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Abstract 
 

Periocular recognition has evolved over the years and has been shown to possess discriminative features for personal 
identification either as a stand-alone trait or when fused with other modalities such as face and iris, especially in 
unconstrained scenarios. It has a number of advantages, first being the region could be easily cropped from existing face 
images. Secondly, unlike the iris, its capturing process is less intrusive. This area of the face is easily captured with ease 
from the subject, for example by surveillance cameras. Thirdly, in crime scenes where masks hide the face or in cases 
where the subject's face is covered due to religious or cultural beliefs, the periocular region could still be captured providing 
useful details, that is, it is robust to face occlusion and is least affected by expression change. This survey relates the various 
techniques employed for periocular recognition at different stages: segmentation approaches, image preprocessing 
methods, feature extraction and matching algorithms. This survey is meant to facilitate a quick grasp of the development 
in this area for interested students, researchers as well as enthusiasts in the field of biometrics or any related application 
area. Information about the various databases used for performance evaluation of these techniques as well as the 
performance indicators is also provided.  
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1. Introduction 
 
The periocular region of the face is the immediate 
surrounding of the eye. It includes the eyebrows, upper and 
lower eyelids, sclera, skin texture and color, blood vessels, 
tear duct, inner corner, outer corner, upper and lower eye folds 
and eye lashes, as shown in Fig.1 [1]. Periocular recognition, 
like similar biometric recognition systems, can be adopted as 
a means of personal authentication to ensure authorized 
access to sensitive information as required for smartphones 
[2] [3], for access control to sensitive units like switch rooms 
in organizations and in financial and payment applications 
where user identification is necessary for optimal security [4]. 
 Periocular biometrics has proven to be an alternative 
modality to face and iris, offering discriminative features 
from a face region, as shown in Fig.1.  The periocular 
biometric modality captures information from the skin 
texture, shape of eyebrow, density of eyelashes, structure of 
blood vessels, depth of eye socket, curvature of eye boundary 
and eye corners to distinguish a person from another [1] [5]. 
It has a number of advantages, first being the region could be 
easily cropped from existing face images. Secondly, unlike 
the iris, its capturing process is less intrusive. This area of the 
face is easily captured with ease from the subject, for example 
by surveillance cameras. Thirdly, in crime scenes where 
masks hide the face or in cases where the subject's face is 
covered due to religious or cultural beliefs, the periocular 
region could still be captured providing useful details, that is, 

it is robust to face occlusion and is least affected by 
expression change [6]. 
 The periocular region is sometimes used as a stand-alone 
trait or in fusion with the face or iris modalities for improved 
recognition performance [5]. The human face is a 
physiological trait that contains a number of features such as 
eyes, nose ears, lips, hairs, cheeks, chin, wrinkles and skin, 
which can be employed for recognition and as such attracted 
a lot of attention in research. However, traditional face 
recognition systems perform optimally for images captured 
under controlled conditions. Their performance degrades with 
images captured under challenging scenarios such as varying 
expression, pose, lightning conditions and occlusion [6].  
 On the other hand, most commercially deployed iris 
recognition systems work best with images captured at a close 
distance with special imaging devices such as the infrared 
sensors and under constrained scenarios. This makes iris 
recognition intrusive, requiring the high-level user 
cooperation, to reduce the difficulty of iris segmentation [2] 
[3] [7] [8]. 
 A number of research has been carried out in periocular 
recognition with successful and promising results, with 
increasing interest [8]. Periocular biometrics has also been 
successfully employed for soft biometrics analysis such as 
gender and ethnicity classification with impressive results, 
even under unconstrained scenarios [9]. 
 Periocular recognition systems consist of three sequential 
stages, as summarized in Fig.2. The first is the preprocessing 
stage, where the image captured by the sensor goes through a 
number of tuning usually by color conversion, filtering, 
illumination normalization, rotation, cropping, resizing, 
periocular region segmentation, division of the image into 
sub-regions etc. The second, which is the feature extraction 
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stage, is concerned with representing the discriminative 
features from the preprocessed images in a compact form. 
These features are usually extracted densely over the entire 
image or from specific key points in the image. The compact 
representation is passed into the third and final stage, for 
classification or matching of images. 
 

 
Fig. 1. Periocular image, with labelled important features. 
 
 

This survey presents an overview of the various 
techniques adopted by researchers, within this current decade, 
for periocular recognition. This survey is meant to facilitate a 
quick grasp of the development in this area for interested 
students, researchers, enthusiast in the field of biometrics or 
any related application area. The remainder of this paper 
covers a description of various periocular image databases in 
Section 2, periocular image preprocessing in Section 3, 
periocular image representation in Section 4, periocular 
template matching in Section 5. An extensive summary of 
periocular recognition research methodologies, performance 
indicators and image data adopted is reported in Tab. 1. 

 
 

2. Databases for periocular recognition research 
 
Unlike the face and iris where research has been more 
extensive, the periocular research is relatively newer [8] and 
so periocular databases are relatively few. Notwithstanding, a 
number of periocular experiments are carried out by 
extracting this region from publicly available face and iris 
databases. Some of the common databases employed in 
periocular research are discussed in this section. Refer to Tab. 
1 for a comprehensive list.  
 Cross-Sensor Iris and Periocular (CSIP) database [2] 
contain 2,004 images from 50 subjects acquired under ten 
unique setups simulating various acquisition scenarios using 
the front and rear cameras of four different smartphones with 
and without flash. The mobile devices used were Sony 
Ericsson Xperia Arc S running Android 2.3.4, Apple iPhone 4 
running iOS 7.1, THL W200 running Android 4.2.1 and 
Huawei Ideos X3 (U8510) running Android 2.3.3. The 
cameras have different resolutions which ranged from 
640x480 to 3264x2448. The images are characterized by 
varying illuminations, rotation, chromatic distortions, 
defocus, off-angle and occlusion. 
 UBI periocular recognition (UBIPr) database [10] 
contains 10,950 unconstrained images (522 being periocular 
regions) captured from 261 persons, 104 of which were in two 
sessions in visible spectrum, varying in scale, head pose, 
illumination, occlusion, distance, eyeball movement and 
pigmentation. The camera distance varies from 4m to 8m at 
intervals of 1m while the resolutions vary from 501x401 to 
1001x801 pixels. Images were stored in sRGB format with 
54.4% of the subjects being males while 45.6% were females.  
 Face and Ocular Challenge Series (FOCS) database [11] 

contain NIR images obtained from videos of subjects on-the-
move. A total of 9,581 images were obtained from 136 
subjects. The images are in different degrees of illumination, 
occlusion, and specular reflections. Majority of the images are 
of degraded quality due to sensor noise and out-of-focus blur.  
 Indian Institute of Technology (IITD) Multispectral 
Periocular (IMP) database [12] contains images in three 
spectrums. The first, NIR spectrum images, were captured 
with a close-up iris scanner. The second, visible spectrum 
images were captured at 1.3m with a digital camera while the 
night vision images were captured using a handy cam in night 
mode. It has a total of 620 images from 62 subjects. 
 BATH database [13] contains grayscale NIR images 
developed by the University of Bath, UK. It has three 
versions: Iris DB 400 (containing 16,000 images of 400 
subjects), Iris DB 800 (containing 8000 images of 200 
subjects) and Iris DB 1600 (containing 32,000 images of 800 
subjects). The images were captured using IrisGuard AD-100 
camera model with Dual-Eye autofocus under controlled 
conditions. 
 CASIA (IRISv3-Lamp) database [14] developed by 
Academy of Sciences, Beijing, China, contains 16,212 NIR 
images of 411 subjects at resolutions of 640x480. The images 
captured using OKI IRISPASS-h camera contain specular 
highlight noises and vary in illumination. CASIA-IrisV4 
extends V3 and contains six subsets having over 54601 
grayscale NIR images from 1,800 true subjects and 1,000 
artificial subjects. 
 UBIRIS versions 1 and 2 [15] [16] were developed by the 
University of Beira, Portugal. It has two versions, version1 
contains 1877 visible spectrum images of 241 subjects in 
RGB color model and resolutions of 800x600. Its version2 is 
similar but contains 11,102 unconstrained images of 261 
subjects captured on-the-move, at varying distances and with 
non-orthogonal views at resolutions of 400x300 in sRGB 
format. 
 FERETv4 database was developed by National Institute 
of Standards and Technology (NIST) [17]. It contains 14,126 
noisy unconstrained visible spectrum images from 1,191 
subjects with different facial expressions and orientations at 
resolutions of 768x512, 384x256 and 192x128 in RGB color 
model. It was one of the four databases used in [1]. 
 Mobile Iris CHallenge Evaluation (MICHE I and II) 
database [37] [43] contain visible spectrum eye images 
captured using different mobile devices. MICHE-I is the core 
of version II and contains a total of 3,148 fully annotated 
samples from 75 subjects captured using three mobile devices 
in unconstrained scenarios. The smart phones used were 
Galaxy Samsung IV (GS4) using Google Android Operating 
System at a resolution of 1080×1920, Phone5 (IP5) using 
Apple iOS Operating System at a resolution of 960×1280 and 
Galaxy Tablet II (GT2) at resolution of 640x480. Images are 
characterized by light reflections, occlusion, out-of-focus 
blur, off-axis gaze, variance in illumination and device-
specific artifacts. MICHE-II has samples from 86 individuals 
[4]. 
 CASIA 3D FV1 database [35] contains 4,624 scans from 
123 subjects in unconstrained scenario (varied expression, 
pose and illumination) captured with non-contact 3D 
digitizer, Minolta Vivid 910. It contains both the 2D color 
image as well as the 3D facial model. The image resolution is 
256x256. 
 Face Recognition Grand Challenge (FRGC) database [19] 
contains 44,278 high resolution (1200x1400) visible 
spectrum still face images from 568 subjects captured at 
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different recording sessions with varying expressions and 
illumination. It also contains images captured in controlled 
scenarios (controlled lighting condition, fixed distance from 
camera and neutral expression). The dataset includes gender 
and ethnicity tags for 466 of the individuals. The database was 
used in [9] [18]. 
Multiple Biometrics Grand Challenge (MBGC) v2 is a face 
database of both visible spectrum images and NIR video 
datasets. The visible spectrum dataset [20] consists of 91 
subjects having 1 - 6 image sets per subject and between 23 - 
352 images per set. Its NIR video dataset [9] was obtained 
from 114 individuals captured on-the-move at the rate of 15 
frames per second with a resolution of 2048x2048 having 1 - 
12 image sets per subject and between 6 - 48 images per set. 
The stored images extracted from the video are characterized 
by varying NIR illumination, occlusion, motion-blur, off-axis 
eye angles and sensor noise. Database was used in [18]. 
 CMU Hyperspectral (CMU-H) database [33] consists of 
764 videos of 54 subjects captured in 1 - 5 sessions. The 
images are of resolution 640x480 in 65 spectral bands varying 
from 450 - 1100nm at intervals of 10 nm using three halogen 
lamps. There was no occlusion and no variation in expression 
and pose. It was used in [6]. 
 ND 2004-2005 iris image dataset, used in the work of [26] 

has a total of 64,980 images from 356 different persons. Both 
left and right eyes giving 712 unique irises. There are 158 
females and 198 males whose ages ranged between 18 and 75 
years. Some of the images are characterized by occlusion, 
blur, off-axis view, artifacts introduced by use of contact and 
cosmetic lenses while some part of the eye were not captured 
in some of the image [32].  BioSec database [27] contains 
infrared iris images from both eyes of 200 subjects, each 
person was captured four times in two sessions leading to a 
total of 3200 database images. The 480x640 resolution 
images were captured using an LG Iris Access EOU3000 
camera. Database was used in the experiments of [26]. BioSec 
database [27] contains infrared iris images from both eyes of 
200 subjects, each person was captured four times in two 
sessions leading to a total of 3200 database images. The 
480x640 resolution images were captured using an LG Iris 
Access EOU3000 camera. Database was used in the 
experiments of [26].  
 MobBIO [28] database contains 1,680 visible spectrum 
iris images from 105 individuals captured using Asus Eee Pad 
Transformer TE300T Tablet at a fixed distance and under two 
light conditions but varying conditions of occlusion and eye 
orientation. Each volunteer contributed 16 images (8 left and 
8 right). Database was used in the experiments of [26].  

 

 
Fig. 2. Periocular recognition stages and relevant techniques. 
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 Images of Groups (IoG) database [34] contains 28,231 
facial images taken from 5,080 different subjects at different 
life stages grouped into seven labelled age groups in 
uncontrolled scenarios: people sitting, standing, lying down, 
varying occlusion and facial expressions. Many of the images 
are of low resolutions.  

Cross-Spectral Iris/Periocular Dataset (Cross-Eyed DB) 
[38] was developed to facilitate periocular and iris recognition 
research across multiple spectrums, it contains 5,600 eye 
images captured from 175 subjects. Half of these were NIR 
images while the other half were VW (visible wavelength) 
images, each category contains half the left and half right side 
of the eyes. Each eye capture simultaneously took both NIR 
and VW spectrum of the image in one shot. Database was 
divided into 3 subsets: ocular, iris and periocular. 

Visible Light Mobile Ocular Biometric (VISOB) dataset 
[41] consists of images from 550 subjects in the first visit and 
290 subjects in the second visit captured under three lightning 
conditions: day light, dim and office light. Images were 
captured using three mobile phones: Iphone 5s, Oppo model 
N1 and Samsung Galaxy Note 4. Images were taken under 
unconstrained conditions of varying occlusion, blur, 
makeups, off gaze angles and illumination. It contains a total 
of 80,194 enrollment images and 77,942 validation images.  
3. Periocular image segmentation and preprocessing 

methods  
 
Most research experiments on periocular biometrics make use 
of face databases, especially in uncontrolled environment, the 
periocular region first needs to be cropped from the face 
region. There are two major ways to achieve this: manual 
segmentation and automatic segmentation. Some researchers 
manually segment the periocular region by taking advantage 
of the ground truth eye centers provided with the database as 
reference points [8] [9].  
 There are three main techniques usually employed in 
literature for automatic detection and/or segmentation of the 
periocular region [44]. The first method is to initially detect 
the face with a face detector such as the Viola-Jones (VJ) 
algorithm [45]. Here the overall performance of periocular 

recognition depends on the accuracy of the face detector. This 
method was employed in [23] [46].  
 The second method is to directly detect the eye in the 
image either using the iris, pupil or eye corners. Pupil centers 
could also be detected by application of Haar features via 
weak classifiers followed by binarization and contour 
processing [6], eye corners were detected by use of Canny 
edge detectors, morphological operations and Harris corner 
detector [35]. In the iris segmentation approach, the 
periocular region is determined based on the position of the 
iris. Correlation filters are employed to detect the eye center 
[11] [47]. Eye detection could also be performed using Gabor 
filters [48] or from convolutions with 1D filters tuned to 
detect circular symmetries [26] [31].  
 Lastly, the periocular region could be detected using sub-
face parts such as eyebrow, sclera or VJ sub-part detectors. 
The eyebrow could be detected directly from a face image 
using Local Eyebrow Active Shape Model (LE-ASM) 
followed by graph-cut based segmentation [24] [46]. The 
sclera region was detected after iris segmentation using the 
HSV/YCbCr color spaces [49] [50]. 
 A common preprocessing step is division of the periocular 
region into sub-blocks in rows and columns for global feature 
analysis, 6x8 [10], 7x5 [2], multiple sub-block configurations 
were used in [4] [8]. Images are rescaled to suitable 
dimensions: 100x160 [18], 128x168 [3], 49x19  [8], 20x30  
[6], 32x49 [40], image cropping [42] and image padding [39]. 
Conversion from one color space to another or to grayscale 
and color correction [2] [3] [9] [18]. Histogram normalization 
or equalization [9] [18]. Automatic exclusion of images in the 
database of poor quality using global or average intensity 
thresholding [9] [18]. Rotation correction by horizontal 
alignment using the eye centers or corners [6] [8] [23] [29] 
[30]. Correction of illumination variance or photometric 
normalization [2] [29] [30] [35]. Gaussian blurring applied to 
smoothen the variation across local pixel intensities [23]. 
Removal of short line edges in image, for example eyelashes 
by filtering using morphological operations or filtering with 
1D rank filters [31] [35]. 
 

 
Table 1．Extensive Summary of Research Works on Periocular Biometric Recognition Techniques 

Publica-
tion 
Year 

Authors Databases Samples Subjects Image Preprocessing Feature 
Extraction 

Matching or 
Classification 

Accuracy 
(min – max) 

2010 Woodard  et 
al [16] 

FRGC [17] 
MBGC 
NIR [18] 

44,278 
NA 

568 
114 

Scaling, 
grayscale/color space 
conversion, gray 
value thresholding 

LBP, Red-
green color 
histogram 

City-block 
function & 
Bhattacharya 
coeff. 

91% 
87% 

Bharadwaj  
et al [19] 

UBIRIS v2 
[12] 

11.102 261 Contrast 
normalization & 
image division into 
sub-blocks 

CLBP and 
GIST 

X2 distance 73.65% 

2011 Dong et al 
[20] 

FRGC [17] 
MBGC 
NIR [18] 

44,278 
NA 

568 
114 

Manual eyebrow 
segmentation 

Eyebrow 
shape 

MD, LDA, SVM 75-97% 
90-96% 

Park et al 
[21] 

FRGC 2.0 
[17] 

44,278 568 Partitioning into sub-
blocks and Gaussian 
blurring 

HOG, LBP 
and SIFT 

Euclidean distance 87.32% 

2012 Padole et al 
[9] 

UBIPr [9] 
[2] 

10,950 261 Cropping, sub-block 
division 

HOG, LBP, 
SIFT 

Least square, 
ANN 

NA 

Lyle et al [8] FRGC v2 
[17] 
MBGC 
NIR [18] 

44,278 
NA 

568 
114 

Color space/grayscale 
conversion, histogram 
normalization & 
global intensity 
thresholding 

LBP, HOG, 
DCT & 
LCH 

SVM & ANN 89-97.3% 

2014 Le et al [22] AR [10] 
MBGC 
[10, 18] 

> 4,000 
3,482 

126 
437 

Grayscale conversion Eyebrow 
shape 

Chi-square & 
Cosine distances 

54.4-76.0% 
85.0-71.3% 
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Alonso-
Fernandez  
et al [23] 

BioSec 
[24] 
MobBIO 
[25] 

3,200 
1,680 

200 
105 

Symmetry filters Gabor 
filters 

X2 distance NA 

Xu, et al
 [26] 

FRGC [17] 44,278 568 eye alignment, eye 
coordinate 
normalization, 
illumination 
processing & 
cropping 

SIFT, 
SURF, 
LBP, DCT, 
DWT, 
LoG, FFT, 
Gabor 
filters, 
Walsh & 
Laws’ 
masks. 

Cosine, 
Manhattan & 
Euclidean 
distances 

53.2-61.2% 

Nie et al 
[27] 

UBIPr [9] 
[2] 

10,950 261 Rotation/illumination 
normalization & 
retinex image 
enhancement 

DSIFT & 
CRBM 
features 

CNN,ITML/SVM 50.1% 
EER=0.064 

2015 Alonso-
Fernandez  
et al [28] 

BioSec 
[24] 
CASIAv3 
[6] 
IIT Delhi 
v1 [10] 
MobBIO 
[25] 
UBIRIS v2 
[12] 
ND-0405 
[29] 

3,200 
16,212 
2,240 
1,680 
11.102 
64,980 

200 
411 
224 
105 
261 
356 

Symmetry filters Gabor 
filters 

X2 distance NA 

Bakshi et al 
[3] 

BATH [3] 
CASIA v3 
[6] 
UBIRIS v2 
[12] 
FERET v4 
[13] 

32,000 
16,212 
11.102 
14,126 

800 
411 
261 
1,191 

NA PILP 
 

Euclidean distance 92.47-
99.87% 

Santos et al 
[4] 

CSIP [4] 2,004 50 Noise correction, 
device-specific color 
correction, grayscale 
conversion & sub-
blocks division 

HOG, LBP, 
ULBP, 
SIFT and 
GIST 

 

ANN, distance-
ratio based score 
& X2 distance,  

DEC=2.331 
AUC=0.934 
EER=0.145 

Uzair et al 
[2] 

MBGC v2 
VW [18] 
MBGC 
NIR v2 
[18] 
CMU-H 
[10] 
UBIPr [9] 

3,482 
NA 
NA 
10,950 

437 
114 
54 
261 

Adaptive 
thresholding, 
binarization, contour 
processing, eye center 
normalization & 
scaling 

Raw pixel, 
LBP, PCA 
of pixels, 
PCA of 
LBP 

DCC, MMD, 
MDA, AHISD, 
CHISD & SANP 

97.2-99.8% 

2016 Castrillón-
Santana  et 
al [7] 

IoG [30] 28,231 5,080 Eye coordinate 
normalization, 
cropping, rescaling, 
48 different sub-block 
configurations 

WLD, 
LBP, 
ULBP, 
LOSIB, 
LTP 

SVM 76.24-
92.46% 

Ambika et al 
[31] 

Basel 
dataset 
Bmsce 
Artec 3D 
CASIA 3D 
FV1 [31] 

NA 
NA 
4,624 

200 
NA 
123 

Canny edge & Harris 
corner detectors, 
morphological 
operations & isotropic 
smoothening for 
photometric 
normalization 

Laplace–
Beltrami 
shape 
descriptors 

Euclidean distance 80-97.5% 

2017 Ahmed et al
 [5] 

MICHE – 
II [15] 

NA 86 Color 
space/Grayscale 
conversion, iris radius 
normalization, 
cropping & rescaling 

MB-TLBP Hamming & Chi-
Square distances 

EER=1.27% 
FRR=2.56% 
FAR=0.001 

Aginako et 
al [6] 

MICHE II 
[15] 

NA 86 Scaling and use of two 
different sub-block 
partition 
configurations 

LSP, WLD, 
LPQ, HOG, 
NILBP, 
LBP, 
ULBP, 
LGP, LTP 
& LOSIB 

K-NN, Bagging, 
Random Forest, 
Naive Bayes and 
C4.5 

91.07% 
 
 

Sequeira et 
al [32] 

Cross-eyed 
[32] 

5,600 175 NA LBP, Gabor 
features, 
LPQ , 
HOG, 

correlation scores, 
region-bounded 
matchers, 
Bayesian 

EER: 
0.82-12.25% 
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SIFT, 
SAFE, 
SURF 

Zhao et al 
[33] 

UBIRIS.v2 
[12] 
FRGC [17] 
FOCS [10] 
CASIA.v4-
dist. [6]  

11.102 
44,278 
9,581 
>54601 

261 
568 
136 
1000+1800 

Resizing and padding Global and 
semantic 
features 
(gender/eye 
position 
(left/right)) 

CNN, Joint 
Bayesian 
technique 

82.43-
98.90% 

Ahuja et al 
[34] 

VISOB 
[35] [36] 
MICHE-II 
[15] 

NA 
NA 

550+290 
86 

Iris/periocular 
segmentation and 
resizing 

OpenFace 
lib. 128-D 
features, 
Visobnet 
1024-D 
features, 
Root SIFT, 
512-D 
CNN-bsed 
features 

CNN, KNN 
squared L2 
distance, 
Cosine similarity 

EER=0.053 

2018 Zhao et al 
[36] 

UBIPr [9] 
FRGC [17] 
FOCS [10] 
UBIRIS.v2 
[12] 
VISOB 
[35] [36] 
CASIA.v4-
dist. [6] 

10,950 
44,278 
9,581 
11.102 
NA 
>54601 

261 
568 
136 
261 
550+290 
1000+1800 

Resizing, scaling and 
cropping 

128 D 
CNN 
features 

CNN, Euclidean 
distance, DSC 

EER=0.0147 

4. Periocular image representation methods  
 
The features used for periocular recognition could be broadly 
divided into two: global features and local features. The 
global approach extracts properties describing the whole 
region of interest (ROI) and performs global image analysis 
while the local approach first selects crucial locations, tagged 
key points, in the image. The properties in the neighborhood 
pixels of such key points are extracted based on some local 
analysis on them [44]. Other feature extraction methods 
which do not fall within these two broad groups are discussed 
in a separate category in this section. 

 
4.1 Global periocular features 
4.1.1  Gabor Filters  
Gabor filters are employed in texture analysis to determine 
the presence of specific frequencies in specific directions in 
an image. They are applied using a set of different frequencies 
and orientation. In the works of [26] [31] [51], the image was 
divided into grids and a set of 5 frequency channels and 
equally spaced 6 orientations were used to sample the local 
power spectrum at each grid positioned in the eye center. The 
output from the grids were concatenated to form the feature 
vector. Bharadwaj et al [21], applied Gabor filter with 4 scales 
and 8 orientations to their normalized image to obtain its 
spatial envelope. It was also used in [29]. Gabor filters are 
good tools for texture representation and discrimination. 
 
4.1.2  Walsh Masks 
Walsh masks are convolution filters whose elements are only 
+1 and -1 used to capture local characteristics of an image 
such as contrast. A set of Walsh masks consist of N2 NxN 
masks (N=3,5,7,9...), where N corresponds to the N-sample 
long discrete version of the Walsh function combined in all 
possible pairs. Walsh masks filters were used to approximate 
the Walsh-Hadamard transform in the work of [46] for age 
invariant recognition based on periocular biometrics. They 
were also employed in Local Walsh-Transform Binary Pattern 
approach for periocular identification in [29]. 
 
4.1.3  Histogram of Gradients 

Histogram of Oriented Gradients (HOG) is an appearance 
based feature extraction for object detection by representation 
of the gradient orientations in images relying on the concept 
that objects and shapes in images could be described by the 
spread of its intensity gradients [52]. The method works by 
counting the occurrence of gradient orientations cells of 
images. The given image is divided into smaller rectangular 
grid cells, the gradient orientation and magnitude is computed 
for each pixel within each cell which represents the histogram 
for that cell. The histogram for the whole image is built by the 
concatenation of all the cell histograms. HOG was applied as 
one of the descriptors in the works of [8] yielding the best and 
fastest result for a grid of 7x6 cells. It was also one of the 
features used by [2] [4] [9] [10] [23] and was one of the 
methods utilized by Halmstad University, Sweden 
participants in the Cross-Eyed2017 competition [38]. 
 
4.1.4  GIST descriptors 
GIST descriptors are used to represent an image in low 
dimensions containing enough details to identify the scene in 
the image using five components which are naturalness (edge 
distribution in vertical and horizontal orientation), roughness 
(size of largest prominent object in image), ruggedness 
(extent to which contours in image deviate from horizontal), 
openness (extent of the presence of reference points), and 
expansion (gradient depth of space within image) 
representing the dominant spatial structure of the image 
scene. To obtain the GIST descriptor of a given image, it is 
convolved with N Gabor filters at different scales and 
orientations to produce N feature maps of same dimensions as 
image which are combined to produce the feature vector [53]. 
GIST descriptors reduced computational costs and yielded the 
most benefits of the works carried out by [2]. Bharadwaj et al 
also employed score level fusion of global GIST of length 
1536 with local circular LBP in [21]. 
 
4.1.5  Phase Intensive Global Pattern 
Phase Intensive Global Pattern (PIGP) basically involves 
convolving an image with a set of kernels at 4 phase-tilt 
angles to obtain the variation in intensity in the neighborhoods 
of pixels. The technique was applied to periocular recognition 
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by Bakshi et al [54]. 
 
4.1.6  Laws’ Masks 
Laws’ masks also known as energy filters are a set of 2D 
kernels constructed from different combinations of five 
vectors each containing five elements. These kernels can be 
convolved with images in order to extract its texture 
properties such as spot, level, ripple, edge and wave. It was 
used in [29]. 
 
4.1.7  Local Phase Quantization 
Local phase quantization (LPQ) is a texture analysis method 
that exploits the quantized phase spectrum property of the 
discrete Fourier transform (DFT) to achieve texture 
classification which is insensitive to centrally symmetric blur 
such as out-of-focus blur, motion-blur and atmospheric 
turbulence blur. To obtain the LPQ code, the 2-D DFT of the 
image is first computed using an NxN window (N=3,5...) 
kernel, the four low-frequency coefficients for the real and 
imaginary part of the transform were quantized and combined 
into an 8-bit binary code. Codes from all pixels are 
concatenated resulting in a histogram of codes or LPQ code. 
[55]. LPQ was employed in the work of [4]. It was also used 
by Indian Institute of Technology (IIT) Indore, India in the 
Cross-Eyed2017 competition [38]. 
 
4.1.8  Force Field Transform 
Force Field Transform (FFT) works on an image by regarding 
its pixels as an array of particles each generating a spherically 
symmetric force field on other pixels in the array similar to 
the inverse square law of gravitational force. This force is 
considered to be a vector depending on pixel intensity and 
position so that the total force acting on a pixel of unit 
intensity at a certain location is the vector sum of all the forces 
due to the other pixels contained in the image relative to their 
positions. The transform is a powerful averaging tool for 
reduction of noise effects in an image. [56]. This technique 
was used in the experiments of [29]. 
 
4.1.9  Discreet Wavelet Transform 
Discrete Wavelet Transform (DWT) is a feature extraction 
technique obtained by use of non-continuous single level 2D 
DWT with respect to the Haar wavelet, leading to 
decomposition of approximation coefficients at a given level 
in four components which are the approximation at the next 
level, and details in the vertical, horizontal and diagonal 
orientation which could be treated as features [29] [57]. 
 
4.1.10  Discrete Cosine Transform 
Discrete Cosine Transform (DCT) are 2D masks of sizes NxN 
(N must be an odd number) applied to an image to obtain N2 
coefficients representing a combination of the vertical and 
horizontal frequencies. These coefficients are linearly 
combined with the source mask used to obtain the features 
representing the image [29]. DCT was applied on LBP 
features in the work of [9] for soft biometric classification 
using the periocular region. 
 
4.1.11  Local Binary Patterns 
Local Binary Patterns (LBP) are good tools for texture 
classification because they can identify edges, line ends, 
corners, spots and other patterns. It is computed for every 
pixel in a given image by considering a 3x3 neighborhood 
around it. The value of each pixel’s 8 neighbors is assigned a 
‘0’ or ‘1’ according to whether the intensity of that neighbor 
is lower or greater than the reference pixel. These binary 

values are then concatenated into an 8-bit string whose 
decimal value is assigned to the reference pixel to indicate the 
texture of the image at that point. Each pixel can thus have 
one of 256 possible values and all values for the pixels in a 
region of interest are quantized into an 8-bin histogram. LBP 
has a number of variants, some of them are: Circular LBP 
(CLBP) which is similar to the traditional LBP but the 
neighbors are considered within a distant, R from the 
reference pixel [1] [21].  Uniform LBP (ULBP), so labeled if 
the 8-bit string formed has a maximum of at most two 
transitions from 1 to 0 or vice-versa. All non-uniform patterns 
are assigned a single label while a separate label is assigned 
to each uniform pattern thus reducing the number of possible 
values from 256 to 59. ULBP is rotation insensitive [2]. The 
Local Ternary Pattern (LTP) reduces sensitivity to noise, it 
makes use of 3 values for coding (-1, 0, +1) and a threshold 
value. All values less than the difference of the reference pixel 
and the threshold are assigned ‘-1’, those greater than the sum 
are assigned ‘+1’ while those in-between are assigned ‘0’. The 
8-bit string thus formed is used to construct an upper and 
lower pattern used to compute the local grayscale difference 
[58]. In the Median Binary Pattern, rather than threshold the 
neighboring pixel against the value of the center pixel, the 
localized 8-bit string is obtained by thresholding against the 
median values of all neighboring pixels to make the descriptor 
resistant to noise. In some literature, the thresholding is done 
against the local mean [59]. LBP was used in the works of 
[10] with a bin of 32, [2] [8] [18] with a bin of 59, [6] [9] [23] 
[29]. Its variant, CLBP was used in [21], MB-TLBP, using bi-
cubic interpolation was obtained for two pairs of parameters: 
a radius of 3 with 12 pixel points and also a radius of 6 with 
24 pixel points. This resulted in a combined feature vector of 
size 2,070 [3] and LTP was used in [4] [8]. 
 
4.1.12  Weber Local Descriptors 
Weber local descriptor (WLD) was inspired by the theory of 
human perception which observes that perception depends on 
the size or intensity of the original stimulus and the change in 
that stimulus. The Weber constant is thus the ratio of the 
change in intensity to the original intensity. Thus, WLD is a 
measure of change in intensity with reference to a center pixel 
and the gradient orientation. WLD was used in the work of 
[4] [8]. 
 
4.1.13  Local Colour Histograms 
Local Color Histogram (LCH) is a descriptor that shows how 
the colors in an image are distributed. To obtain it, each color 
dimension is quantized into discrete ranges, the number of 
ranges represent the bin of the color histogram and a count of 
the pixels that fall in the ranges are computed [60]. Color 
histograms could be 1D, 2D or 3D depending on the number 
of combination of space used for the computation. Global 
color histogram (GCH) is the application of this technique to 
an image as a whole while LCH refers to its application to 
subsets of an image. RGB images were converted to the HSI 
color space in the work of Ahmed et al [3], local color 
histogram was used in [9] while Woodard et al experimented 
with RGB and HSV color spaces and their sub-spaces and 
various bin configurations, the red-green (RG) color space 
was observed to give the optimal result with a 4x4 bin 
configuration. This was used for the computation of the 2D 
color histogram [18]. 
 
4.1.14  Local Oriented Statistics Information Booster 
LOSIB relies on the concept of LBP but improves upon it by 
computing the mean of all the absolute differences between 
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the reference pixel and its 8 neighbors using a 3x3 window in 
order to obtain the local oriented statistical content for the 
given image [61]. It was used in [8]. 
 
4.1.15  Local Salient Patterns 
Local Salient Patterns (LSP) similar to LBP but rather makes 
use of the largest absolute difference between the reference 
pixel and its eight neighbors in a 3x3 window to obtain the 
features with a view to reducing the influence of noise [62]. It 
was employed in [4]. 
 
4.1.16  Local Gradient Patterns 
Local Gradient Patterns (LGP) uses the same concept as LBP 
but computes its features using gradient information rather 
than pixel values. [63]. It was employed in [4]. 

 
4.2 Local periocular features 
The algorithms for extracting local features are characterised 
by detection and/or selection of highlighted image locations, 
tagged key points, in the image. The properties in the 
neighborhood pixels of the key points are extracted based on 
some local analysis on them [44]. These algorithms are 
reviewed here.  
 
4.2.1  Scale Invariant Feature Transformation 
Scale Invariant Feature Transformation (SIFT) works on an 
image by first locating key points in the image using a 
difference of Gaussian (DoG) function to filter the image with 
two different scales for a few number of octaves and 
observing where the extrema is found. It is insensitive to 
scaling, translation and rotation [10]. Every point extracted is 
represented using its coordinates, scale and orientation. The 
array of information is then normalized through an affine 
transformation and processed with the image to obtain a 
feature descriptor for it [1] [29] [64]. SIFT was iteratively 
applied using adaptive thresholding until the number of key 
points was a maximum of 200 [10], it was also used to obtain 
descriptors for key points in  [2] [23] [29]. Participants from 
both Halmstad University and Norwegian Biometrics 
Laboratory employed SIFT on the Iris/Periocular dataset in 
the Crossed-eye competition, 2017 [38]. 
 
4.2.2  Speeded Up Robust Features 
Speeded Up Robust Features (SURF) locates key points in an 
input image based on the Hessian matrix, builds a box over its 
axis, perform affine transformation and using Haar wavelet 
responses performs feature extraction over a 4x4 sub-region 
[29]. A comparative analysis was performed using SURF and 
PILP in [1] [64]. It was one of the features used by both 
Halmstad University and Norwegian Biometrics Laboratory 
participants on the Iris/Periocular dataset in the Crossed-eye 
competition, 2017 [38]. 
 
4.2.3 Symmetry Assessment By Feature Expansion 
Symmetry Assessment by Feature Expansion (SAFE) works 
by first detecting key points in an image, then using harmonic 
functions, estimates the presence of a variety of symmetric 
curves around the neighborhood of the key points. These 
highly symmetric curve functions are used to describe the 
neighborhoods about the key points in bands of concentric 
circles with varying radii. [44]. Also used for periocular 
recognition in [31] and by the Halmstad University 
participants in the Cross-Eyed2017 competition [38]. 
 
4.2.4  Binary Robust Invariant Scalable Key Points 
Binary Robust Invariant Scalable Key points (BRISK) is a 

descriptor obtained by the concatenation of results of 
brightness comparison tests carried out by applying a 
sampling pattern of 60 points equidistant on concentric circles 
about the key points. The sampling pattern is then rotated 
about its origin with respect to the gradient angle around the 
key point thus achieving rotation invariance. Comparison of 
intensities is then performed between all the possible short-
distant pixel pairs of the sampling pattern and a value of 0 or 
1 is assigned according to whether the pixel value is less than 
or greater than the reference giving rise to a feature vector of 
512 bits for each key point [44]. This technique was applied 
by [64] for periocular recognition. 
 
4.2.5  Oriented FAST and Rotated BRIEF 
Oriented FAST and Rotated BRIEF (ORB) is a feature 
extraction that improves the BRIEF (Binary Robust 
Independent Elementary Features) descriptor by combining it 
with the FAST corner detector since BRIEF is susceptible to 
rotation. In this combined effort, the dominant rotation of the 
key point is initially obtained by first order moments and then 
steers the BRIEF descriptor accordingly. [44]. This technique 
was applied by [64]. 
 
4.2.6  Phase Intensive Local Pattern 
Phase Intensive Local Pattern (PILP) first obtains key points 
in the input image by convolving it with filters of sizes 3x3, 
5x5, 7x7 and 9x9, each at 4 phase-tilt angles yielding four 
filtered images per kernel which are then subjected to extrema 
detection. The gradient orientation histogram is then 
computed for each key point and concatenated to obtain the 
feature vector for the image. This approach was used in the 
work of [1]. 

 
4.3 Other features for periocular recognition 
Asides global and local periocular features, other features 
such as facial marks like freckles, scars, moles [65], wrinkles, 
skin pores [18], the shape of the eyelids and eyebrow have 
also been utilized for periocular recognition. For example, 
Dong et al [22], employed nineteen eyebrow shape-based 
features which were extracted and grouped into three 
categories, these were the global shape features (GSF), 
critical point features (CPF) and local area features (LAF). 
The GSF included features such as rectangularity (similarity 
with a rectangle), eccentricity and isoperimetric quotient 
(similarity with a circle). The LAF included the area 
percentage, that is, the percentage of the area of eyebrow 
contained in sub-blocks of the eyebrow minimum bounding 
box. Eight such features were obtained by dividing the 
bounding box into 4 equal blocks horizontally then 4 equal 
blocks vertically. The CPF includes points in the eyebrow 
such as the eyebrow centroid, rightmost end, leftmost end, 
highest point and so on. In the work of Le et al [24], the 
eyebrow shape was obtained using graph-cut based 
segmentation, the vicinity around the eye was divided into 3 
regions using Local Eyebrow Active Shape Model (LE-ASM) 
by employing 64 landmarks to determine the boundaries: 
foreground (representing the assumed eyebrow shape), 
foreground (the assumed skin area) and unclassified region 
(in-between the background and foreground region). 
Segmentation basically involved correctly classifying pixels 
in the unclassified region into foreground or background by 
use of pairs of neighboring pixels around them considering 
the intensity difference (edge weight) and shortest path 
amongst the pixel pairs. The Laplace–Beltrami shape 
descriptors, which was based on geometric attributes of the 
periocular region was used in the experiments of Ambika et 
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al, it was obtained using the Laplace–Beltrami operator 
having Riemannian metric that describes the global shape and 
allows for measurement of angles and distances on the surface 
for topology-preserved mapping. The triangular mesh 
obtained in their preprocessing stage was analyzed using 
adjacency and stiffness matrices to obtain the periocular eigen 
spectrum. The eigen values thus obtained were processed 
through a sequence of scaling, logarithmic transform and 
averaging to produce the shape descriptors [35]. Researchers 
in [49] extracted eyelid shape descriptors in fusion with LBP 
as features for periocular biometrics, employing the use of 
eyelid statistics such as accumulated curvature, shape context, 
Elliptical Fourier Descriptors (EFD) for periocular 
recognition. 

 
 

5. Matching methods for periocular template matching 
 
A number of distance metrics (which tends to match feature 
vectors by computing how close or far apart they are from 
each other) are used for classification and matching in 
periocular biometrics such as Euclidean distance, X2 distance, 
Chi square distance and so on, asides these some common 
classifiers include support vector machines (SVM), K-
Nearest Neighbors (K-NN), Bagging, Artificial Neural 
Networks (ANN), Convolutional Neural Networks (CNN), 
Bayesian Networks and so on. In this paper, they are broadly 
classified into three: Distance metrics, CNN and others. 

 
5.1 Distance Metrics 
In the matching stage, Santos et al used the X2 distance for the 
concatenated HOG, LBP, ULBP and GIST feature vectors [2]. 
This was also used to match GIST and CLBP features by 
Bharadwaj et al [21] before fusing both results by applying 
the weighted sum rule. X2 distance was also used for 
comparison of the normalized magnitude of complex values 
of the Gabor response vectors and image pairs having the 
lowest distance were matched [26]. Euclidean distance was 
one of the classifiers used by Xu et al [29], it was also used to 
compute the matching score for HOG and LBP features in the 
works of Park et al [23]. Verification of periocular images was 
by computation of Euclidean distance between the shape 
descriptor of the probe image with those of the images in the 
gallery. Authentication was considered positive if the 
Euclidean distance between both image vectors falls within a 
specified threshold [35]. In the work of Bakshi et al, for every 
key point in the probe image, its key point descriptor was 
compared with the key point descriptor of every key point in 
the gallery image using Euclidean distance. Key points are 
considered a match if the Euclidean distance between them 
falls within a certain threshold [1]. Many distance metrics 
were tested by Woodard et al and the city block distance and 
Bhattacharya coefficient were found to perform the best for 
the LBP histogram and color histogram respectively. Both 
features were combined at match score level by summing with 
min-max normalization [18]. In the works of Ahmed et al, the 
Hamming distance and Chi-Square distance were used for iris 
and periocular matching respectively. Both results were then 
fused using a weighted sum of scores determined 
experimentally from the test samples. The best weights for iris 
and periocular were found to be 0.55 and 0.45 respectively 
[3]. Chi-square distance was used to compute the cost of 
matching points on one eyebrow with another [24]. 
Normalized Cosine distance and Manhattan distance were 
used for computation of similarity scores in [29], Cosine 
distance was also used for classification of the computed 

Procrustes feature vectors in [24], Minimum Distance (MD) 
and Linear Discriminant Analysis (LDA) were used to train 
and carry out recognition and gender classification using the 
eyebrow features [22]. At the matching stage, Halmstad 
University, Sweden employed Bayesian Networks, Indian 
Institute of Technology (IIT) Indore, India used Cosine 
similarity and correlation scores while neighborhood-
bounded matching was utilized by Norwegian Biometrics 
Laboratory, NTNU, Norway [38]. 

 
5.2 Other classifiers 
The SVM works on the principle of finding an optimal 
hyperplane that maximally classify samples into their correct 
classes. For example. It was one of the three methods used to 
train and carry out recognition and gender classification using 
the eyebrow features by Dong et al [22], it was used for 
periocular-based gender classification in the works of 
Castrillón et al [8] and also in the work of Lyle et al for gender 
and ethnicity classification [9]. Joint Bayesian was used in the 
work of [39]. K-nearest neighbors (K-NN), Bagging, Random 
Forest, Naive Bayes and C4.5 classifiers were used in the 
works of [4]. Six classifiers were used for classification: DCC 
(Discriminative Canonical Correlation), MMD (Manifold-
Manifold Distance), MDA (Manifold Discriminant Analysis), 
AHISD (affine hulls image-set dissimilarity), CHISD (convex 
hulls image-set dissimilarity) and SANP (sparse 
approximated nearest points). A number of classifiers are used 
for each image in the set each generating its own similarity 
vector. These are then fused into one vector by experimenting 
with different fusion rules such as the median, sum, product, 
max, min and majority voting. The proposed label from each 
specific rule is further fused using an error weighted fusion 
(EWF) technique [6].  
 Some research work used ANN of varying configurations 
for periocular classification tasks, the second classification 
method used by Padole et al was an ANN having a single 
hidden layer of three neuron using the sigmoid transfer 
function while the output layer had only one neuron [10]. This 
configuration was used by Jamie et al but they experimented 
with 15, 30, 60 and 120 neurons in the hidden layer [9]. The 
ANN configuration in the work of Santos et all had two 
hidden layers of nodes 11 and 6 for the first and second hidden 
layers respectively and one output neuron trained using back-
propagation was used for the final recognition score [2].  

 
 

6. Convolutional neural networks, CNN-based 
periocular recognition 

 
More recently, researchers adopt the end-to-end CNN 
framework, with varying architecture and configurations, for 
periocular recognition to achieve improved performance. In 
[39], Zhao et al made use of CNN for classification with 
semantic assistance (SCNN) comprising of a main structure 
and a branch structure. Layers 1 to 6 of the main structure was 
made up of 3 sets of convolution layer and pooling layers 
which made use of the Rectified Linear Unit (ReLU) transfer 
function, connected to layer 7, the fully connected (FC) layer. 
The branch structure was a similar architecture but had only 
two sets of convolution and pooling layers, with layer 5 being 
its FC layer. The main CNN was trained with the identities of 
the periocular images while the semantic or branch structure 
augments the main by complementing classification via 
training with the gender and the right/left eye positions. In 
their more recent work [42], they paid more attention to the 
eyebrow and eye region for periocular recognition using 
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attention-based CNN which adopted a multiple-glance 
structure; a mechanism which identifies the region of interest 
by utilizing a fully convolutional network (FCN-peri) [66] 
and an attention mechanism CNN (AttNet) consisting of a 
series of four convolution layers and a FC layer 5, the first 
convolution layer extracts low level features like height, 
depth, width while the other convolution layers were split into 
two branches. The top branch processing global periocular 
features while the bottom branch incorporates the region of 
interest (eyebrow and eye) in the second and fourth layer so 
that higher emphasis is placed on those regions. The overall 
feature used was the global feature in conjunction with the 
features from the eyebrow and eye region. The work of Ahuja 
et al examined verification using a fusion of the periocular 
and iris trait by applying a hybrid of two CNN models: model 
1 and model 2. Model 1 consist of series convolution and 
max-pooling layers ending in a FC layer which was trained 
using face and periocular images from external source in a 
transfer learning approach. It had three parts, the first used the 
OpenFace library to generate feature vectors of length 128 
and computes their similarity score using the squared L2 
distance. The second part used Visobnet to obtain feature 
vectors and of length 1024 and compares them using Cosine 
similarity. The third extract key points of identical dimension 
and orientation in the iris images using Root SIFT feature 
descriptors and computes similarity scores using KNN. 
Outputs from the three parts were normalized and fused by 
taking the average of the three scores. Model 2 had a similar 
structure to model 1 but was trained using data from an 
internal source, MICHE II. It generated a feature vector with 
512-dimension which were compared using Cosine similarity. 
Finally, the scores from both models were fused by computing 
their average [40]. 

 
 

7. Performance indicators of periocular recognition 
research 

 
Impressive results have been obtained in researches on 
periocular-based recognition, when fused with other 
modalities, it has been found to further increase accuracy. The 
values found in literature should be regarded as approximates 
since researchers use subset of databases or exclude images 
of poor qualities in the database. The approach used for 
eyebrow segmentation achieved an F-Measure accuracy of 
99.4% on the MBGC database for 50 subjects having a total 
of 200 images. On a small subset of the of the AR database, 
an accuracy of 76.0% was achieved and an accuracy of 54.4% 
for a larger subset of the database. On a small subset of the of 
the MBGC database, an accuracy of 85.0% was achieved and 
an accuracy of 71.3% for a larger subset of the database [24]. 
Woodard et al, Lyle et al and Dong et al both made use of the 
FRGC and MBGC databases. A recognition accuracy of 91% 
was achieved on 410 individuals on the FRGC database while 
a recognition accuracy of 87% was obtained for 85 subjects 
on the MBGC NIR database [18]. Recognition rate accuracies 
of 90% and 75% were achieved on MBGC and FRGC 
databases respectively while gender classification accuracies 
of 96% and 97% were achieved on MBGC and FRGC 
databases respectively [22]. Jamie et al worked on the FRGC 
dataset of 4232 images from 404 subjects, baseline 
classification accuracies of 97.3% and 94% were achieved for 
gender and ethnicity (Asian and non-Asian) respectively 
while classification accuracies of 90% and 89% respectively 
were achieved for the MGBC dataset of 350 images of 60 
subjects [9]. Xu et al, also worked on the FRGC database and 

obtained rank-1 recognition accuracy of 53.2% for a fusion of 
DWT and LBP while a verification rate accuracy of 61.2% 
was achieved when their best extraction technique was fused 
with the Kernel Correlation Feature Analysis (KCFA). This 
was a commendable achievement relative to the difficulty and 
size of the database used (FRGC: Experiment 4 of NIST’s 
FRGC, ~128 million) [29]. Park et al used a smaller subset of 
the same FRGC database, their work on 1136 probe and 1136 
gallery periocular images from the FRGC 2.0 database 
achieved 87.32% rank-1 recognition accuracy using the 
periocular modality by a fusion of 3 different matchers (HOG, 
LBP and SIFT) [23]. Ahmed et al and Aginako et all both 
worked on the MICHE II database, in the experiment of the 
former, an equal error rate (EER) of 2.74%, a false rejection 
rate (FRR) of 9.13% when the false acceptance rate (FAR) 
was set to 0.001 was achieved. When the periocular result was 
fused with the iris matching result, the overall result was 
significantly improved giving an EER value of 1.22% and a 
FRR of 2.56% at an FAR of 0.001 [3]. A fusion of the iris and 
periocular modalities gave an overall recognition rate 
accuracy of 91.07% with the LPQ descriptor and K-NN 
classifier [4]. 
 The work of Bharadwaj et al on the UBIRIS v2 database 
using GIST descriptor as a stand-alone resulted in rank-1 
identification accuracies of 63.34% and 61.64% were 
obtained for the right and left periocular regions respectively 
while using of the CLBP descriptor as a stand-alone, rank-1 
identification accuracies of 54.30% and 52.82% were 
obtained for the right and left periocular regions respectively. 
The fusion combining both left and right regions yielded an 
accuracy of 70.82% for GIST and an accuracy of 63.77% for 
CLBP. The proposed algorithm fusing both descriptors with 
left and right periocular region gave a rank-1 identification 
accuracy of 73.65%  [21]. Bakshi et al using PILP features for 
periocular verification achieved an accuracy of 99.87% on the 
BATH (University of Bath) database, 99.62% on CASIAv3 
(Chinese Academy of Sciences) database, 95.51% on 
UBIRISv2 (University of Beira) database and 92.47% on 
cropped periocular region of the FERETv4 (National Institute 
of Standards and Technology) database. [1]. Various 
experiments were carried out by Santos et al on the CSIP 
image dataset with different parameters. Their best result was 
obtained with the following performance metrics: decidability 
(DEC) = 2.331, area under curve (AUC) = 0.934, the equal 
error rate (EER) = 0.145 [2]. The experiment by Castrillón et 
al was on use of periocular region for gender classification 
using the GROUPS database. The performances of the 6 
descriptors were evaluated at trade-off between margin and 
error, C = 1 and gamma = 0.07. The best accuracies obtained 
for the descriptors were as follows: HOG = 83.02%, ULBP = 
80.31%, LBP = 76.24%, LTP = 80.08%, WLD = 82.20% and 
LOSIB = 76.45%. The best fusion result gave an accuracy of 
82.91% for the combination of HOG, ULBP, LTP and WLD. 
Further fusion with the shoulder, face and head region gave 
an improved accuracy of 92.46% [8]. The minimum 
authentication accuracy in the work of Ambika etal was with 
the Basel dataset [36] under pose variation where they 
achieved 80% while their best accuracy for neutral conditions 
was on the Bmsce Artec 3D database [35] where they 
achieved 97.5%. Rank-1 periocular region recognition rates 
of 99.8%, 98.5%, 97.2%, and 99.5% were achieved for 
MBGC NIR, MBGC VW, CMU Hyperspectral and UBIPr 
datasets respectively [6]. The best performance in cross-eyed 
competition for periocular method was obtained by Halmstad 
University with an EER value of 0.082 on the cross-eyed 
database [38]. 
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 Very good results were realized using convolutional 
neural networks (CNN), Zhao et al using SCNN achieved 
rank 1 verification accuracies of 82.43% on the UBIRIS v2 
database, 91.13% on the FRGC database, 96.93% on the 
FOCS database and 98.90% on the CASIA v4 database [39]. 
In their more recent experiment using attention-based CNN 
model achieved an EER of 0.0226, 0.0859, 0.0768, 0.490, 
0.1005 and 0.0147 (closed-world) on the UBIPr, FRGC, 
FOCS, CASIA v4 distance, UBIRIS v2 and VISOB databases 
respectively [42]. Ahuja et al's hybrid CNN model performed 
best when the training and testing samples were taken from 
same mobile devices, giving an AUROC value of 0.986 and 
an EER value of 0.053 [40]. On the UBIPr database, Nie et al 
obtained their best verification rate for a fusion of CRBM, 
LBP, HOG and DSIFT using SVM classifiers was for an EER 
of 0.064 while they achieved a periocular recognition 
accuracy of 50.1% using the weighted-product fusion of 
CRBM, LBP, HOG and DSIFT, a good result considering the 
relatively larger size of database used [30]. 
 
 
8. Suggestions for further research 
 
Although the periocular region has many discriminative 
features, a number of such features are yet to be fully 
explored. Future research works consider features suuch as 
the properties of the upper and lower eye folds (shape, 
thickness and average distance apart), the eyelashes (length, 
intensity, density, direction and distribution), the sclera 
(texture and color), the tear duct (texture, shape and size) and 
eye shape [67]. Research works can also extend the 
periocular-based age estimation or classification solutions. 
More accurate periocular segmentation techniques are 
anticipated with more research in the use of eye corners which 
are more stable unlike the moving iris on the moving eyeball 
within moving eyelids. Discovery of more robust descriptors, 
classifiers and fusion techniques with reduced computation 
cost favoring recognition of video images of subjects captured 
on-the-move and mobile-based recognition systems. More 
importantly, the availability of newer image databases 
simulating extended real-world application scenarios and 

captured with a variety of sensors will facilitate further 
research developments. 

 
 

9. Conclusions 
 
A number of algorithms used for periocular recognition were 
reviewed. It is clear that the periocular region possesses good 
discriminative attributes found useful as a stand-alone trait for 
periocular-based recognition with good results and have been 
found to augment other traits like the face and iris especially 
under difficult conditions. The periocular trait has also proved 
useful for ethnicity and gender classification. Research in this 
area is relatively new compared with the face and iris trait and 
is expected to continue to draw more research interests. The 
various methods for segmentation of the periocular region 
from face databases using the eye centers, eye corners and 
eyebrow were analyzed. The various preprocessing methods 
to deal with unconstrained scenarios for improved recognition 
accuracies were reviewed as well as the principles behind the 
various techniques used as descriptors together with the 
different classification methods and the commendable 
performance accuracies achieved. These have been found to 
be usually as a result of the fusion of two or more feature 
descriptors. The various nature of public databases used in 
literature have also been reviewed. Definitely there is room 
for improvements and this paper serves to equip researchers 
with insight needed in this field and to inspire more 
experiments with improvements through fusion and other 
novel methods.  
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