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Abstract 
 

The lack of situation awareness (SA) is the main reason for tower controllers’ human errors. How to evaluate the SA of 
tower controllers is an important problem for controlling the risk of air traffic control system. The current method of 
measuring the SA of air traffic controllers by using eye movement analysis focuses on radar controllers. To verify the 
applicability of eye movement analysis in measuring the SA of tower controllers, an experiment platform was built by 
using the eye tracker and tower control simulation software. The comparison of the two group features including SA, task 
load, and operation performance, were conducted by the nearest neighbor index (NNI). Results show that the subjects 
whose fixation feature is dispersed distribution have high SA and improve operation performance under a low task load. 
The Pearson correlation coefficient between the NNI and SA reveals a significant positive moderate association (r=0.602, 
p<0.01). Eye tracking can measure the SA of tower controllers, and the NNI can be an auxiliary eye index for SA 
measurement in dynamic, uncontrolled environments. The conclusion of this study can provide a new reference index for 
the real-time quantitative assessment of tower controllers’ situation awareness level. 
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1. Introduction 
 
Air traffic controllers (ATCos) play the core role of 
guaranteeing the safe, orderly, and efficient operation of air 
traffic control (ATC) systems. With the rapid increase of air 
traffic flow and the continuous improvement of the level of 
ATC automation, controllers must possess good situation 
awareness (SA) to make right decisions in a continuously 
enhanced dynamic system of human–machine information 
interaction. This condition is especially true for tower 
controllers, who are primarily responsible for the command 
and coordination work in the aircraft take-off and landing 
phases, which are the highest risk periods in flights where 
more than half of aircraft accidents occur [1, 2]. 

 These two periods are known as the “black thirteen 
minutes” in the civil aviation, where good SA is of great 
significance in ensuring sound decision making and ATC 
safety. SA refers to operators’ cognitive processing of target 
information in an evolving situation; it includes three levels, 
namely, perception, comprehension, and prediction [3]. SA 
errors by operators result in wrong cognition and decision 
making [4], leading to unsafe civil aviation incidents and 
even accidents [5, 6]. According to Aviation Safety 
Reporting System statistics, 38% of the unsafe incidents 
(including crew and ATCos) that occurred from January 
1986 to May 1992 can be attributed to SA errors [7]. Jones 
and Endsley [8] analyzed the National Transportation Safety 
Board survey of 24 civil aviation accident investigation 
reports from 1989 to 1992 and found that up to 88% of the 
accidents caused by human errors were due to SA errors. 

Therefore, to prevent human errors from ATCos and ensure 
ATC safety, an objective and sensitive approach for 
effectively measuring the SA of tower controllers is needed. 

Considering the limitations of the current SA 
measurement technology, this study uses eye tracking 
experiments to discover new indicators for SA measurement, 
through a combination of qualitative and quantitative 
analysis, providing certain experimental theoretical support 
for tower controllers’ SA measurement and improvement. 

 
 

2. State of the Art 
 

The method of SA measurement varies according to the 
research orientation and field, and many researchers adopt 
different classifications [9-12]. The current SA measurement 
methods can generally be divided into four categories: 
subjective techniques (e.g., self-rating and observer-rating 
techniques), performance measures (e.g., global, external 
task, and imbedded task measures), memory probe measures 
(e.g., posttest, freeze probe techniques, and real-time probe 
techniques), and physiological techniques (e.g., P300, eye 
tracker). These categories each have their respective 
shortcomings. The obvious flaw of subjective techniques is 
that each person’s understanding of a situation is not the 
same, and therefore the consistency of the assessment 
between subjects cannot be guaranteed [13]. The biggest 
issue with performance measures is that good SA may be a 
necessary condition, but it is not a sufficient condition for 
good performance; thus, such measures may not reflect SA 
[14]. Memory probe measures are the most consistent with 
Endsley’s definition of SA because they evaluate operators’ 
SA through their self-report of the contents memorized. 
However, memory probe measures also have some 
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shortcomings. For example, in freeze probe techniques, the 
simulation task stops at a random time point and all task-
related information are cleared (e.g., a blank screen). During 
the freeze period, the subjects are required to answer 
questions related to the task. The hypothesis of this approach 
is that the subject has already stored all the pertinent 
information in his/her working memory, but the fact is that 
he/she needs the information presented by the display to 
maintain SA. Furthermore, this method causes great 
interference in the experiment, affecting the objectivity of 
data collection [15]. Compared with the former three SA 
methods, physiological techniques are rarely used, probably 
because the capability of such measures to directly touch the 
high level of cognitive processes, such as SA, is still 
unknown. For eye tracking cases, several studies show that 
the “look-but-not-see” phenomenon exists in visual attention; 
thus, whether or not the person has already processed the 
object he/she sees is unclear [16]. Owing to the uncertainty, 
the use of eye movement to measure SA needs further 
investigation. As a typical physiological measurement 
method, eye tracking also has the advantages of collecting 
data without bias and being non-invasive to the experiment. 
Furthermore, it can be applied in uncontrolled environments 
where the other three methods will not work. The eye also 
provides important access to external information and has a 
close connection to the brain’s attention and information-
processing mechanisms [17-20]. Thus, it provides a new 
perspective for studying SA and is favored by many SA 
researchers. For example, in the field of pilot SA research, 
Merwe et al. [21] used fixation rates and dwell times as 
“Level 1 SA” indicators and scanning entropy as a “Level 3 
SA” indicator to measure pilot SA; Yu et al. [22] conducted 
an eye movement otherness research on military pilots with 
different SA levels, including pupil sizes and average 
fixation duration; and through a fighter aircraft simulation 
experiment, Liu and Su [23] proved that the superiority of 
eye tracking in measuring pilots’ SA lies in having more 
extensive differences in sensitivity. In the research on 
controllers’ SA, Hyun et al. [24] studied the SA differences 
between novice and expert controllers by using eye 
movement measures and a thinking-aloud experiment. 
Hauland [25] measured the individual and team SA of 
controllers through their time allocation strategy in different 
areas of interest (AOIs). 

Eye movement systems have numerous indexes, among 
which the geometry of the scan path is considered the most 
valuable index for studying the human cognitive process in 
complex human–machine interaction systems. Existing 
scholars introduced the nearest neighbor index (NNI) into 
recognition of subjects’ fixation pattern and found that the 
NNI is highly sensitive to workload changes [26, 27]. NNI 
was soon adopted by many scholars [28-33], because it 
considers all the fixation points of a given situation and does 
not need to prioritize the AOI, thus greatly increasing the 
availability of eye movement in the real environment. For 
instance, Nocera et al. [29] used the NNI to calculate the 
random distribution of fixation points at the flight deck to 
characterize the pilot’s visual glance strategy and explore its 
relationship with the workload. Fidopiastis et al. [30] 
characterized the unmanned operator’s eye movement model 
with the NNI and studied the effects of automation and 
workload on eye movement patterns. Moore and Gugerty 
[31] introduced the NNI to analyze the aggregation and 
dispersion degree of the controller’s fixation points on the 
radar interface and studied its relationship with SA and 
performance, arriving at the conclusion that how “operators 

allocate attention (distributed widely or narrowly) affects 
their SA, as well as their task performance”. 

To measure the SA of tower controllers, understanding 
the function of SA in information processing is necessary 
and should be prioritized. Currently, the most widely 
accepted definition of SA is given by Endsley [3]: “SA is the 
perception of the elements in the environment within a 
volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future”. 
Specifically, for tower control work, tower controllers first 
apperceive diversified information from the current 
environment (e.g., radar display terminal, flight strip, and 
air–ground communication) by visual and auditory means 
and then perform preliminary information filtering and 
synthesis. Next, on the basis of their analysis of current 
information in their short-time working memory and in 
association with the tower control rules and experience in 
their long-term memory system, the tower controllers can 
understand the current traffic situation and predict the future 
status. Finally, tower controllers make decisions and act 
based on the preceding steps. These steps comprise the 
information processing (Figure 1) that a tower controller 
must experience, in which the importance of good SA has 
been proven by several studies [34, 35]. Furthermore, in the 
Next Generation Air Traffic Management System (NextGen), 
the interaction between the controllers and the ATC system 
is frequent, “so there is a need to assess how NextGen tools 
and concepts of operation will impact operator’s SA” [36]. 
The current measurement techniques for SA are also far 
from satisfying the requirement of performing real-time, 
easy-to-conduct, and accurate measurements in real 
situations (out of the lab). 

In summary, using eye movement analysis to measure 
ATCos’ SA requires further exploration, and the NNI is a 
valuable eye movement index. Our objectives are to explore 
the applicability of eye movement analysis in measuring 
tower controllers’ SA through a simulated tower control 
experiment and investigate whether the NNI can be used as 
an eye movement indicator for SA measurement. 

The remainder of this study is organized as follows: The 
third section describes the participants and training, the 
apparatus, and the experimental task and design. The fourth 
section is the data processing (including the calculation of 
NNI, NASA-TLX, 3D-SART, and operation performance) 
and the analysis and discussion of the results (including the 
comparison analysis of SA, task load, and operation 
performance, and the correlation analysis between NNI and 
SA). The last part summarizes this article and gives relevant 
conclusions. 

 
 

3. Methodology 
 
3.1 Participants and training 
Twenty senior students who majored in Air Traffic 
Management in the Civil Aviation University of China were 
selected as participants, including 16 males and 4 females, 
with an average age of 21.96 years and a standard deviation 
of 1.32. None of them has color weakness or color-blind, 
and their eyesight exceeds 1.0. All participants are familiar 
with all the details of tower control and can complete control 
tasks independently. 

To ensure that each participant could use the simulated 
tower control software skillfully in the experiment, training 
was provided for a week, followed by testing. 
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3.2 Apparatus 
The experimental platform consists of the simulated tower 
control software and the Eye Tribe Tracker. The interface of 
the simulated tower control software includes four functional 
areas: airspace surveillance radar, airport surveillance radar, 
progress strip, and command send bar. The experimental 

requirements of a simulated tower control can be satisfied. 
The size of the experimental computer’s screen is 14 in, and 
the resolution is 1366×768 pixels, with an average 
brightness of 22.95 cd/m2. The accuracy of the Eye Tribe 
Tracker is 0.5°, the sampling rate is 60 Hz, and the test range 
is 45–75 cm. 

 
Fig. 1. Information processing of the SA by tower controllers 
 

 
3.3 Task 
In this experiment, with the safety interval satisfied, the 
participants attempted to reduce the conflict and the flight 
delay by controlling the entry and departure flights, 
including issuing landing commands for the entry flights and 
then directing them into the appropriate parking apron after 
landing; allocating the appropriate runway for departing 
flights and then issuing take-off commands; and transfer 
control to approach controllers. 
 
3.4 Experimental design 
The difficulty of simulated tower control, an independent 
variable in our experiment, was divided into three levels: 
simple, medium, and difficult. The numbers of aircraft under 
these three levels of task difficulty were 7, 12, and 16, 
respectively. The experiments for each participant lasted for 
30 min. 

The experimental dependent variables included fixation 
features, workload, SA, and operation performance. The 
fixation features were classified using the NNI. The 
workload and SA were assessed by the National Aeronautics 
and Space Administration Task Load Index (NASA-TLX) 
and the Three-Dimensional Situation Awareness Rating 
Technique (3D-SART) scale, respectively. Operation 
performance refers to the number of operation errors. 

To eliminate the errors caused by the test sequence and 
fatigue, the experiment was conducted in accordance with 
the Latin square design. Before the experiment, the 
participants were guided on how to fill the NASA-TLX and 
3D-SART scales. The detailed procedure was as follows:  

1) The experimenters ran the simulated tower control 
software and set the control task. Next, the participants sat in 
front of the experimental computer screen and adjusted the 
seats and their postures to calibrate the Eye Tribe Tracker. 

2) The individuals started the experiment, with the Eye 
Tribe Tracker recording the eye movement data 
synchronously. To ensure sufficient sampling of eye 
movement data, the participants had to keep their heads in 
the same position.  

3) Finally, the participants completed the NASA-TLX 
and 3D-SART scales. 
 
 
4. Results Analysis and Discussion 
 
4.1 Data Processing 
 
4.1.1 NNI algorithm 
Widely used in the fields of geospatial analysis and pattern 
classification, NNI is a type of clustering algorithm based on 
the distance between points within the region. In eye 
movement analysis, the coordinate distance of the fixation 
points on the experimental interface is first calculated 
according to the NNI algorithm and then the NNI value can 
be obtained as follows: 
 

                           
(1) 

 
where D(NN) represents the average minimum distance 
between the fixation points, and D(ran) represents the 
average distance between the randomly distributed fixation 
points. Specifically, 

 

       
(2) 

 
where Min(dij) is the distance between fixation points i and j, 
and n is the number of fixation points within the interface. In 
addition, 
 

                          
(3) 

 
where A is the area of the measured interface area, and n is 
the number of fixation points. 
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NNI is affected by the visual search strategy of the 
participants. Thus, it can characterize the distributed 
randomness of the fixation points. When the NNI value is 
less than 1, the average minimum distance between the 
fixation points is less than the average random distance, 
indicating that the fixation points follow a clustered 
distribution; when the NNI value is equal to 1, the fixation 
points follow a random distribution; when the NNI value is 
more than 1, the fixation points follow a regularly dispersed 
distribution. The possible distribution state of the fixation 
points is shown in Figure 2. 

 

 
Fig. 2. Distribution state of the fixation points 

 
The eye movement data sampling rate of two 

participants were less than 50%, which had no value for the 
next analysis. Finally, the eye movement data of 18 
participants were selected for NNI analysis. 

NNI analysis was conducted using A Simple Tool for 
Examining Fixations (ASTEF), an algorithm routine based 
on Matlab [37, 38]. The eye movement data from the 18 
participants in each group were imported into the ASTEF 
analysis program and then the NNI values were acquired. 

 

 
Fig. 3. NNI analysis interface of ASTEF 
 
4.1.2 NASA-TLX 
NASA-TLX is a subjective scale developed by NASA to 
evaluate workload including six dimensions: mental, 
physical, temporal demands, frustration, effort, and 
performance [39]. 
 
4.1.3 3D-SART calculation 
3D-SART is used for evaluating the SA of pilots. 3D-SART 
requires participants to perform self-assessment through 

questionnaires at the end of the experiment. It interferes 
minimally with the experiment and is tested with sensitivity 
and construct validity [40]. The 3D-SART scores are 
calculated using the following formula: 
 

                       (4) 
 

where U represents situational understanding (Understand), 
D represents the demand for attention resource (Demand), 
and S represents the supply of attention resource (Supply). 

 
4.1.4 Operation performance 
The number of operation errors was determined by video 
playback, and the errors were classified on the basis of 
Endsley’s SA research [7, 8]. 
 
4.2 Analysis and discussion 
According to their different fixation features, the participants 
were divided into two groups: the dispersed group whose 
fixation feature is dispersed distribution (NNI>1) and the 
clustered group whose fixation feature is clustered 
distribution (NNI<1). The details are shown in Figure 4.  

Using the independent sample t-test to determine the 
difference significance of the two groups’ NNI under three 
different difficulty experiments, we found that the 
differences were all significant (p<0.05). Therefore, the 
grouping method is reasonable. 

Furthermore, the descriptive statistics and difference 
significance test for the NNI, workload, SA, and operation 
errors of two groups were conducted using the SPSS. The 
descriptive statistics are presented in Table 1. 
 

 
 
Fig. 4. Number of participants in different groups 
 

 
Table. 1.  Descriptive statistics of data results (Mean SD) 
Measures Simple Experiment Medium Experiment Difficult Experiment 

Clustered Dispersed Clustered Dispersed Clustered Dispersed 
NASA-TLX 50.47 (5.00) 42.95 (2.42) 59.48 (3.50) 54.94 (3.07) 73.53 (2.44 68.33 (3.62) 
SA 85 (4.76) 85.50 (0.98) 74.5 (1.20) 81.20 (4.69) 61.85 (1.72) 74.40 (7.54) 
Operation Errors 4 (0.82) 2.86 (1.03) 5.38 (1.30) 4.10 (1.29) 9.46 (1.76) 6.60 (2.51) 
 

4.2.1 SA of tower controllers 
The influence of experimental difficulty on the SA of the 
different groups was studied, as shown in Figure 5. 

In the independent sample t-test for the SA of the 
different groups, we found no significant difference in the 
simple experiment (p=0.83>0.05), a very significant 
difference (p=0.001<0.01) in the medium experiment, and a 
significant difference (p=0.02<0.05) in the difficult 
experiment. Under the same experimental difficulty, the 

dispersed group exhibited a higher SA than the clustered 
group. This result is consistent with the findings of Moore 
and Gugerty [31] that participants whose attention 
distribution is more extensive could consider the 
information of each functional area in the simulated tower 
control interface and have a better SA. Regardless of the 
group, the participants’ SA decreased as the experimental 
difficulty increased because increasing the experimental 
difficulty greatly increased the demand for attention 
resource (Demand), while the situational understanding 

 )  S- D (-U=SA
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(Understand) and the supply of attention resource (Supply) 
remained limited. However, the average SA value of the 
dispersed group decreased slowly because dispersed 
attention can help participants improve their understanding 
and cognition of the entire scene, ensuring that no 
potentially important information is neglected. According to 
the SA “leapfrog” view of Liu et al. [41], in the information 
search process, ordinary controllers tend to search the whole 
objects, including useful and other redundant information, 
to predict and project. By contrast, experienced controllers 
(those with high SA levels) only need to search for critical 
information to fulfill the task, presenting a “leapfrog” 
information search pattern and a dispersed distribution 
fixation feature. This capability is especially important for 
controllers who control multiple aircraft simultaneously. 
While ordinary controllers are still busy processing large 
amounts of information, experienced controllers can 
understand the whole project and make a quick prediction 
with skip scanning. Thus, the dispersed group outperforms 
the clustered group in the multi-threaded process. 

 
Fig. 5. Influence of the experimental difficulty on the SA of different 
groups 
 
4.2.2 Workload of tower controllers 
Variance homogeneity analysis was performed on the 
NASA-TLX scores under the three groups of experiments, 
and the significance was 0.77 (p>0.05). The three groups 
were then analyzed by using one-way analysis of variance. 
The results show significant differences among workloads 
of the three groups (p<0.05), indicating that the design of 
the experiment system is reasonable and reliable. We 
likewise investigated the impact of experimental difficulty 
on the workload scores, as shown in Figure 6. 
 

 
Fig. 6. Comparison of workload between different groups 
 

Regardless of the participants’ fixation feature, their 
workload increased with the experimental difficulty. 

Interestingly, under the same experimental difficulty, the 
dispersed group obtained lower workload scores than did 
the clustered group. Considering the previous SA analysis, 
this finding may be ascribed to the differences in 
information search approaches. Compared to the global 
information search pattern used by the clustered group, the 
key information search pattern used by the dispersed group 
had less information. Thus, the dispersed group bore a 
smaller task load than did the clustered group. 
 
4.2.3 Performance of tower controllers 
Furthermore, we studied the operation errors of different 
groups in terms of experimental difficulty.  

 
Fig. 7. Comparison of errors between different groups 

 
Figure 7 shows that the average number of operation 

errors increases with the difficulty of the experiment. For 
the same experimental difficulty, the average number of 
operation errors of the dispersed group is less than that of 
the clustered group. The independent sample t-test for the 
different groups’ number of errors in the simple, medium, 
and difficult experiments showed a nearly significant 
difference between the dispersed and clustered groups (the 
respective p values of the simple, medium, and difficult 
experiments were 0.06, 0.05, and 0.01). Specifically, the 
participants whose fixation feature is dispersed distribution 
(NNI>1) had a better operation performance, which is 
inconsistent with the conclusion of Moore and Gugerty [31] 
that “Errors also increased as NNI increased towards 1, 
which indicates that the spatial distribution of fixations 
became less aggregated and more randomly dispersed”. The 
possible reasons are as follows: (1) the interfaces of these 
two experiments were not the same, that is, Kristin’s was 
based on the radar control interface, whereas ours was based 
on the simulated tower control interface. (2) The different 
control tasks in these two experiments led to different 
fixation strategies. (3) The participants were not the same 
(those of Kristin’s are radar controllers, whereas ours are 
tower control students).  

Drawing lessons from Endsley’s classification of SA 
errors, we also attempted to classify the errors made by the 
participants. Table 2 lists the SA errors in the simulated 
tower control experiment in detail. Notably, the SA errors 
here were not equal to the accidents. 

In Table 2, Level 1 SA error refers to the error caused 
by missing or misconceiving information, such as failing to 
monitor the requested information from the aircraft, which 
may cause the aircraft to fly in circles, and forgetting to 
transfer control after take-off because of a lapse in memory. 
Level 2 SA error corresponds to misunderstanding of 
information, including the change in instructions and the 
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irrational allocation of the runway (the controller directs the 
aircraft to a far runway while the nearby runway is idle). 
Level 3 SA error refers to the incorrect projection of the 
future situation of the system, including runway conflict and 
short distance without satisfying the safe interval between 
take-off and landing of aircraft. The different SA level 
errors that account for the total errors of each group are 
presented in Figure 8. 
 

Table 2. Taxonomy of Situation Awareness Errors 

Level 
1 SA 
error 

Aircraft go around 
Flight delay 
Forget to transfer control after taking off 
Aircraft fails to slip to the terminal after landing 

Level 
2 SA 
error 

Change the command 

Irrational allocation of the runway 

Level 
3 SA 
error 

Runway conflict 
Distance between taking off and landing aircraft less than 
safe interval 
Others 

 

 

Fig. 8. Distribution of different SA level errors between different groups 

 

Figure 8 indicates that irrespective of the fixation 
features, Level 1 SA errors account for more than half 
(60%–70%) of the entire operation’s errors, and Level 3 SA 
errors account for the smallest proportion. This conclusion is 
basically consistent with the research of Jones and Endsley 
[8], who found that 72.4% of the total number of errors was 
Level 1 SA errors, 17.2% were Level 2, and 10.4% were 
Level 3. Most of the SA errors occurred in the acquisition 
and perception of information, and only a small part of the 
SA errors was caused by the incorrect understanding of 
information and the deviation of projection. 

Moreover, the frequencies of Level 2 and Level 3 SA 
errors made by the dispersed group were lower than that of 
the clustered group. In other words, the dispersed group has 
a better situational understanding and projection capability. 
Although the proportion of Level 1 SA errors made by the 
dispersed group was higher than that of the clustered group, 
the Level 1 SA errors made by the dispersed group consisted 
mainly of flight delay and failure to slip to the terminal after 
landing, which rarely cause devastating consequences. 
Meanwhile, the Level 1 SA errors made by the clustered 
group consisted mainly of aircraft flying in circles and 
forgetting to transfer control after take-off, which may cause 
catastrophic accidents. The proportions of aircraft flying in 
circles and forgetting to transfer control after take-off errors 
that account for the Level 1 SA errors made by the dispersed 
group versus that made by the clustered group were as 
follows: 37% versus 50% in the simple experiment, 40.7% 
versus 55.6% in the medium experiment, and 30.4% versus 
45.9% in the difficult experiment. Thus, in the simulated 
tower control experiment, the dispersed group participants 
performed better than the clustered group participants. 
 

4.2.4 Correlation analysis between NNI and SA 
Pearson correlation analysis was performed to explore the 
relationship between the NNI and SA, and the partial 
correlation analysis of controlling the workload variable was 
conducted. We found that without considering the impact of 
workload variable, the Pearson correlation coefficient 
between the NNI and SA is 0.602. Obviously, it is a 
moderate positive correlation (0.5 < r < 0.8), and the 
significance level is high (p < 0.01). When considering the 
impact of the workload variable, the Pearson correlation 
coefficient becomes slightly larger (0.626). Similar to the 
former case, it is also a moderate positive correlation, and 
the significance level is high. 

A significant moderate positive correlation seemingly 
always exists between the NNI and SA despite the difficulty 
of the experiment. Therefore, the NNI can be used as an 
auxiliary eye movement index to measure SA. However, 
evidence on whether the NNI can be treated as an 
independent indicator is lacking because the NNI is a 
physiological measure that does not measure SA directly. 
Following Endsley’s three levels of SA, namely, perception, 
comprehension, and prediction, we easily found that eye 
movement reflects the perception level of SA. However, 
whether eye movement can represent comprehension and 
projection requires more theoretical and experimental 
exploration. 

 
 

5. Conclusions 
 

In this work, the SA of tower controllers were investigated by 
performing eye movement analysis based on the NNI. The 
following conclusions were drawn： 
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(1) Participants with a dispersed distribution fixation feature 

(NNI>1) have better SA and operation performance than those 
with a clustered distribution fixation feature (NNI<1). This 
conclusion shows that the attention characteristics of controllers 
are closely related to their operational performance, which can 
provide reference for controller training. The controller should 
be trained to use the “leapfrog” information search pattern, to 
enhance their ability to control global information and 
command multiple aircrafts at the same time. “Top-down” 
driven cognitive behavior is conducive to the improvement of 
SA of controllers. 

(2) The correlation between the NNI and the controllers’ SA 
is significantly moderate positive. The NNI fixation index is not 
only related to situational awareness in data, but also to the 
cognitive characteristics and information processing patterns of 
controllers. Therefore, the NNI can be used as an auxiliary eye 
movement index to measure SA. But whether NNI fixation 
index can be used as an independent eye movement index to 
measure SA level effectively still needs more experimental 
verification and theoretical support. 

(3)  

In the future, SA can be combined with other eye movement 
indices (e.g., fixation point, fixation time, and scanning). 
Analyzing the difference in eye movement features between the 
tower and radar controllers also makes sense. The results may 
provide some insights into SA measurement and ATC 
automation based on machine learning in the real situation for 
improved understanding. 
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