
structure disturbance-rejection, step disturbance signals 1d , 

2d  and 3d  are applied to the system at different sampling 
times 20, 40 and 60. 
 

   
d(z) = d1 d2 d3

⎡
⎣⎢

⎤
⎦⎥
¨T

, d1 = d2 = d3 =
0.2
z−1

          (22) 

 
 According to the Figure 10 (below), the output response 

1y  and 2y  track quickly the set values. Even in the presence 
of external disturbance, the IMC structure still maintained a 
good behavior. 
 

 
Fig. 10. System outputs, NMP over-actuated system, presence of 
disturbance 

 
Let us consider a possible uncertainty in the process 
parameters, more precisely at the level of the characteristic 
polynomial. Consider the same example (18) of discrete 
multivariable system subjected to parameters variation, 
defined by: 
 

   

G(z) =
g11(z) g12(z) g13(z)

g21(z) g22(z) g23(z)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
=

N11

P11

N12

P12

N13

D13

N21

D21

N22

P22

N23

P23

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (23) 

 

where, the discrete-time characteristic polynomials nmP  with 
uncertainty of the process are the following: 
 

   

P11(z) = 0.4,1.2⎡
⎣⎢

⎤
⎦⎥ z−0.01832

P12(z) = 0.5,1.5⎡
⎣⎢

⎤
⎦⎥ z

2− 0.1,2.9⎡
⎣⎢

⎤
⎦⎥ z + 0.00004076

P22(z) = 0.9,3⎡
⎣⎢

⎤
⎦⎥ z

2− 0.01,0.19⎡
⎣⎢

⎤
⎦⎥ z + 0.04

P23(z) = 0.7,1.8⎡
⎣⎢

⎤
⎦⎥ z−0.09072

            (24) 
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In the following, parametric open loop stability is 
considered and each characteristic polynomials for the 
transfer function matrix of 11( )g z , 12 ( )g z , 22 ( )g z  and 

23( )g z , are replaced by 11( )P z , 12 ( )P z , 22 ( )P z  and 23 ( )P z , 
respectively. The value sets are plotted by considering 
frequency 

 
ω∈ 0 3⎡⎣ ⎤⎦  with step 0.2. 

From Figure 11, the value sets of each family 11( )g z , 

12 ( )g z , 22 ( )g z  and 23( )g z , does not included the origin 
(0,0) of the unit circle for all frequencies. The zero-exclusion 
condition for discrete time interval polynomials is verified. 
 The influence of such uncertainties is shown by Figure 
12; we can conclude that the tracking set and the accuracy of 
the system are maintained despite the uncertainties. Then 
one can say that the proposed IMC structure ensures the 
satisfaction of a certain level of performance despite the 
presence of uncertainties. 

 
 

 
(a) Stability region for 

11( )g z    

 
(b)  Stability region for 

12 ( )g z  

 
(c) Stability region for 

22 ( )g z  

(d) Stability region for 

23( )g z  

Fig. 11. The zero-exclusion condition of a family of interval 
polynomials “The zero-exclusion condition” approach – robustly stable 
case 
 
 

 

 
Fig. 12. Control responses of an NMP over-actuated system with 
interval parametric uncertainty 
 
 
5. Conclusion 
 
The paper presents a new IMC methodology for uncertain 
over-actuated multivariable systems with time delays and 
non-minimum phase zeros. The need of a new method is 
required because the inversion of the transfer matrix cannot 
be computed for over-actuated system. Two blocks, denoted 
as AVO and RVO have been inserted in the basic IMC 
scheme. The first block is used to augment the original 
system and make it invertible. The augmented outputs are 
then removed by the RVO block. The method proposed in 
the paper allowed to obtain good performance even in 
presence of parameters uncertainties. According to all the 
simulations, we notice that the outputs of the system reach 
quickly and without exceeding their established regimes. 
These satisfactory results show the capacity of the new IMC 
methodology to maintain its performance despite the 
uncertainty parameters and time delays. The same 
methodology can be used in the case of underactuated 
systems. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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