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Abstract 
 

Owing to the intercoupling of multiple factors, strong nonlinearity exists during the bending of sheet metals, enabling the 
inevitable springback of sheet metal parts after bending unloading. Consequently, the bending forming angle becomes 
difficult to control, thereby seriously affecting the accuracy of the bending forming parts. A prediction model for the 
press amount of the upper mold and the bending forming angle was proposed in this study to address the shortage of 
bending accuracy and reveal the relationship between the bending forming angle and the press amount of the upper 
bending mold. First, elliptic fitting was used to improve the insufficient fitting of the background value of the original 
grey prediction GM (1,1) model and reduce the intermediate fitting error of the grey prediction model. Second, the 
modeling method was adopted at the head and the tail to reduce the long-term fitting error of the model and establish the 
mathematical model of the press amount of the upper mold and the forming angle in segmented bending based on the 
experimental bending data and in accordance with the actual working conditions. Finally, the feasibility of the model was 
verified through field experiment and ABAQUS simulation. Results show that the maximum fitting error of the 
prediction model for the bending angle obtained through the aforementioned method is only 0.7%, proving the model’s 
capacity in accurately predicting the bending springback angle. The study provides a new method for controlling the 
bending springback of sheet metals. 
 
Keywords: Bending forming, Bending springback, Grey system, GM (1,1) model, Prediction model 
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1 Introduction 
 
Bending is widely applied in the modern manufacturing 
industry because of its many advantages, including low cost, 
high efficiency, and simple operation. However, bending is 
often accompanied by the springback problem, which affects 
the bending forming accuracy [1–2]. In the past, the control 
of the bending springback angle was mostly based on 
empirical knowledge, which could easily cause the waste of 
resources and manpower. Therefore, an increasing number 
of enterprises and teams are committed to developing a more 
accurate bending machinery, and the most common method 
is bending compensation. Two aspects are mainly 
considered for bending compensation, namely, mechanical 
and overbending compensation. Currently, the measures for 
mechanical compensation are mostly adopted. That is, 
compensation is investigated for a certain type of bending 
machine, and a mechanical compensation device is added to 
improve the bending accuracy. The accuracy requirements 
of bending products increase with the rapid development of 
the global manufacturing industry. Traditional empirical 
knowledge lags the trend of times, whereas mechanical 
compensation exhibits great limitations due to high cost, 
with most of research and designs focusing on a certain type 
of machine. 

For this purpose, scholars have conducted numerous 

studies on the forming process of bending parts [3–4] to 
determine the bending forming law from the material and 
geometry perspectives. However, many factors influence 
bending and couple with one another and exhibit a high 
degree of nonlinearity, making the study of bending forming 
from a single aspect difficult [5]. Therefore, understanding 
the bending forming law and improving the bending forming 
accuracy are urgent concerns in the bending industry. 

Thus, this study establishes a mathematical model of the 
press amount of the upper bending mold and the bending 
angle by introducing the grey prediction GM (1,1) model to 
predict the relationship between the press amount of the 
upper bending mold and the bending angle and provide a 
theoretical basis for the accurate prediction and control of 
the bending springback angle. 
 
 
2 State of the art 
 
Scholars have devoted themselves to the research of the 
bending springback to comprehend the bending springback 
law. M. R. Jamli et al. [6] added an artificial neural network 
(ANN), which was developed on the basis of a constitutive 
model into the finite element software as a script to simulate 
the bending and springback of sheet metal parts to improve 
the bending accuracy. However, they did not consider the 
errors caused by material anisotropy during the actual 
production. Mohammadi SV et al. [7] proposed an analytical 
formula for the springback prediction of composite plates to 
inspect the influences of the radius of the upper mold, the 
opening of the lower mold, and the stroke of the upper mold 
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on the springback but did not present a quantitative model; 
the model was only used to analyze the influencing factors 
of bending. Thipprakmas S. et al. [8] discussed the bending 
springback problem of asymmetric U-shaped parts through 
the finite element simulation method, which only focused on 
the bending forming process through simulation method and 
ignored practical situations. A. Behrouzi et al. [9] adopted 
the reverse compensation method to compensate for bending 
molds under the condition that the precise springback 
quantity was known and discovered that obtaining the exact 
solution of the springback quantity in the actual process is 
difficult. Vitalii Vorkov et al. [10] investigated various kinds 
of springback of high-strength steel sheets using the 
simulation method and established the parameters and 
models of high-strength steel sheet materials but did not 
intensively study the angle of bending springback. Satoshi 
Kitayama et al. [11] performed a sequential approximate 
optimization of the variable support force trajectories 
through the radial basis function network and found that 
optimal variable blank clamping force trajectories could 
reduce the springback. However, dynamically calculating 
the bending force in the present bending process is difficult. 
Panthi S. K. et al. [12] predicted the bending springback 
through the finite element method and found that bending 
springback was inversely proportional to the elastic modulus 
and directly proportional to the yield stress of materials. 
They presented the relationship between springback and 
materials but could not clearly provide a relevant bending 
springback model. Recep Kazan et al. [13] established a 
bending springback model based on a neural network model 
using finite element simulation data and observed that 
certain errors existed between the fitting data of this model 
and the actual values. Moreover, the error accumulation in 
the modeling process resulted in a large deviation. Daw-
Kwei Leu et al. [14] worked out a simplified prediction 
method for V-shaped bending springback based on basic 
bending theory and by considering the thickness ratio of 
materials, normal anisotropy, and the strain hardening index. 
However, basic bending theory simplifies the model and, in 
most cases, exhibits a gap with reality. Fu Zemin et al. [15] 
established the model of bending springback radius using 
dimensional analysis and orthogonal experiment to design 
the upper mold of the bending machine. However, the model 
parameters must meet certain conditions and limit the 
application of the model. Guo Zhefeng et al. [16] combined 
back propagation neural network (BPNN) and spline to 
establish the prediction model of bending angle by applying 
highly accurate finite element simulation results, but the 
application of the model was limited by the mold opening. 
Liang Jicai et al. [17] reduced the bending springback by 
adjusting and optimizing the bending force and trajectory. 
However, this method is characterized by high cost and 
small profit. Song Y. et al. [18] worked out the springback 
prediction model of the T-shaped beam bending process in 
an artificial neural network (ANN) method and investigated 
the influences of materials on springback through numerical 
simulation. However, this method ignores the influences of 
secondary factors, thereby leading to low prediction 
accuracy. Wang Ru et al. [19] simulated springback using a 
software for the springback problem of automobile covering 
parts. They also proposed a springback compensation design 
method based on smooth displacement adjustment theory 
according to the springback compensation design of the 
stamping mold of reverse modeling to reduce springback. 
However, this method uses a software to simulate 
springback, which is difficult to accurately realize in the 

current technology. Zhang Qingfang et al. [20] established a 
hyperbolic panel springback compensation and correction 
algorithm by combining numerical simulation with 
experiment to improve the error in mold shape. The mold 
surface compensated by this method was established through 
interpolation, but the accuracy requirement could not be 
satisfied. Li Feifan et al. [21] interpolated the mold contour 
using a uniform B-spline curve to improve the fitting 
accuracy of the model to mold and determined the 
relationship between the changes in bending moment and 
curvature. However, this model does not consider the 
complex relationship among a large number of mutually 
coupling factors that influence bending. 

In the aforementioned studies on bending accuracy 
improvement, the mold is enhanced mainly through 
simulation using the finite element software, but only a few 
studies on predicting the bending angle in actual production 
have been performed, and even fewer studies on the 
quantitative prediction model of bending angles have been 
investigated to solve the springback compensation problem 
rapidly and efficiently. This study establishes the prediction 
model of the bending angle using the grey prediction GM 
(1,1) model to compensate for these shortcomings due to its 
perfect predictability for grey systems and based on 
experimental site data; improves the background value of the 
original model through ellipse fitting to improve the 
prediction accuracy; and synthesizes the experimental data 
in modeling mode at the head and the tail, considering the 
actual situation of poor fit of the single prediction model at 
the latter stage to obtain the segment-based prediction 
models of the press amount of the upper mold and the 
bending angle and provide a theoretical basis for bending 
springback control. 

The remainder of this study is organized as follows. 
Section 3 describes the process of grey prediction modeling 
and the improvement methods, presents a bending prediction 
model based on the experimental data, and verifies the 
prediction model. Section 4 verifies the bending prediction 
model through field experiment and ABAQUS simulation. 
Section 5 presents the summary and relevant conclusions. 

 
 

3 Methodology 
 
3.1 GM (1,1) modeling process 
The grey prediction GM (1,1) model exhibits good 
predictability for grey systems with “limited samples and 
poor information.” Meanwhile, bending springback is 
influenced by many factors, in which the information is in a 
mess, that is, it has many uncertainties and exhibit an 
obvious grayscale, thereby satisfying the modeling 
requirement. The original known sequence is expressed by 
Formula (1): 

 
                       (1) 

 
where  is original data. 

To improve the regularity of the original sequence, 
accumulation processing must be performed on the original 
data to obtain the accumulative sequence (Formula (2)): 

 

                 (2) 
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The GM (1,1) model is established according to 
Accumulative Sequence (2); and the whitening differential 
equation is shown in Formula (3) [22]: 

 

                                           (3) 

 
where  is the development coefficient, and  is the 
grey action. 

The grey differential equation that correspond to the 
whitening differential equation is shown in Formula (4): 
 

                                            (4) 
 

B and Y matrices are established to determine the values 
of ɑ  and b in the grey differential equation, respectively 
(Formula (5)): 
 

                       (5) 

 
in which the background value is shown in Formula (6): 
 

                            (6) 

 
In accordance with Formula (7), the values of  and  

are estimated by using the least square method. 
 

                                      (7) 

 

From the initial conditions, , the 
accumulative response sequence of the prediction model is 
obtained (Formula (8)). 
 

                 (8) 

 
To restore the original positive sequence response model 

of bending, Formula (8) is substituted into Formula (9) to 
progressively decrease the accumulative response sequence 
of the prediction model to obtain the prediction model. 
 

(9) 

 
3.2 GM (1,1) modeling optimization 
Given that the original sequence ( ) is non-negative 

and  exponentially increases, approaching the 
background value of the original classical model with 

formula (6) to  will inevitably produce an error, 

as shown by the shaded area in Fig. 1. 
 

 
Fig. 1.  Fitting error of the original background value 
 

Now, the arc segment of  is fitted through an 
ellipse whose semi-major axis and semi-minor axis are 

 and ,respectively (Fig. 2). 
 

 
Fig. 2.  Fitting of background error by ellipse 
 

Figs. 1 and 2 indicate that the error in the improved 
background value decreases, and the improved background 
value is shown in Formula (10): 
 

(10) 

 
GM (1,1) modeling calculation is performed by 

substituting original Formula (6) into Formula (10) to 
remarkably improve the degree of fitting of the original 
background value and reduce the intermediate prediction 
error of the prediction model. 
 
3.3 Data acquisition 
A Dyna-Press12/8 air bending machine is used in the 
experiment. A V-shaped opening is adopted as the opening 
of the lower mold with a width of  and an angle 
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of , and the fillet of the lower mold is . 
Q235 steel, with  dimensions, is 
adopted as the bending sheet metal part. The V-shaped air 
bending machine model for the acquisition of experimental 
data is shown in Fig. 3. 

 
Fig. 3.  Model of the V-shaped air bending machine 
 

The descent velocity of the upper mold of the bending 
machine is designated and set at benchmark  when the 
upper mold touches the sheet metal part. When the upper 
mold descends to , bending unloading is performed, 
and the bending angle of the sheet metal part is measured 
and recorded in Table 1. Then, the sheet metal part is 
replaced with the same bending sheet metal part, unloading 
is performed after the upper mold descends to , and the 

bending angle is measured and recorded in Table 1. The 
press amount of the bending upper mold is increased by 

 each time. The experiment cycle is repeated until the 
bending angle is near . 

 
3.4 GM (1,1) bending modeling 
According to the bending experimental data shown in Table 
1 and based on the improved GM (1,1) modeling process in 
Section 3.2, a prediction model is established with the 
bending press amount as the independent variable and the 
bending angle as the predicted value. First, the experimental 
data in Table 1 in Section 3.3 are preprocessed. Given that 
the press amount of the upper mold is small at the beginning 
of bending and the elastic deformation is large, which result 
in significant springback, the first end bending data are not 
of research significance. In this paper, the original sequence 
is constructed from the bending angle formed when the press 
amount of the upper mold is 3 mm (Formula (11)): 
 

  (11) 
To reduce the redundancy of calculation, the first five 

terms are substituted into Formula (1) to obtain the positive 
original sequence of the bending prediction model (Formula 
(12)): 
 

                   (12) 
 

 
Table 1. Bending experimental data 
Upper die pressing (mm) 1 2 3 4 5 6 7 8 9 10 

Bending angle (°) 176.8 165.2 158.0 135.6 118.7 103.6 90.8 83.7 79.5 78.2 

 
 
GM (1,1) modeling with the improved background value 

is performed for Formula (12), that is, Formula (6) is 
substituted into Formula (10) to obtain the bending 
prediction model of positive sequence (Formula (13)): 
 

  (13) 

 
The degree of fitting of the positive sequence prediction 

model in Formula (13) to Formula (11) of the original data is 
shown in Fig. 4. 

 
Fig. 4.  Degree of fitting of positive prediction model to the actual value 

 
Fig. 4 shows that the positive sequence grey prediction 

model of bending deviates from the original data after the 
press amount of the upper mold reaches , and although 
the improved background value enhances the intermediate 
degree of fitting of the GM (1,1) model, the maximum error 
in the long-term prediction of the model cannot be 
completely eliminated. Thus, the springback angle cannot 
reach the required control accuracy. To avoid the large error 
that exists in the prediction model, this study establishes a 
reverse sequence prediction model for the experimental data 
in Formula (11), and the original data of the reverse 
sequence is shown in Formula (14): 
 

                    (14) 
 

Similarly, the improved GM (1,1) model is used to 
establish the inverse sequence prediction model for Formula 
(14) (Formula (15)): 
 

        (15) 

 
Formula (15) is a reverse sequence bending prediction 

model, which should be changed into the positive sequence 
prediction model, to obtain the prediction model of the press 
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amount of the bending upper mold and bending angle, as 
processed in Formula (16): 
 

  (16) 
 

The degree of fitting between the reverse sequence 
prediction model (16) and the original sequence (11) is 
shown in Fig. 5. 

 

 
Fig. 5.  Degree of fitting between the reverse sequence prediction model 
and the actual value 
 

Fig. 5 indicates that the reverse sequence prediction 
model deviates from the original data before the press 
amount of the upper mold reaches . To improve the 
accuracy of the bending prediction model, the positive 
sequence prediction model (13) and the reverse sequence 
model (16) are integrated to obtain the segmented function 
of the bending prediction model (Formula (17)). The knee 
point is press value 7, at which the positive sequence error is 
greater than the reverse sequence error. 
 

   (17) 

 
where  is the prediction bending angle ( ), and  is the 
press amount of the upper mold ( ).  

The model in Formula (17) satisfactorily avoids the large 
error in the long-term prediction of the original GM (1,1), 
and only the highly fitting segment between the GM (1,1) 

model and the original data is selected, thereby greatly 
increasing the degree of fitting of the bending prediction 
model to the original data (Fig. 6). This prediction model 
converts time variable  in the traditional grey prediction 
model into the bending press amount, thereby enabling the 
continuity of the value of the bending press amount of the 
air bending grey prediction model. 
 

 
Fig. 6.  Degree of fitting between the reverse sequence prediction model 
and the actual value 
 
3.5 Inspection of relative error 
To determine whether the relative error of the air bending 
prediction model conforms to the requirements or not, the 
predicted values obtained in Formula (17) are compared 
with the original data in Formula (11) point-by-point to 
calculate the residual and relative errors. 

The residual sequence is calculated in Formula (18). 
 

                     (18) 
 

where . 
Then, relative error is obtained using Formula (19). 
 

                                       (19) 

 
The residual and relative errors of the prediction model 

are shown in Table 2. 

 
Table 2. Predictive model residual and relative error table 
Pressing amount (mm) Actual value (°) Predictive value (°) Residual E Relative error ε(%) 

3 158 161.4186391 −3.41863914 2.163695658 
4 135.6 140.4571715 −4.857171526 3.581984901 
5 118.7 122.2177138 −3.517713755 2.96353307 
6 103.6 106.3467916 −2.746791645 2.651343287 
7 90.8 91.93979092 −1.139790918 1.255276341 
8 83.7 84.9393877 −1.239387701 1.480749942 
9 79.5 78.47200337 1.027996626 1.293077517 

10 78.2 72.49705325 5.702946746 7.292770775 
 

The average relative error of the model is obtained using 
Formula (20): 

 

                                   (20) 

 
The accuracy of the entire prediction model is shown in 

Formula (21): 
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When , the prediction accuracy of the model is 

high. Therefore, the accuracy of the prediction model 
complies with the requirements. 

 
3.6 Inspection of correlative degree 
To compare the grey prediction model of air bending and the 
actual data curves better, the correlative degree is adopted 
for inspection, and the larger the correlative degree is, the 
better the degree of fitting of the prediction model to the 
actual curve is. Formula (22) is used to calculate the 
correlation coefficients between the predicted values of the 
model and the actual values. 
 

     (22) 

 
The correlation coefficients of all points in the grey 

prediction model are calculated in order and obtained by 
Formula (23).  

 
(23) 

 
Formula (23) is substituted into Formula (24) to 

calculate the grey correlative degree of the air bending 
prediction model. 

 

                              (24) 

 
The grey correlative degree of the entire model is more 

than the generally required grey correlative degree of . 
Therefore, the entire model fits the actual model well. 

 
4 Result Analysis and Discussion 
 
To verify the reliability of the prediction model of the air 
bending press amount and the bending angle established 
through the grey prediction GM (1,1) model, the model is 
verified by field test and ABAQUS simulation. When the 
bending angle is , the value of the press amount of the 
bending upper mold is determined as  according to 
the established prediction model (Formula (17)). 

In the field experiment, a Dyna-press12/8 air bending 
machine is adopted for verification, and the sheet metal part 
is made of the same raw material as the original Q235. As 
the press amount of the upper mold of the bending machine 
for experiment is only accurate up to , the upper 
mold of the bending machine is pressed down to  for 
verification in this field experiment. After the press amount 
of the upper mold of the bending machine is preset to 

, an angle measuring instrument is used, and the 
experiment field and formation of the sheet metal part are 
shown in Fig. 7. 

Upon measurement using the angle measuring 
instrument, when the press amount of the upper mold is 

, the bending angel of the sheet metal part is , 
and the calculated error with the prediction model (Formula 
(17)) is . 

The simulation verification is performed in ABAQUS. 
First, the bending model is established in ABAQUS because 
the deformation of the upper and lower bending molds is 
negligible in the bending process. Thus, the upper and lower 
molds during modeling are designed as rigid bodies for 
simplicity, and the bending sheet metal part is defined as the 
deformed body of Q235. Unloading is performed after the 
press amount of displacement of the upper mold is preset to 

. The process of ABAQUS bending simulation and 
the results are shown in Fig. 8. 
 

 
a                                                         b 

Fig. 7.  (a) Field experiment and (b) formed sheet metal part 
 
 

 
a                                            b 

Fig. 8.  (a) ABAQUS simulation process and (b) forming angle 
 
When the press amount of the sliding block of the upper 

mold is , the forming angle of the ABAQUS 
simulated bending part is , and the calculated error 
with the prediction model is . 

The field experiment shows a relatively larger error than 
the simulation because of the insufficient accuracy of the 
bending machine and the measuring instrument and the 
uneven sheet metal. The simulation error is produced by the 
existence of errors in the model itself and in data acquisition 
during the establishment of the model. However, all errors of 
the bending prediction model are within the required range. 
The model verification proves the feasibility of applying the 
grey prediction model in air bending. 

 
 

5. Conclusions 
 
To rapidly and accurately obtain the springback prediction 
model of bending angle, the relationship between the press 
amount of the bending upper mold and the bending angle 
was determined to obtain the expected bending angle by 
controlling the press amount of the upper mold. This study, 
obtained the segment-based model of the press amount of 
the upper mold and the bending forming angle of the air 
bending model and verified the feasibility of the model 
through experiment and ABAQUS simulation by 
introducing the grey prediction GM (1,1) model, improving 
the background value of the original model through ellipse 
fitting, and fitting the experimental data of air bending by 
modeling at the head and the tail. The following conclusions 
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could be drawn on the basis of the aforementioned 
discussion: 

(1) The improvement of the background value of the 
original GM (1,1) prediction model through ellipse fitting 
reduces the intermediate fitting error of the original model. 

(2) The bending forming angle can be combined with the 
characteristics of grey prediction, and the established grey 
prediction bending model exhibits a high degree of fitting 
with the reality. 

(3) The bending prediction model established on the 
basis of grey theory can reflect the relationship between the 
press amount of the bending upper mold and the bending 
angle, such that the ideal bending angle can be achieved by 
controlling the press amount of the upper mold. 

This study established the bending angle prediction 
model by combining experiment and theory. The model can 

achieve the expected bending angle with high accuracy by 
controlling the press amount of the bending upper mold, 
thereby exhibiting the significance of improving the 
accuracy of bending parts. However, during the actual 
production, the prediction models must be established 
individually for different bending parts and machines. 
Therefore, in future research, a prediction model database 
should be built for different production conditions and 
situations for a more convenient and faster access of bending 
prediction models. 
 
This is an Open Access article distributed under the terms of the 
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