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Abstract 
 

Additional check bits, which are commonly attached to the message’s input data, are normally used to minimize the error 
during data transmission. The receiver system implements a checking algorithm to determine if an error was occurred in 
the received data. This algorithm will correct a corrupted bit and recover the original message. An enhanced error 
detection correction code was presented to better detect and correct the corrupted conveyed bits. It improves the existing 
limitations of utilizing cyclic redundancy checking (CRC), Hamming code, and other checksum techniques. Also, it 
reduced the length of the redundancy bits which exists in CRC, the overhead of interspersing of the redundancy bits in a 
typical Hamming code, and the system resources such as processor time and bandwidth in checksum techniques. This 
paper was synthesized and simulated using the Xilinx Spartan 6 (XC7Z020-2CLG4841) FPGA. Results show that the 
resource utilization of the designed memory architecture using EEDC is lower compared to CRC, Hamming, and 
Checksum algorithms. 
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1. Introduction 
 
In today’s setting, digital communication plays a vital role in 
electronic communication world. However, due to this high 
level of complexity in hardware and software setups, it 
implies that the system is also extremely susceptible to 
errors [1][2]. Therefore, fault tolerance is an absolute 
requirement for most communication systems [3]. In 
addition, there are factors affecting the quality of 
transmission such as environmental interference and 
infrastructure defects. These can cause random bit errors 
during data transmission. Also, in digital communication, a 
quality output depends upon its characteristics. These factors 
activate the delay data communication such as propagation 
time tprop, transmission rate R, distance d between the 
transmitter and receiver, and the required check sum which 
is inserted to minimize the error of the system. In addition, 
each error correct codes requires different length of check 
bits. These correction bits may consume many overhead bits 
which contributes in the delay and directly affects the 
communication system. There are numerous techniques that 
aims to reduce these drawbacks in communication 
technology (e.g. propagation delay and required number of 
check bits). However, the existing algorithms always 
depends on the number of input bits. Thus, it greatly 
consumes overhead bits in the transmitted packet of data. 
Some procedures like compressing the messages’ bit 
representations which consist of order of symbols and 

contain few bits can help to resolve the communication 
problem but in implementing these algorithms, a preserved 
original information and the lossless and reversible 
compressions must be achieved. 
 

 
Fig. 1. Transmission Delay  

 
 Queuing delay is one additional problem which exists in 
packet transmission. Although it differs from packet to 
packet, it has a significant impact. As an example, if arrival 
rate (in bits) is more than the transmission rate of link for a 
certain period, packet will queue and wait to be transmitted 
on. Also, some packets can be lost if memory or buffers are 
filled up. The theoretical concept of queuing delay is show 
in Equation 1.  
 

  
Traffic intensity = L i  a

R
       (1) 

 
where L is the number of bits, (a) as the average rate at 
which traffic makes it to the queue in packets/s, and R as the 

transmission rate. If 
 

L (a)
R

 > 1, the average rate is more than 

the rate at which the bits can be send. Thus, the queue will 
bias on the way to approaching infinity. Hence, the system 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr 

______________ 
*E-mail address: leankarlo_tolentino@tup.edu.ph	
ISSN: 1791-2377 © 2019 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.  
doi:10.25103/jestr.122.05 



Lean Karlo S. Tolentino, Ira C. Valenzuela and Ronnie O. Serfa Juan/ 
Journal of Engineering Science and Technology Review 12 (2) (2019) 34 - 39 

	 35 

must be reconfigured to achieve a traffic intensity which is 
less than 1 [4][5][6][7]. 
 As shown in Equation 1, if the whole transmitted bits are 
lessened, there will be a higher transmission speed and a low 
occurrence of errors. Thus, in ensuring a consistent data 
transfer, a suitable method of detection and correction of 
error is required. During transmission, there are extra parity 
(bits for checking) which are attached to the transmitted 
message.  These bits result from their input data and 
undergone a deterministic algorithm. The said algorithm has 
been utilized by the receiver to check any errors and confirm 
the reliability of the transmitted information. The received 
information will be recovered, compared and matched to 
achieve the corrected of the sent error bits. 
 Furthermore, if an error causes in changing a 0 to 1-bit 
flip in the received data, the information is totally different. 
Hence, fault tolerance is becoming a matter of concern to 
provide the ability of a system in maintaining its 
functionality. A fault tolerant technique allows a system to 
continue its process properly instead of failing completely. 
These soft errors can be counteracted by using error 
correction codes [8][9]. Conventionally, there are two basic 
techniques in error treatment. First is by adding adequate 
extra bits, which are relayed into the data stream, in the 
transmitted data block to allow the receiver to identify what 
the sent information must have been. Second is to include 
only adequate redundancy to allow the receiver to determine 
that error is present, and a request for retransmission is 
acknowledge. A new method is proposed in this paper which 
enhances the drawbacks of CRC and Hamming code. 
 The next section presents and discusses related works in 
CRC, Hamming codes, and other useful checksum encoding 
methods. Section 3 presents the proposed different error 
detection and correction method. In Section 4, the 
experimental testing and results were presented. Lastly, 
Section 5 concludes this paper. 

 
 

2. Review of Related Works 
 
There are few existing works which are already 
implemented in solving the issues in communication errors. 
A well-known error detection method like the cyclic 
redundancy checking (CRC) [10][11][12][13] and correction 
technique such as the Hamming code [14][15][16] are being 
used but has their own limitations. CRC codes require a 
constant number of redundancy bits due to the assigned 
polynomial generator in every application upon 
implementation. For this reason, the transmission speed 
decreases. On the other hand, Hamming codes consume 
overhead bits due to the interspersing of the computed 
redundancy bit. Another method is called checksum in 
which it is mostly used to detect errors in data transmission 
on communication networks. In checksum, the block of data 
which is being transmitted are added up and its the sum 
along with the data are transmitted. The received data blocks 
are added up by the receiver and the matching of the 
received checksum bits with the calculated checksum are 
being done [17][18]. 
 
2.1. Cyclic Redundancy Checking (CRC) Codes 
CRCs are applied in most communication networks which 
deliver low-cost and effective error detection abilities [19]. 
On transmission mode, as information transmission rates and 
the amount of the stored data increases, the requirement for 
an uncomplicated but powerful error detection codes 

increases. Whenever high-speed transmission rate is 
essential, serial implementation does not achieve this 
requirement. However, CRC hardware operation is based on 
Linear Feedback Shift Registers (LFSRs), which utilizes 
serial transmission. LFSR is constructed from common shift 
registers with a few number of XOR gates and is utilized for 
random number generation and counters. 

CRC code can be denoted as polynomial codes (sent 
strings of bit can be understood as a polynomial wherein its 
coefficients consist of values of bit string, 0 and 1) since all 
codewords of the form C(x) = Cn-1Cn-2…C0 are denoted as a 
polynomial degree n-1 [4] as presented in Equation 2. 
 

 
C (x) =  Ci  x

i

i=0

n-1

∑
    

  (2) 

 
 CRC and most cyclic codes demand that “every valid 
code polynomial be a multiple of a generator polynomial 
g(x)” (for example, g(x) = 10101 = x4 + x2 + 1; message 
polynomial m(x) = 1010111). This polynomial code can be 
referred to as a basis for good error correction methods. 
However, it contains a constant length of check bits since it 
rests on the generator polynomial’s nth degree that is 
required to attached throughout the transmission [20].  For 
this reason, a reduced network transfer rate has been 
achieved. Similarly, correction is not enforced by CRC 
codes, retransmission is executed when they encounter an 
error. 
 To demonstrate the CRC process, basic bitwise 
algorithm is used to represent its process. The bitwise 
algorithm (CRCB) is basically a software implementation 
utilizing a linear feedback shift register (LFSR). Figure 2 
shows a basic hardware implementation. The LFSR is 
triggered by a clock. In each clock pulse, the input data m(x) 
is shifted and transmitted into the register. When the entire 
input bits have been dealt with, the LFSR holds the CRC bits 
that are shifted out on the data line.  

 
Fig. 2. Generating CRC Utilizing a Linear Feedback Shift Register 
(LFSR) 
 
 
 The following algoritzm can be utilized in the software 
implementation: 
 The check bits are assumed to be kept in a CRC register. 
Then, the implementation using the software resulted to: 

 
1) CRC ← 0. 
2) If the CRC left-most bit equals 1, the succeeding bit 

of the message must be shifted, and the register must be 
XORed with the generator polynomial; or else, the shift 
must be done in the succeeding bit of the message. 

3) Second step is repeated until the shifting in of all the 
bits of the improved message were carried out. 
 
 There will be a faster implementation by treating the data 
as higher units than bits when its size is not larger than the 
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generator polynomial’s degree. Nevertheless, the speed gain 
matches to an increase of memory since precomputed values 
(lookup tables or LUT) will be utilized. 
 The decoding method is like the encoding process.  It 
splits up every word received into the message and the 
remainder portion, and it examines if the calculated 
remainder from the message resembles to the sent bits. An 
error will be expected if mismatch occurs and the receiver 
will request for the retransmission (ARQ) of message.  
 Although, CRC is not difficult to be implemented using 
hardware such as ASICs and FPGAs. It is not ensured that 
the intended modification of data will not happen. Likewise, 
an overflow of data may be likely. Thus, an error correction 
method must be implemented as well as utilizing CRC for 
the system to be efficient. Furthermore, a disadvantage of 
CRC is the Serial Architecture which takes additional time 
to transmit the message [21]. 
 
2.2. Hamming Codes 
The implementation algorithm using the designed Hamming 
code encoding and decoding circuit by transmission gate 
logic is shown in [22]. Simulations has been verified using 
the tanner tools and results showed a reduced-on channel 
length and minimized the dissipation on power consumption. 
The combined Hamming and Hadamard codes have been 
used in [23] which showed a minimized bound on 
transmission rate. 

In [24], the effectivity of two types of linear block codes 
namely Hamming and cyclic codes are shown. They are 
used as error-detecting and error-correcting scheme in long 
distance communication. The resulting implementation 
managed to detect and correct errors in a communication 
channel.  

Hamming code is an error-correcting and linear block 
code which are used for transmitted error bits’ detection and 
correction. Likewise, two simultaneous error bits and a 
single error bit can be detected and corrected, respectively, 
using this method [20][25][26][27]. Figure 3 shows that 
when Hamming code is implemented, the n-bit data word 
(D) is appended to the redundancy bits (r), generating a 
single word which results to an overall number of bits of D 
+ r bits. The required number of Hamming bits n should be 
at least D + r + 1. 

 

 
Fig. 3. 1 data unit contains D data bits and r Hamming bits [12] 

 
 A nonappearance of errors needs to be acknowledged by 
single code of the D + r codes.  Any position of the bit 
where its location has an occurrence of error needs to be 
recognized by all the D + r codes.  Thus, the amount of 
required r bits is stated in Equation 3 since 2r unlike codes 
can be produced by r bits.: 
 
2r ≥ D + r + 1       (3) 
 
 These r bits are to be appended at binary positions of the 
bit with the unique bits of data. At that point, the whole bit 
positions are allocated for the data to be coded (i.e., 3, 5, 6, 
7, 9, 11, 13, 14, 15, 17, etc.). Therefore, overhead will 

increase due to interspersing the r bits together for both parts 
of the transmitter and receiver. 

As shown in Table 1, the position of the data bits and the 
respective Hamming bits are presented where a value of X, 
which represents a don’t care condition, is either in a random 
or non-sequential form. 
 
Table 1. Position of the Data Bits and Its Respective 
Hamming Bits 

Bit 
Position 

1 2 3 4 5 6 7 … 

Power of 2 20 21  22    … 
Encoded 
position 

r1 r2 D1 r3 D2 D3 D4 … 

Required 
parity bits 

position 
for ‘r’ 

r1  X  X  X … 
 r2 X   X X … 
   r3 X X X … 

Furthermore, Hamming codes performs better on 
networks where the streams of data are vulnerable to errors 
of single-bit. Nevertheless, if various errors are existing, 
these the errors can be detected by Hamming codes. 
However, it is expected that extra correct bit will be 
modified and causes an extra error to exist on the data as 
presented in [28]. 
2.3. Checksum codes 
A checksum is a method of checking the redundancy and 
detecting the errors in a transmission of data in a typical 
communication network.  In a checksum, the entire data 
block which is being sent are added up and the sum are 
appended with the data.  Then, the received data blocks are 
added up by the receiver and are checked if these checksum 
bits correspond to the computed checksum. In the simplest 
way, a checksum is formed by computing the binary values 
in a data block using some algorithm and keeping the 
outputs with the same data. Single-Precision, Double-
Precision, Honeywell, and Residue Checksum methods 
[18][29][30][31][32][33] are the four methods that can be 
seen in the Checksum Encoder/Decoder. 

 
Fig. 4. Checksum Method 

 
 In a single-precision checksum, every data byte is added 
to form a single byte while in a double-precision checksum, 
every location of the n-bits data is added into the 2n-bits’ 
location.  Honeywell checksum is an improved form of 
double-precision where the entire pairs of consecutive words 
are appended to form double-precision words.  The words 
are summed in a location whose length is twice the data 
word size.  Lastly, residue checksums are a modified form of 
single-precision checksums.  The carry from the most 
significant bit (MSB) of the checksum is taken out by the 
residue checksum. It will be added to the least significant bit 
(LSB) of the checksum. There are examples where the four 
checksum methods are implemented [32][33]. The 
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effectiveness of checksums in detecting error during data 
transmission is presented in [34]. 
 
 
3. Enhanced Error Detection Correction (EEDC) Codes 
 
The proposed Enhanced Error Detection Correction (EEDC) 
code as shown by its flowchart in Figure 5 aims to improve 
the existing drawbacks of the error detections and 
corrections above. EEDC demands that every acceptable 
codeword of C bits must contain the acceptable input data 
bits Di. When the C bits are changed in any acceptable Di 
unit, an unacceptable codeword will be produced. Therefore, 
the total number of codewords which corresponds to the 
acceptable data unit is C + 1. For the meantime, the total 
quantity of codewords is (C + 1)2Di

 for every 2Di acceptable 
patterns of data. The probable quantity of patterns is 2C in 
each Di bit codeword. Hence, a limitation on the number of 
acceptable and unacceptable codes which may occur will be 
achieved. Hence, 
 

 
C + 1( )2Di ≤  2C      (10) 

 
Fig 5. Flowchart of the proposed EEDC algorithm 
 

and, this may be represented by Equation 4 
 

 C = Di + r      (4) 
 
and Equation 5  
 

 
Di + r + 1( )2Di ≤  2Di+r     (5) 

 
so the inequality shown in Equation 6 should be met by the 
total number of the desired r bits: 
 

 
Di + r + 1( )  ≤  2r      (6) 

 
 The input data Di together with the required r bits will be 
altered into a polynomial notation with an n-1 degree as 
presented in Equation 7: 
 

 
D(x) =  Di  x

i

i=0

n-1

∑
    

  (7) 

 
and 
 

 
r(x) =  ri  x

i

i=0

n-1

∑       (8) 

 
 The product G(x) consists of the degree of polynomial 
D(x) and the redundancy bit’s nth value:  
 
G(x) = D(x) • Xn     (9) 
 
 Therefore, the construction of the EEDC code is 
concluded as presented in Equation 10: 
 
EEDC codes = G(x) + r(x)    (10) 
 
 Assume that an input of 1001110 will be applied by 
utilizing the EEDC method.  The data input in polynomial is 
X6 + X3 + X2 + X. Thus, the least number of r to satisfy 
Equation 9 is 4, and its polynomial result is r3X3 + r2X2 + 
r1X + r0.  G(x) value is X10 + X7 + X6 + X5 by applying 
Equation 16. 
 To determine the suitable bit of the r bits, r3, r2, r1, and r0 
are in position 8, 9, 10 and 11, respectively.  
 The check bits in 8th and 9th positions are set a 1st, 3rd, 5th, 
7th, and 2nd, 3rd, 6th, 7th positions, respectively.  Check bits in 
8th and 9th positions are applied using even parity and odd 
parity, respectively, thus the r3 is 0 while r2 equals 1.  
The check bit in 10th position is situated at 4th, 5th, 6th, 7th 
positions. In contrast, the check bits in 11th are only r3, r2, and 
r1. The value of r1 is 1 and r0 is 0 because odd parity and even 
parity is encountered, respectively. 
 Lastly, the EEDC codes in polynomial form and binary 
form is X10 + X7 + X6 + X5 + X2 + X  and 1001110r3r2r1r0, 
respectively. Bits r3, r2, r1, and r0 equals 0110 and are to be 
appended at 8th, 9th, 10th, and 11th, respectively. Hence, the 
final EEDC code is 10011100110. 
 
 
4. Experimental Testing and Results 
 
An experimental set-up is conducted to analyze the proposed 
method against the existing schemes. First, the set-up 
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parameters are necessary to determine the performance of 
the proposed method. During testing, a set-up is required to 
meet the condition of simulation. A sequence of frame bytes 
from 1 byte to 8 bytes was fed as an input to determine the 
performance of each method. 

Table 2 shows the set-up parameters used in the 
experiment. This was simulated and implemented in Xilinx 
Spartan 6 (XC7Z020-2CLG4841) FPGA using Verilog 
hardware description language. FPGAs were commonly 
chosen to reconfigure embedded devices [35][36] because 
their implemented designs are cost-effective in contrast with 
using ASICs and there are no extensive modifications on 
software or hardware [37][38]. 

Table 3 shows the resource utilization using the 
implementation using FPGA. The proposed algorithm 
(EEDC) was compared with the three existing schemes, 
namely: CRC, Hamming, and Honeywell checksum. The 
resource utilization of the designed memory architecture 
using EEDC is lower compared to CRC, Hamming, and 
Checksum implementations in terms of the length of look-up 
tables (LUT), LUTs for implementing distributed RAMs 
(LUTRAM), utilized flip-flops (FF), and input & output 
pads (IO).  The number of DSP elements for EEDC is lower 
than CRC and Hamming but same with Checksum 
implementation. Lastly, global clock buffers were highly 
utilized in checksum method compared to the other three 
methods. 
 
Table 2. Set-up parameters 

Parameters Value 
Number of cycles 64 

Cycle duration 6 ms 
Sample clock 12 ns 

Payload length 20 words 
 
 

Table 3. Resource utilization 
Resources Hamming CRC Checksum Proposed 

(EEDC) 
Available 

LUT 7,342 7,202 8,422 6,032 54,300 
LUTRAM 756 742 865 726 16,400 

FF 5,234 4,236 5,344 4,124 108,600 
DSP 3 3 2 2 220 
IO 146 146 168 142 200 

BUFG 2 2 3 2 32 
 

 
5. Conclusion 
 
Based on the results obtained, minimized overhead payload 
bits were achieved using EEDC codes compared to CRC, 
Hamming code and checksum techniques. The resource 
utilization of the designed memory architecture using EEDC 
is the lowest among the CRC, Hamming, and Checksum 
implementations. The proposed EEDC codes can be used as 
an alternate error detection and correction technique. 

Future work includes implementing the proposed 
algorithm of enhanced error detection and correction code 
(EEDC) for other communications applications such as 
packet transmission to attain a better throughput. Moreover, 
the developed EEDC implementation will be applied with 
other overhead implementations. 
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