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Abstract 
 

Ecological environmental worsening and water-soil loss occur frequently in mountainous areas in recent years. As an 
important index of land deterioration and degree of drought, soil moisture can influence vegetation growth, hydrological 
cycle and water resource distribution in mountainous areas significantly. However, topographic effect of soil moisture 
under complicated mountainous terrain conditions still remains unknown. In the present study, a quantitative inversion on 
surface soil moisture content in a typical mountainous area of Dengfeng city, Henan province (China) in 2013 and 2017 
was carried out by using temperature vegetation dryness index method based on Landsat-8 OLI (Operational Land 
Imager) remote sensing images and digital elevation model (DEM). Results were conducive to analyze effects of terrain 
factors on spatial-temporal distribution of soil moisture and improve ecological environment in mountainous area. 
Besides, a quantitative analysis on topographic effect (e.g. elevation, slope and slope orientation) on soil moisture in 
mountainous area was performed based on DEM data. Results demonstrate that topographic factors (e.g. elevation, slope 
and slope orientation) can cause violent variations of soil moisture in mountainous areas. Soil moisture is positively 
correlated with elevation and slope. In view of slope orientations, shady slope generally presents the highest soil moisture, 
followed by semi-shady slope, sunny slope and semi-sunny slope successively. In 2017, the heat island effect in the study 
area is stronger and the arid area is significantly larger than those in 2013. Additionally, soil moisture in the region with 
elevation lower than 750 m and slope smaller than 25° is lower in relative to that in 2013, but it is higher in the region 
with elevation higher than 750 m and slope larger than 25°. This study discloses the influencing law of terrain factors on 
spatial-temporal distribution of soil moisture in mountainous areas. Research conclusions provide some scientific 
references to water conservation and ecological environmental protection in mountainous areas. 
 
Keywords: Soil moisture, Terrain factor, Mountainous areas, Temperature vegetation dryness index 
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1. Introduction 
 
As an important component of water cycle of terrestrial 
ecosystems, soil moisture is a comprehensive reflection of 
natural conditions, including climate, vegetation, terrain and 
soil factors. Moreover, soil moisture is an important index to 
measure land deterioration and degree of drought, especially 
in complicated mountainous areas. Due to topographic relief, 
surface moisture, energy and other key elements have 
uneven spatial distributions in mountainous areas, which 
further influences vegetation growth, water resource 
distribution and local microclimate [1-4]. Therefore, 
studying spatial-temporal distribution characteristics of soil 
moisture in mountainous areas has important scientific and 
practical significance to ecological environmental protection 
in mountainous area. 

In existing soil moisture monitoring methods, optical 
remote sensing and microwave remote sensing are the most 
potential two quantitative monitoring methods of soil 
moisture [5-8]. With strong penetration through clouds, fogs 
and surface, microwave remote sensing can offer services 
24h a day and under all weather conditions, and it enjoys 

promising application prospects in soil moisture monitoring. 
Khedri et al. [9] implemented inversion of surface soil 
moisture by using a support vector machine (SVM) 
regression model based on AIRSAR data of wavebands C, L 
and P in 2003. Based on SAR image data, Holtgrave et al. 
[10] calculated influences of compensation vegetation of 
normalized differential vegetation index (NDVI) on 
backscatter of SAR images by using Landsat-8 data. They 
have achieved good results from inversion of soil moisture 
in flooding regions based on SVM model. However, these 
studies have a high research cost due to the expensive radar 
images. Moreover, radar images are sensitive to terrain, 
surface roughness, vegetation coverage and topographic 
parameters. Radar parameters have complicated relations 
with the target characteristic parameters. These 
disadvantages restricted the wide application of radar image 
to some extent [11]. Optical remote sensing has certain 
penetrating power to soil layer and it can extract soil 
moisture information in superficial layers to provide 
references for drought monitoring, vegetation growth and 
improvement of ecological environment. The temperature 
vegetation dryness index ( ) is an extensively used 
method which has relatively mature theory on remote 
sensing monitoring of soil moisture based on visible light 
and thermal infrared band.  method couples the 
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surface temperature ( ) and vegetation index ( ) and 
realizes quantitative inversion of soil moisture through 
changing characteristics of  characteristic space. 
This method decreases parameters for soil moisture 
inversion and has a low research cost. Currently,  
method has achieved some success in soil moisture inversion, 
drought monitoring and crop output estimation in different 
spatial scales [9, 10, 12-15]. Spatial distribution of soil 
moisture is mainly influenced by meteorological factors (e.g. 
precipitation, solar radiation and air temperature), 
underlying properties (e.g. physical properties of soil, 
surface vegetation and land use) and topographic conditions 
(e.g. slope, slope orientation, elevation and slope position) 
[16]. Yisok et al. [17] taking the bare soil experimental area 
as an example, retrieved the soil moisture content based on 
the microwave remote sensing data, and achieving a high 
accuracy. Lievens et al. [18] carried out a soil moisture 
inversion in the vegetation coverage regions with underlying 
vegetation based on HH polarization data of 
ALOS/PALSAR radar by combining water-cloud model and 
effective roughness parameters, and the lowest inversion 
error was close to 5.5 vol%. However, terrain factors are 
important factors that influence spatial distribution of soil 
moisture in complicated mountainous regions in addition to 
meteorological factors and underlying properties. Currently, 
a series of studies on land use, vegetation coverage and 
drainage basin distribution based on terrain factors have 
been reported. Wu et al. [19] analyzed terrain gradient 
characteristics of ecological land use changes in plateau 
regions on dams from perspectives of elevation, slope and 
slope orientation. They found that distribution of ecological 
land use in plateau regions on dams was significantly 
sensitive to terrain factors. These studies mainly discuss 
terrain gradient characteristics of ecological land use, but 
have not discussed influences of terrain on soil moisture 
distribution. Tian et al. [20] analyzed influences of slope 
position on soil moisture and spatial vegetation distribution 
in Inner Mongolia grassland, and disclosed an order of 
different slopes with respect to average soil moisture in the 
0-50 cm soil layer: slope bottom > shady slope >sunny slope 
and slope top. This study mainly analyzed influences of 
slope position on soil moisture distribution, but it didn’t 
investigate influences of slope and slope orientation on soil 
moisture distribution. Luo [21] analyzed the relationship 
between soil moisture and terrain factors in a small-scaled 
sampling region, finding a negative correlation between soil 
moisture and slope. The highest soil moisture was on the 
east slope, followed by the northeast slope. However, this 
study involved a small study area and soil moisture was 
gained through interpolation of sampling points, which was 
different from terrain in mountainous region to some extent. 

Although there are many studies on soil moisture and the 
application fields are extensive, these studies mainly focus 
on single aspects, such as inversion method of soil moisture, 
influencing factor of soil moisture, etc. Therefore, it is 
necessary to strengthen not only studies on topographic 
effect and spatial-temporal distribution features of soil 
moisture in complicated mountainous areas, but also 
strengthen ecological environmental governance in 
mountainous areas based on research results. Based on 
existing scientific understanding and research results, this 
study further explored topographic effect and spatial-
temporal distribution laws of soil moisture in Dengfeng city 
which is a complicated mountainous region in China from 
perspectives of elevation, slope and slope orientation. In this 

study, surface temperature, soil moisture and terrain factors 
in the study area were used as the main research indexes. 
Research conclusions can provide some scientific references 
to improve ecological environment in mountainous region. 

The reminder of this study is organized as follows. 
Section 2 introduces the study area, preprocessing of remote 
sensing images and terrain factors, as well as inversion 
method of surface temperature and soil moisture. Section 3 
is a quantitative inversion of surface temperature and soil 
moisture in the study area through radiation transfer method 
and  method, which discloses the spatial-temporal 
distribution laws of surface temperature and soil moisture. In 
addition, influencing laws of elevation, slope and slope 
orientation on distribution of soil moisture are analyzed. 
Countermeasures to improve ecological environment in 
mountainous region are proposed by combining relevant 
results. Section 4 summarizes conclusions. 
 
 
2. Materials and methods 
 
2.1 Study area 
The study area was chosen at Dengfeng city (112°49′~ 
113°19′E, 34°35′~34°15′N), which was subordinated to 
Zhengzhou city, Henan province, China. The study area is 
next to Xinmi in the east, Yichuan county in the west, 
Yuzhou city and Ruzhou city in the south, and Yanshi city 
and Gongyi city in the north. It is 58 km long from the east 
to west, and 36 km wide from south to north, covering an 
area of 1220 km2. Elevation of this study area ranges 
between 156~1459 m. Dengfeng city has significant 
different terrains and great topographic relief. There is 
Songshan in the north, and Jishan and Xiongshan in the 
south, all of which run from east to west. The general terrain 
declines to hills and rivers from north-south to middle 
gradually. According to terrains, the study area can be 
divided into deep mountains, shallow mountains, hills and 
flat regions. Among them, the deep mountains account for 
17% of total area in the Dengfeng city, while shallow 
mountains, hills and flat regions account for 30%, 36% and 
17% of total areas, respectively. Slopes of hills are mainly 
larger than 6°. Dengfeng city belongs to warm temperate 
continental monsoon climate and there are four distinctive 
seasons, with great temperature differences. The annual 
average sunshine duration is 2297 hours. The annual average 
temperature is 14.2℃, with extreme temperatures of 40.5℃ 
and -15.1℃, respectively. The frost-free season lasts for 238 
days in a year and the annual average precipitation is 614 
mm. 
 
2.2 Data acquisition and preprocessing 
Data used in this study included Landsat-8 OLI remote 
sensing image data and DEM data in winter of 2013 and 
2017.  
 
2.2.1 Satellite remote sensing data and preprocessing 
In this study, Landsat-8 OLI remote sensing data were 
downloaded from the website of geographic space data 
cloud platform (http//:www.gscloud.cn) on December 29th, 
2013 and on December 24th, 2017. Spatial resolution of 
images was 30 m. Image stripe number was 124/036. The 
longitude and latitude of image centers were 113.45752° and 
34.61065°, respectively. The mean cloudiness was lower 
than 10%. Preprocessing of Landsat-8 OLI images was 
mainly implemented in ENVI5.3, including radiometric 
calibration, atmospheric correction, image registration and 

sT NDVI

sT NDVI-

TVDI

TVDI



Cai Qingkong, Li Erjun, Chen Ju, Tao Liangliang and Jiang Ruibo/ 
Journal of Engineering Science and Technology Review 13 (2) (2020) 22 - 29 

 24 

image cropping. Specifically, radiometric calibration of 
image data was realized by the command of radiometric 
calibration, and atmospheric correction of radiance data was 
performed by the command of FLAASH atmospheric 
correction. Subsequently, remote sensing images in 2017 
were used as the benchmark and remote sensing images in 
2013 were applied for registration. Finally, image cropping 
was conducted based on vector data of administrative zoning 
in Dengfeng city, thus getting remote sensing image data of 
the study area. Meanwhile, conventional meteorological data 
at satellite transition were collected.  
 
2.2.2 Data of terrain factors and preprocessing  
Terrain factor data in this study mainly covered data about 
elevation, slope and slope orientation. The DEM data in this 
study was downloaded from the geographic space data cloud 
platform (http//:www.gscloud.cn) and spatial resolution of 
images was 30 m. Since elevation of the study area ranged 

between 156~1459 m, DEM was divided into 5 levels at an 
interval of 250 m: <250 m, 250~500 m, 500~750 m, 
750~1000 m and >1000 m. Slope data was gained from 
DEM processing by using Slope tools in ArcGIS10.2. 
According to regulations in General Rules for 
Comprehensive Governance and Planning of Soil and Water 
Retention (GB/T 15772-2008), slope data were divided into 
five levels, including flat slope (<5°), gentle slope (5°~15°), 
relatively gentle slope (15°~25°), abrupt slope (25°~35°) and 
extremely abrupt slope (>35°). Slope orientation data was 
gained from processing of DEM data by using Aspect tool in 
ArcGIS10.2 and it was also divided into five levels: flat 
slope (-1°), sunny slope (135°~225°), shady slope 
(315°~45°), semi-sunny slope (90°~135° and 225°~270°) 
and semi-shady slope (45°~90° and 270°~315°). Terrain 
factor data were cropped by the vector data of administrative 
zoning in the study area, thus getting elevation, slope and 
slope orientation diagrams of the study area (Fig.1).

 
 

 
(a)                                                                                            (b) 

 
                (c) 

Fig. 1.  Terrain factor diagrams of the study area. (a) Elevation diagram. (b) Slope diagram. (c) Slope orientation diagram 
 
2.3 Surface temperature inversion based on radioactive 
transfer equation 
 
Surface temperature in the study area was inversed by 
radioactive transfer equation (RTE). RTE, or known as 
atmospheric correction method, calculates effects of 
atmosphere on surface thermal radiation in the atmospheric 
radioactive transfer model according to real-time 
atmospheric sounding data or standard atmospheric profile, 
and then corrects results to real surface temperature 

according to surface specific radiation [22]. The calculation 
formula is: 
 

                          (2) 
 
where  is the surface temperature (K).  and  are 
constants, where and 

.  is the Planck black-body radiance 

When the surface temperature is  , which can be 
gained from the deformed RTE: 
 

                (1) 
 

where  is the spectral radiance of thermal infrared 
waveband which is received by the sensor. ,  and 

 are ascending and descending radiances of atmosphere as 
well as atmosphere transmissivity.  is the surface specific 
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radiance which is estimated by the method proposed by 
Sobrino [22] and Qin [23]. The calculation formula is: 
 

         (3) 

 
where  refers to the normalized difference vegetation 
index, and  is the vegetation coverage and it is determined 
according to . The calculation formula is: 
 

           (4) 

 
                (5) 

 
where  and  are  values of pixels of 

pure naked soil and pure vegetation.  is the reflectance 
of near infrared band and  is the reflectance of infrared 
band. 
 
2.4 Soil moisture inversion based on TVDI 
Soil moisture inversion was conducted by temperature 
vegetation dryness index ( ).  method was 
proposed by Sandholt [8]. When they were simplifying the 
characteristic space from a trapezoid into a triangle based on 
existing  trapezoid characteristic space.  
method not only decreases parameters for soil moisture 
inversion, but also saves accumulation of years of historical 
image data, thus claiming a low cost. The calculation 
formula of  is: 
 

              (6) 

 
                      (7) 

 
                      (8) 

 

where  is surface temperature,  is the minimum 
surface temperature (℃) under the same conditions, 
that is, the wet edge of the  characteristic space. 

 is the maximum surface temperature (℃) under the 
same  conditions, that is, the dry edge of the 

 characteristic space.  
Eqs.(7) and (8) were brought into the Eq. (6), thus 

getting the calculation formula of : 
 

           (9) 

 
where , ,  and  are coefficient of fitting equations 
of dry and wet edges, respectively.  value of dry edge 
is 1, while  value of wet edge is 0.  value is 
negatively correlated with soil moisture. 
 
 
3. Results and discussions 
 
3.1 Spatial-temporal distribution changes of surface 
temperatures 
According to Spatial-temporal distribution changes of 
surface temperature in 2013 and 2017 were discussed 
through data preprocessing in Section 2.2 and the surface 
temperature inversion based on RTE in Section 2.3. During 
surface temperature inversion, values of ,  and  
of remote sensing images in two periods still can be gained 
by inputting the imaging time and central longitude and 
latitude.  ,  and  of remote sensing images valued 
0.10, 0.18 and 0.98 in 2013, as well as 0.16, 0.29 and 0.97 in 
2017. Due to lack of spectral data of pure naked soil and 
pure vegetation in the study area, empirical values 

 and   were applied as  
values of pixels of pure naked soil and pure vegetation to 
estimate vegetation coverage. Based on RTE inversion, the 
surface temperature of the study area was gained from above 
data. Results are shown in Fig. 2. 

 

 
(a)                                                                                                       (b)  

Fig. 2.  Spatial distribution of surface temperature in the study area. (a) Surface temperature in 2013. (b) Surface temperature in 2017 
 
 

It can be seen from Fig. 2 that surface temperature in the 
study area ranged between -7.16°~17.03° in 2013, and it 
concentrated at 0°~10° in most regions. Temperature 
changed greatly in the whole study area. There’s relatively 

low temperature in north and southwest edges of the study 
area, but relatively high temperature in the center and north 
regions. Surface temperature in urban area of Dengfeng city 
was about 10° higher than that in surrounding rural areas and 

0.05
0.

0.973 ( )
0.004 0.986 05 0.7

0.
( )

0.990 7( )
V

NDVI
NDVI

NDV
P

I

e
e
e

<
£

=ì
ï = +

=
£í

>ï
î

NDVI

VP
NDVI

( ) ( ) 2

V soil veg soilP NDVI NDVI NDVI NDVIé ù= - -ë û

( ) ( )nir red nir redNDVI r r r r= - +

soilNDVI vegNDVI NDVI

nirr

redr

TVDI TVDI

sT NDVI- TVDI

TVDI

( ) ( )min max mins s s sTVDI T T T T= - -

min 1 1sT a b NDVI= + ×

max 2 2sT a b NDVI= + ×

sT minsT
NDVI

sT NDVI-

maxsT
NDVI

sT NDVI-

TVDI

1 1

2 2 1 1

(a )
(a ) (a )

sT b NDVITVDI
b NDVI b NDVI

- + ×
=

+ × - + ×

1a 1b 2a 2b
TVDI

TVDI TVDI

atmL


atmL
¯ t

atmL


atmL
¯ t

0.05soilNDVI = 0.70vegNDVI = NDVI



Cai Qingkong, Li Erjun, Chen Ju, Tao Liangliang and Jiang Ruibo/ 
Journal of Engineering Science and Technology Review 13 (2) (2020) 22 - 29 

 26 

suburbs, showing evident urban heat island effect. In 2017, 
surface temperature was between -2.49°~19.75° and it 
mainly concentrated within 5°~15° in most regions. Besides, 
surface temperature increased gradually from south and 
north to center. The surface temperat2ure in 2017 was 
significantly higher than that in 2013. The distribution area 
of high temperature expanded significantly, indicating that 
the urban heat island effect was strengthened significantly. 
In addition, surface temperature in north and southwest 
edges of the study area was relatively low due to the low 
solar radiation and air temperature in winter. 
 
3.2 Spatial-temporal variations of soil moisture 
According to data preprocessing in Section 2.2, surface 
temperature inversion based on RTE in Section 2.3 and soil 
moisture inversion based on  in Section 2.4, spatial-
temporal variation characteristics of soil moisture in 2013 

and 2017 were discussed in this section. Based on the 
inversed surface temperature and , the fitting equation 
of dry and wet edges of  characteristic space were 
calculated in the ENVI5.3-IDL environment by using 
ZONALMAX and ZONALMIN functions. According to 
principle of , the calculated equations of dry and wet 
edges were brought to the Eq.(9), thus getting spatial 
distribution of  in the study area. Moreover, water and 
urban land in the study area were extracted by supervised 
classification technique to reduce their influences on 
analysis results. Mask document was prepared to hide water 
and urban land in the study area. Subsequently, soil moisture 
of natural surface types was analyzed. The spatial 
distribution of  in the study area after masking is 
shown in Fig. 3. 

   
            (a)                                                                                                          (b)  

Fig. 3.  Spatial distribution of TVDI in the study area.(a) TVDI in 2013. (b) TVDI in 2017 
  

In the study area, numerical value of  ranged 
between 0~1.  was used as the drought grading index 
and it was divided into five levels [4]: wet (0< ≤0.2), 
normal (0.2< ≤0.4), slightly drought (0.4< ≤

0.6), drought (0.6< ≤ 0.8), and severe drought 
(0.8< ≤1). Results are shown in Fig.4. In addition, a 
statistical analysis on number of pixels in each level and 
proportions was carried out. Results are listed in Table 1. 

 

 
        (a)                                                                                                                  (b)  

Fig. 4.  TVDI grading of the study area.(a) 2013. (b) 2017 
 
Table 1. Statistics on TVDI grading of the study area 

TVDI value Year Number of pixels Percentage Soil moisture level 

0<TVDI≤0.2 2013 1008 0.09% Wet 2017 1443 0.14% 

0.2<TVDI≤0.4 2013 51930 4.89% Normal 2017 23077 2.17% 

0.4<TVDI≤0.6 2013 297513 28% Slightly drought 2017 169938 15.99% 

0.6<TVDI≤0.8 2013 631226 59.4% Drought 2017 691015 65.03% 

0.8<TVDI≤1.0 2013 81006 7.62% Severe drought 2017 177210 16.68% 
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It can be seen from Fig. 4 and Table 1 that drought area 

had an extensive distribution range in 2013 and 2017, which 
accounted for a high percentage of the study area (59.4% in 
2013 and 65.03% in 2017). Drought areas were mainly in 
the Midwest and south regions of the study area. Slightly 
drought areas ranked the second, followed by severe drought 
areas and normal areas. Wet area accounted for the smallest 
percentage of the study, which was only 0.09% in 2013 and 
0.14% in 2017. Wet areas were mainly in north and 
southwest regions of the study area. Severe drought area in 
2017 increased by as high as 9.06% compared with that in 
2013. The increased severe drought areas were mainly in 
middle and east regions of the study area. The drought area 
ranked the second in expansion and wet region was 
expanded slightly. However, normal region and slight 
drought area were narrowed significantly. Specifically, the 
slightly drought area was decreased the mostly by 12.01%. 
According to comparison of two images and data statistics, 
soil moisture in the study area decreased continuously from 
2013 to 2017, while the drought area region increased 
continuously. 

 
3.3 Effects of terrain factors on soil moisture distribution 
in mountainous areas 
 
3.3.1 Effects of elevation on soil moisture distribution in 
mountainous areas 
Based on elevation grading in Section 2.2 and soil moisture 
inversion results in Section 2.4, the influencing law of 
elevation on soil moisture distribution in mountainous 
region was disclosed by analyzing soil moisture in different 
elevation levels. Elevation grading diagram was overlapped 
with the TVDI diagrams in 2013 and 2017 to make statistics 
on mean TVDI in different elevation levels. Meanwhile, the 
relation curve between TVDI and elevation was drawn 
(Fig.5). 

 
Fig. 5.  Relation curve between TVDI and elevation 
 

It can be seen from Fig.6 that TVDI value decreased 
gradually with the increase of elevation. In other words, soil 
moisture increased gradually with the increase of elevation. 
The lowest soil moisture was in the region with elevation 
lower than 250 m, where the TVDI value was the highest, 
reaching 0.69 in 2013 and 0.82 in 2017. The highest soil 
moisture was in the region with elevation higher than 1000 
m, where the  value was the lowest, 0.46 in 2013 and 
0.42 in 2017. In regions with different elevations (<250 m, 
250~500 m and 500~750 m),  values in 2017 were 
higher than those in 2013, indicating that soil moisture in 

2017 was lower than that in 2013. In particular, the 
maximum difference (0.13) of soil moisture between 2013 
and 2017 was detected in the region with elevation smaller 
than 250 m. In the 750~1000 m region and >1000 m region, 

 values were similar in 2017 and 2013. Generally, 
 value in 2017 was lower than that in 2013, indicating 

that soil moisture increased from 2013 to 2017. 
 

3.3.2 Effects of slope on soil moisture distribution in 
mountainous areas 
Based on elevation grading in Section 2.2 and soil moisture 
inversion results in Section 2.4, the influencing law of slope 
on soil moisture distribution in mountainous region was 
disclosed by analyzing soil moisture in different slope levels. 
Slope grading diagram was overlapped with the  
diagrams in 2013 and 2017 to make statistics on mean 

 in different slope levels. Meanwhile, the relation 
curve between  and slope was drawn (Fig. 6). 

 
Fig. 6.  Relation curve between TVDI and slope 

 
In Fig.6,  value in 2013 and 2017 declined 

gradually with the increase of slope. The lowest soil 
moisture was in the region with slope smaller than 5°, 
accompanied with the highest  value, reaching 0.66 in 
2013 and 0.74 in 2017. The highest soil moisture was in the 
region with slope higher than 35°, while the  values 
were the lowest, which was 0.58 in 2013 and 2017. In region 
with slopes of 5° and 5°~15°,  values in 2017 were 
higher than those in 2013, indicating that soil moisture in 
2017 decreased than that in 2013. In particular, soil moisture 
in the region with slope smaller than 5° showed the highest 
difference (0.08) between 2013 and 2017. In regions with 
slopes of 15°~25° and >35°,  value in 2017 was equal 
to that in 2013. In the region with slope of 25°~35°,  
value in 2017 was slightly lower than that in 2013. Generally 
speaking, soil moisture increased gradually with the increase 
of slope. Soil moisture in the <25° region in 2017 was lower 
than that in 2013, but the soil moisture in regions >25° in 
2017 was higher compared to those in 2013. 

 
3.3.3 Effects of slope orientation on soil moisture 
distribution in mountainous areas 
Based on elevation grading in Section 2.2 and soil moisture 
inversion results in Section 2.4, the influencing law of slope 
orientation on soil moisture distribution in mountainous 
region was disclosed by analyzing soil moisture in different 
slope orientations. Slope orientation grading diagram was 
overlapped with the  diagrams in 2013 and 2017 to 
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make statistics on mean  in different slope 
orientations. Meanwhile, the relation curve between  
and slope orientation was drawn (Fig.7). 

 
Fig. 7.  Relation curve between TVDI and slope orientation 
 

Fig. 7 shows that except for the flat slope, the highest 
 value was achieved on sunny slope in 2013 and 2017, 

which were 0.69 in 2013 and 0.74 in 2017.  values on 
semi-sunny slope and semi-shady slope were the second 
highest. The lowest  values were on the shady slope, 
which were 0.55 in 2013 and 0.62 in 2017. This reflected 
that soil moisture on shady slope was the highest, followed 
by those on semi-shady slope and semi-sunny slope, and 
then sunny slope successively. In other words: there’s an 
order of soil moisture: shady slope > semi-shady slope > 
semi-sunny slope > sunny slope. This trend can be explained 
as follows. Slope orientation influences soil moisture 
distribution by influencing the solar radiation received by 
surface. Sunny slope generally are exposed to solar radiation 
completely, so the soil moisture is the lowest. On contrary, 
shady slope is easy to be blocked by mountains and receives 
less solar radiation, thus having relatively high soil moisture. 
This conforms to the geographical differentiation law of 
shady and sunny slopes in geography.  values under 
different slope orientations in 2017 were higher than those in 
2013. The maximum difference (0.13) of  values in 
2013 and 2013 was detected on flat slopes.  
differences on shady slope, semi-shady slope, semi-sunny 
slope and sunny slow in 2013 and 2017 fluctuated slightly 
within 0.05~0.07. Generally speaking, soil moistures on 
different slope orientations in 2017 were lower than those in 
2013 to different extent. In a word, shady abrupt slopes at 
middle and high elevation are the region of forest vegetation 
in mountainous areas and thereby have relatively higher soil 
moisture. However, these slopes are typical ecological 
vulnerable region. Ecologies in these slopes are difficult to 
be restored once they are destroyed. Hence, it shall try to 
decrease artificial interference activity, strengthen protection 
to forest vegetation, planting trees and grasses to increase 
soil infiltration, lower soil washing by surface runoff, and 
improve ecological environment in mountainous areas. 

 
 

4. Conclusion 
 

To disclose topographic effect of soil moisture in 
mountainous areas with complicated topographic conditions, 
a quantitative inversion of soil moisture in winter in 

Dengfeng city, Henan province in 2013 and 2017 is carried 
out through  method based on Landsat-8 OLI remote 
sensing images and DEM data as well as  and surface 
temperature of the study area. Influences of terrain factors 
on spatial distribution of soil moisture in mountainous 
region are gained through overlapping analysis of elevation, 
slope and slope orientation. Based on analysis results, some 
countermeasures to improve ecological environment in 
mountainous areas are proposed. This study finally 
concludes: 

(1) Surface temperature in the study area ranges between 
-7.16°~19.75° and temperature changes significantly in the 
whole study area. Generally speaking, surface temperature 
increases gradually from south-north to middle. Surface 
temperature in urban areas is about 10° higher than those in 
surrounding rural areas and suburbs. This forms significant 
urban heat island effects. From 2013 to 2017, surface 
temperature increases dramatically and the distribution range 
of high temperature expands significantly. The heat island 
effect has been strengthening continuously. 

(2) In 2013 and 2017, drought area accounts for the 
largest area of total study area, followed by slightly drought 
area, severe drought area and normal area successively. The 
wet area accounts for the smallest proportion of the study 
area. The severe drought area has been expanded mostly 
from 2013 to 2017, followed by drought area and wet area. 
Normal area and slightly drought area have been decreased. 
To sum up, soil moisture in the study area decreases 
continuously, while drought area expands year by year. 

(3) Elevation and slope can influence spatial distribution 
characteristics of surface soil moisture. With the increase of 
elevation and slope, soil moisture increases gradually. 
Effects of slope orientation on soil moisture are mainly 
manifested by higher soil moistures on shady and semi-
shady slopes, but low on sunny and semi-sunny slopes. 
Generally, there’s an order of soil moisture: shady slope > 
semi-shady slope > semi-sunny slope > sunny slope. 

To sum up, the topographic effect on soil moisture in 
complicated mountainous region is disclosed by analyzing 
influences of terrain factors. Theoretical references are 
provided to formulate water conservation and ecological 
environmental protection programs in mountainous areas by 
analyzing distribution laws of soil moisture on different 
elevations, slopes and slope orientations. Terrain is an 
important factor that influences soil moisture distribution in 
mountainous areas. However, spatial distribution of soil 
moisture is related with surface temperature and vegetation 
coverage types to some extent, thus resulting in the 
uncertainty of soil moisture distribution. Influences of 
surface temperature and vegetation coverage type on soil 
moisture in mountainous area shall be considered in future 
studies. 
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