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Abstract 
 
The two major problems in wheeled mobile robot technology is path planning and path tracking. The former evaluates and 
identifies an obstacle free path for a mobile robot to traverse within its environment and the later deals with the controller 
design for a mobile robot to track the reference path with precision. Hence, researchers have proposed and applied several 
solution approaches to these problems over the years. The sustained integration of wheeled mobile robot to task that further 
require their operation within the human environment characterized with uncertainty makes a review of these solution 
approaches very significant. Thus, this paper therefore, presents a review of wheeled mobile robot path planning algorithms 
and path tracking control algorithms applied within the last decennium. 
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1. Introduction  
 
Wheeled mobile robots (WMRs) have become more versatile 
in their application to various tasks in recent time. The 
application environments of these robot’s ranges from 
industrial, military, hospitals, schools, offices etc. [1-3]. 
These environments most often are not precisely engineered 
for WMRs inclusion. However, with the development of 
computers and sensory technology, the WMRs industry has 
seen continual development and received extensive research 
attention. WMR is a robot that autonomously traverse from a 
specific start coordinate to a desired goal coordinate within a 
predefined environment while achieving a specific task [4]. 
The predefined environment is categorized as static or 
dynamic and the obstacles within the environment can be 
static obstacle, dynamic obstacle or a combination of both 
[5,6].  The development of WMRs requires solution to path 
planning and path tracking problems [6]. Solution to these 
problems develops intelligence into the robot capable of 
achieving relation between perception and action [4].  
 Path planning algorithms evaluate and identifies an 
obstacle free path for a mobile robot to traverse within its 
environment [7] and path tracking deals with the controller 
design for a mobile robot to track the reference path with 
precision [8]. In literature, path planning algorithms are sub-
categorized as global and local [7, 9]. Global path planning 
algorithms such as Dijkstra algorithm is applied exclusively 
to static environment with static obstacles and the robot has 
comprehensive knowledge of the environment. The path to 
traverse is generated off-line before the translation of the 
robot within the environment [9, 10]. Local path planning 

algorithms such as Neural Network [11], Simulated annealing 
algorithm [12], Near shortest path for Mobile Robot [7] 
enable the robot to generate a new path in real-time in 
response to onboard sensory information [13]. This allows the 
robot traverse safely in clustered environment [4].  
 Path planning controllers such as hybrid back stepping 
and adaptive integral sliding mode controller [6,14,15], 
Proportional Integral Derivative (PID) controller with 
advance tuning algorithms [2, 16] have been applied in the 
design of appropriate path tracking controller in literature. 
However, the effective design of these controllers involves 
the WMR kinematic model and dynamic model [8]. WMR 
kinematic model presents the constraints between the 
positions, velocities, and accelerations of the WMR body, 
wheels and steering links to determine the WMR’s linear 
velocity and angular velocity [1,4]. Kinematic model is of 
forward and inverse relation. Given the WMR individual 
wheel angular velocity the forward kinematic determines the 
position and orientation of the WMR and the inverse 
kinematic does the direct opposite. Dynamic model of WMR 
predicts it movement. Forward dynamic model defines the 
WMR response in relation to a given force or torque utilized 
by the motors and the inverse dynamic model determine the 
forces or torque to be utilized by the motors to attain the 
WMR predefined trajectory [1,4]. 
 Therefore, this paper present’s a review on WMR path 
planning and path tracking control algorithms applied within 
the last decennium. Hence, the following aspects of WMRs 
are considered: path planning algorithms, path tracking 
controller design, kinematic modeling, dynamic modeling, 
model reference adaptive control, sliding-mode control, fuzzy 
and neural control, vision-based control etc. 
 The remainder of this paper is organized thus, literature 
review of path planning algorithms, formulation of kinematic 
and dynamic model of WMR, literature review of path 
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controller algorithms, and finally conclusion of this review 
paper. 
 
 
2. Path Planning Algorithms 
 
Within the last decennium researchers have approach the path 
planning problem by modelling the WMR environment and 
applying a distinctive method to determine the solution. Sheth 
et al [17] presents a vision-based system for path planning of 
a WMR within a workspace environment. The overhead 
camera captures the image of the workspace environment 
including the start and finish coordinate with obstacle 
positions in a single frame. The homographic function in 
Open Computer Vision (OpenCV) is use to process the image, 
then obstacle characteristic and location is evaluated from the 
homograph image. The Rapid Exploring Random Tree (RRT) 
Artificial Intelligence algorithm map out an optimal path 
accordingly. Although the proposed approach is applicable 
but the environment must be captured within a single frame 
of the camera. Culler and Long [18] has design the path 
planning of a multiply collaborative WMR using vision-based 
approach. Kinect camera is use for image capturing and 
OpenCV is use for image processing and onboard sensors for 
obstacle detection. Ito et at [19] present similar work using 
small imaging sensor named Single-Photon Avalanche Diode 
(SPAD) LIDAR. Kala et al [20] address the time complexity 
problem with Evolutionary Algorithm (EA) for path planning 
for WMR in dynamic environment using hierarchical EA. 
Coarser hierarchy EA is responsible for optimization of 
global path and finer hierarchy EA determines the real-time 
traverse of the mobile robot on the global path. Simulation of 
the proposed algorithm was done using a simulator built on 
JAVA platform. Results exhibits the capability of the WMR 
to solve complicated maps, avoid static, dynamic and sudden 
obstacles and successfully attain the goal coordinate.  
 Tazir et al [21] present a static and dynamic hierarchy path 
planning algorithm to take advantage of the global static map 
and local information from onboard sensors. In the static 
hierarchy, the global optimal path is plan using Genetic 
Algorithms (GA) with Dijkstra Algorithm (DA) through 
static obstacles. The local path planning algorithm using DA 
to generate new path engages when a dynamic obstacle 
suddenly intercepts the reference path from the static 
hierarchy path planning algorithm. Computer simulation in 
Matlab R2010a software shows that the robot attains the 
target point, in less execution time with optimal path without 
collision with obstacle in a dynamic complex environment. 
Toolika et al [22] applied the GA for robot path planning in a 
dynamic environment. Silva-Ortigoza et al [23] describe the 
application of artificial potential field for optimal path 
generation and obstacle avoidance within a workspace 
environment for a differential drive WMR. Computer 
simulation in Matlab-Simulink presents the effectiveness of 
the approach in the generation of obstacle free path for the 
two wheeled differential drive WMR. Qing [5] presents an 
improve DA for path planning for WMR in a dynamic 
environment base on based on the shortest path and travel 
time optimization criterion. The improve DA stores all 
equidistant shortest path from start point and goal point during 
path search. Then considering the number of turns the 
algorithm identify the optimal path. This is the improvement 
over the conventional DA. Simulation model was developed 
with Visual C++ 2010 and result shows that this algorithm 
presents the shortest path from equidistant shortest path 
having considered the number of turns. Zhang and Li [9] 

design a rapid path planning algorithm with the combination 
of the Dijkstra’s algorithm, A* algorithm, and rolling window 
principle for mobile robot in dynamic environment. The 
initial global path is search using the Dijkstra’s algorithm. If 
the possibility of collision with an inbound dynamic obstacle 
on this reference path is evident, this will activate the rolling 
window principle. This principle determines a local optimal 
target state within the detection range of the sensors for the 
robot to wait. The A* algorithm then activates to find a new 
optimal path to the goal point form this target state (current 
location of the robot). Simulation is use to investigate the 
efficacy of the algorithm and performance comparison with 
Ant Colony Optimization (ACO) algorithm, A* algorithm, 
and D* algorithm. The result show that the algorithm is not 
only applicable to dynamic obstacle but also having the least 
re-routing time of about 99.7 % compared with the other 
algorithm considered.  
 Nguyen and Xuan [7] develop and employ the Near-
shortest path for Mobile Robot (NSPMR) local path planning 
algorithm for WMR. The merit of the NSPMR is in twofold; 
one is that this algorithm considers the shortest path from the 
start point to the target point and ensures the robot traverse 
the best moving direction. two, the issue of infinite loop traps 
of several obstacles in unknown environments is address by 
the intelligent obstacle avoidance employed. The robot 
localizes itself, evaluate is traverse direction and distance 
covered through its onboard Global Positioning System 
(GPS) and Compass modules. Simulation in Matlab with 
performance comparison with Bug 1 and Bug 2 algorithms 
shows with the NSPMR the robot traverses the shortest path. 
Wu and Feng [24] describe a path planning method for mobile 
robot within an environment with static and dynamic 
obstacles based on the combination of static global and the 
dynamic local path planning methods. The A* algorithm is 
use to obtain the static optimal path within the desire 
coordinates base on initial static obstacle assumption. Then 
real-time collision avoidance with dynamic obstacles is 
achieved using trajectory prediction. The artificial potential-
field approach is use for local navigation and the local 
adjustments to the global optimum path using the local rolling 
window enables the robot to evade inbound dynamic obstacle. 
Computer simulation shows the effectiveness of the approach 
which combines the advantage of global path planning in a 
static environment with the efficiency of local navigation 
under a dynamic environment. The algorithm adjusts of the 
path derived from global path planning using the result 
obtained from the rolling window during local navigation to 
avoid dynamic obstacles. Raja and Pugazhenthi [25] 
illustrates a method of global path planning for a mobile robot 
within a cluttered environment with static and dynamic 
obstacles having arbitrary shape, size and location. The 
choice of shortest path between the desire coordinates is on 
the bases of shortest Euclidean distance. Simulation result of 
the algorithm in dynamic obstacles having concave, convex 
and curved shapes shows it efficiency and effectiveness in 
terms of shortest path, and minimal execution time compared 
to vertex heuristics algorithm. 
  El Khaili [26] address the extensive processing time 
problem with path planning in dynamic environment using a 
pictorial approach. Authors presents two algorithms for path 
search using a visibility graph constructed by sliding on the 
edges of obstacles. MandaI et al [27] presents an algorithm 
for mobile robot path planning using attractive and repulsive 
potentials for goal point and obstacles within the unknown 
environment respectively. Yun et al [28] presents a WMR 
navigation method in unknown environment with static and 
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dynamic obstacles using Genetic Algorithm (GA) base 
Dynamic Path Planning Algorithm (DPPA). Authors 
emphasis is on searching the algorithm that avoids acute 
shaped obstacles in the environment. The research object is 
the Team AmigoBotTM Robot and the real-time 
implementation confirm the practicality and robustness of the 
proposed algorithm. Li et al [29] combines the kinematics and 
dynamics equation of an omnidirectional wheel mobile robot 
and potential field method for it control and navigation in a 
specific workplace environment. Authors address the local 
minima problem and the goal non-reachable with obstacles 
nearby problem peculiar to potential field method by 
incorporating distance between robot and obstacle in the 
repulsive potential functions for motion planning. For robust 
controller performance the model predictive control (MPC) 
has been incorporated. Qualitative result from simulation data 
shows effectiveness of the proposed approach for 
omnidirectional wheel mobile robot’s navigation. Sprunk et 
al (2016) describe a navigation system for omnidirectional 
robots in industrial environment consisting of distinct 
modules for mapping, localization, trajectory generation and 
robot control. Computer simulation and implementation of 
the navigation system on the KUKA omniRob platform was 
also presented. Xu et al [30] presents a mobile robot path 
planning method combining Dubbin’s path and Bug 
algorithm for WMR navigation in unknown static 
environment considering the kinematical characteristics. 
Simulation result shows the effectiveness of this method for a 
WMR to avoid static and dynamic obstacles within the 
environment. Ayomoh et al [31] describe a path planning 
mathematical model for a mobile robot in a multi-goal 
environment comprising of unknown static and dynamic 
obstacles. However, in recent literature, there has been a 
paradigm shift from the classical geometric method of 
environment modelling as a result of excessive computational 
time and the local minimum problem [32]. Hence, recent 
literature has been largely on human behavioral and bio-
inspired approach and Machine Learning for local path 
planning [33].  
 
 
3. Human Behavioral and Bio-inspired Approaches 
 
Ren et al [34] Developed human like intelligence into WMR 
operating within a dynamic and unknown environment using 
fuzzy logic. Hence, the robot understands it environment 
through perception. Farooq et al [35] described the 
effectiveness of zero order Takagi-Sugeno and Mamdani-type 
fuzzy logic controller for mobile robot navigation and 
obstacle avoidance. Onboard ultrasonic sensor provides 
sensory data for these controllers to control the linear and 
angular velocity of the robot wheel actuators. Performance 
comparison of these controller reveal the superiority of 
Mamdani-type fuzzy logic controller to zero order Takagi-
Sugeno controller in terms of path smoothness. However, 
zero order Takagi-Sugeno controller utilizes less memory 
space for real-time microcontroller implementation.  The 
autonomous navigation of a WMR has been achieved using 
ATMEGA microcontroller based fuzzy logic controller. 
Sensory information from onboard sensor provides necessary 
data for the controller to control the wheel actuators [36].  
 Abdessemed et al [37] presents a hierarchical fuzzy 
control design base on the combination of fuzzy rules and 
stereo vision system for navigating collision free path for 
indoor mobile robot. Algabri et al [38] attempt the 
improvement of a WMR navigation performance through 

membership function parameters optimization of the fuzzy 
controller. This was achieved by merging fuzzy logic and 
another optimization algorithm such as Particle Swarm 
Optimization (PSO). Hmeyda and Bouani [32] has presented 
a vision-based approach to perceive static obstacle and 
generate optimal path using PSO for a WMR. External USB 
Camera is used for image capturing then image processing 
algorithm extracts the robot position, static obstacle positions 
and target position. PSO is used to generate optimal path from 
the robot current position to the target position avoiding static 
obstacles. Similarly, Mahmud et al [39] similarly presented a 
vision based Kohonen-type artificial neural network. 
Ahmadzadeh and Ghanavati, [40] described a navigation 
method for multiple robot in an environment using a PSO 
algorithm. The effectiveness of the proposed algorithm is 
evident in the capability of the robots to navigate in relation 
to the global best position of a particle in every iteration. 
Castillo et al [41] in the design of an intelligent controller for 
a WMR the hybridization of PSO algorithm and ACO 
algorithm was presented. The hybridized algorithm was used 
to optimize the membership function of a fuzzy controller. 
Zhang et al [42] the path planning problem in a dynamic 
environment has been addressed using a Multi-Objective PSO 
Algorithm. Shiltagh and Jalal [43] in order to improve the 
convergence rate of PSO a modified PSO was presented. The 
effectiveness of the modified PSO was investigated in the 
searching of shortest path in environment for mobile robot 
between two defined coordinates avoiding obstacles. Chung 
et al [44] The autonomous navigation of WMR was achieved 
using two levels of control. Authors applied PSO algorithm 
for navigation through obstacles in the environment and fuzzy 
control for turning angle control.  
 Juang and Chang [45] presents the possibility of 
automatic learning of fuzzy logic system through 
evolutionary-group-based PSO has been presented and 
applied to WMR navigation in an unknown environment. 
Allawi and Abdalla [46] have applied PSO algorithm in the 
determination of optimal parameter of fuzzy type-2 controller 
input/output membership function and used for multiple 
mobile robot navigation. Dongshu et al [47] develop a 
behavior-based fuzzy logic controller to address the 
navigation problem of WMR in a dynamic and unknown 
environment. Their focus with this approach is to develop 
intelligence in the robot to evade a cul de sac. Similarly, A 
multi-agent fuzzy logic intelligent control system has been 
developed by Ayari et al [48] for autonomous navigation of 
WMR in a dynamic environment. Nichols et al [49] design a 
wall following WMR using biologically inspired neural 
network. Al-Jarrah et al [50] proposed a probabilistic neuro-
fuzzy architecture a combination of first order Sugeno fuzzy 
inference model and adaptive neuro-fuzzy inference system. 
The possibility of the proposed architecture for achieving 
multiple WMRs path planning and coordination within a 
predefined environment was presented. The control of 
position and orientation of the WMRs follows the model of 
leader-follower. Kim and Chwa [51] address the problem 
using a type-2 fuzzy neural network for WMR. The inputs of 
the proposed methodology are distance form robot to the goal 
and nearby obstacle, the goal angle and obstacle angle. The 
output is the controlled linear and angular velocity of the 
robot to navigate through the environment avoiding the 
obstacles and reaching the goal. Brahmi et al [52] presents the 
feasibility of recurrent neural network in the development of 
intelligent path planning algorithm for autonomous WMR 
navigating within an undetermined environment. Zhao and 
Wang [53] addressed the navigation problem of WMR by 
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merging sensory information from sonar sensors with neural 
network. Kumar and Dhama [54] motion and orientation 
control of WMR within a clustered environment with the 
combination of fuzzy rule-based and neural network was 
presented. Pothal and Parhi [55] presents the navigation of 
multiple WMRs using a sensor based adaptive neuro-fuzzy 
inference system. The controller enables the robots to 
navigate through a highly clutter environment avoiding 
obstacles and reaching the goal successfully.  
 Mohanta et al [56] the navigation path length optimization 
for multiple mobile robots has been design using a Petri-
genetic algorithm in an unstructured environment. Tuncer and 
Yildirim [57] compared the performance of the conventional 
genetic algorithm to a proposed a new mutation operator for 
a genetic algorithm for mobile robot navigation in a dynamic 
environment. Computer simulation for the validation shows 
the superiority of the proposed algorithm. Arora et al [58] 
describe a genetic algorithm approach to path planning of 
mobile robot in a dynamic environment. Authors improved on 
the conventional genetic algorithm by introducing a fitness 
function based on the Euclidean distance formula between the 
robot and obstacle. Hussein et al [59] improves the slow 
convergence rate of the conventional simulated annealing 
algorithm by combining it with other two metaheuristic 
optimization algorithms: Tabu Search and genetic algorithm. 
The design three metaheuristic optimization algorithm is then 
applied for path planning of mobile robot. Zhang et al [60] 
proposed the more efficient navigation speed of a mobile 
robot using a combination of simulated annealing and Ant 
Colony Optimization (ACO). Synodinos and Aspragathos 
[61] addressed the local minima problem of mobile robot 
during traverse with the combination of simulated annealing 
algorithm and artificial potential field method. Algabri et al 
[62] presents a differential drive WMR navigation and 
obstacle avoidance within an unknown environment using an 
adaptive neuro-fuzzy technique inference system. The 
validity of the design was done using computer simulation in 
the Khepera Simulator environment. Singha et al [63] 
illustrates the efficacy of a biologically inspired neural 
network (BNN), considering dual weight calculation with an 
obstacle detection sensor for WMR path planning and 
mapping in an unknown environment. Computer simulation 
for validity testing that the target weight algorithm generates 
less turns and a smaller number of grid cell traversed 
compared with the local weight algorithm. Hossain and 
Ferdousand [64] present an optimization technique for 
autonomous robot path planning in dynamic environment 
with dynamic obstacles based on Bacterial Foraging 
Optimization (BFO) method. Liang et al [65] describe the 
development of a bio-inspired path planning algorithm based 
on an Adaptive Bacterial Foraging Algorithm (ABFA) for 
mobile robot. Patle et al [13] presents a real-time navigation 
algorithm for WMR using a modified Firefly Algorithm (FA) 
which is studied over Normal Probability Distribution (NPD) 
in a static clustered environment. Computer simulation and 
real-world study of the algorithm is done with the Khepera 
robot programmed using C++ for path planning in real time 
environment amidst static obstacles. Result shows the 
effectiveness of their algorithm to find an optimal path for 
WMR amidst regular shaped static obstacles. Liang and Lee 
[66] design a local path planning algorithm for multiple WMR 
application heading for same goal point within a workspace 
environment using Efficient Artificial Bee Colony (EABC) 
algorithm. The EABC considered the hybrid objective 
functions for distances between target, other mobile robots, 
and obstacles for real-time path planning of each mobile 

robot. Computer simulation and comparison of the EABC 
with ABC shows that with the EABC presents accurate 
performance than the conventional ABC. However, the 
computational time of the EABC was expanded due to the 
adoption of multiple strategies.  
 Brand and Yu [67] presents the comparison of the FA with 
ACO algorithm in the determination of optimal path for a 
mobile robot in a 2D static and dynamic environment. Their 
result shows the superiority of FA to ACO algorithm in the 
considered performance metric: path length and 
computational cost. Mohajer et al [68] presents an 
optimization algorithm inspired by BFA for local path 
planning of mobile robot. The proposed optimization 
algorithm: Random Particle Optimization Algorithm 
randomly search optimal path in a dynamic and unknown 
environment with dynamic obstacles using onboard sensory 
information’s. Purian and Sadeghian [69] presents WMR path 
planning using ACO and fuzzy logic algorithm in an unknown 
dynamic environment. The optimal value from the fuzzy rule 
table is searched using the ACO thus, minimizing the path 
length from start coordinate to goal coordinate. Ganapathy et 
al [70] an improved ACO was presented and evaluated based 
on three behaviors: goal seeking, wall-following and obstacle 
avoidance for WMR navigation optimization. Hsu et al [71] 
presents an improve ACO for WMRs path planning by 
incorporating a phenomenal updating parameter. Ganganath 
et al [73] presents a local path planning algorithm for a non-
holonomic WMR using ACO algorithm. Juang et al [73] 
presents the optimal navigation of two mobile robots 
cooperatively carrying object in an unknown environment 
using fuzzy controllers, continuous ACO and PSO. Fuzzy 
controllers are applied for navigation and continuous ACO 
and PSO for obstacle boundary following objective.  Other 
representative references with differs complexities and 
applications are in [74 – 79] 
 
 
4. Machine Learning Approach  
 
The Machine Learning approach applied in robotics path 
planning is Reinforcement Learning (RL). Similar to how 
humans discover their environment through continual 
interaction, RL is the competence of an autonomous agent to 
learn and improve it behavior base on it experience in its 
environment [80]. The agent (WMR) through RL 
autonomously uncover an optimal behavior through trial-and-
error interactions with its environment. RL is premise on 
reward and sanction. For every good behavior the agent gets 
a scalar reward or a scalar sanction if otherwise. Therefore, an 
agent primary objective is to maximize the accrued reward 
over its lifetime. Thus, it’s an associative study between 
environment states and actions [81, 82]. Fig. 1 illustrates the 
principle of RL. 
 The value functions in RL; shortest path, the path with the 
shortest time, the safest path, or any combination of different 
sub-objectives are to be maximized through the action policy 
to attain a predefine goal state. Exploration and Exploitation 
are referred to as the control strategy in RL.  Exploration is 
when an agent takes an action with nonzero probability in 
every found state to learn the environment. However, in 
exploitation the agent adopts exclusively it present knowledge 
in anticipation of good performance by selecting greedy 
actions [84]. Thus, the goal is for the agent to achieve a 
balance between Exploration/Exploitation through some 
strategy such as ε-greedy exploration, Boltzmann exploration, 
Optimistic Initial Value (OIV), Extreme learning machine 



Oluwaseun. O. Martins, Adefemi. A. Adekunle, Samuel. B. Adejuyigbe, Oluwole. H. Adeyemi and Michael. O. Arowolo/ 
Journal of Engineering Science and Technology Review 13 (3) (2020) 152 – 164 

 
 

156 

(ELM) etc. [82, 83, 85, 86]. The Q-Learning algorithm 
develop by Watkins is one of the most frequently used 
technique in solving RL problems [87]. It mathematical 
model is premise on the Markov chain and dynamic 
programming in combination with the knowledge of animal 
behavioral psychology, to attain an agent online learning [83, 
85].  

 
Fig. 1. Principle of RL 
 
 Xiaoyun et al [33] presents the combination of ε-greedy 
(epsilon-greedy) and Boltzmann exploration strategy in a 
modified Q-learning algorithm for selecting an action at the 
current state for learning agent navigation policies in a model-
free manner. The aim of merging this exploration strategy is 
to avoid local minimum and stimulate the convergence rate. 
Computer simulation in Matlab environment, under constant 
reward matrix and a varying reward matrix with probabilistic 
outcomes was considered. The value function is the shortest 
path with reward maximization. Qualitative results show that 
a discount factor (γ)≤0.9 achieved the shortest path with 
maximum accumulated reward. Similarly, at γ ≤ 0.9 the 
modified Q-learning converged faster compared with the 
conventional Q-learning (that only uses ε-greedy exploration) 
which is yet to converge at the end of the training episodes. 
Ribeiro et al [86] describe the application of two distinct Q-
learning algorithms for path planning of an agent premise on 
the ε-greedy exploration strategy. The distinctive feature of 
these algorithm is that; one allows the agent to take an action 
at predefined interval even when the state space signal is 
constant and the other permit an action of the agent only when 
the state space signal changes. Simulation results shows that 
the latter approach out performs the former in terms of 
learning quickness and robustness.  
 Watchanupaporn and Pudtuan [88] attempts to increase 
the learning rate of a group of WMR heading for the same 
goal point by combining Q-learning algorithm with PSO 
within a simulated grid environment. Authors modified the 
conventional Q-learning algorithm for multi-robot problem 
and combined this algorithm with the PSO algorithm. The 
training of algorithm adopts four methods: Q-learning (QL), 
modified Q-learning (mQL), QL+PSO, and mQL+PSO. This 
algorithm was trained using 5, 10, 15, 20 and 25 robot per 
group respectively and performance compared accordingly. 
Simulation of this approach in three different environments 
with diverse level of difficulty shows that that learning rate 
increases with number of robots. Learning performance of the 

group was improved when QL and mQL was combined with 
PSO. Also, as difficulty level increase QL tend to slowdown 
as the number of robots increases however, mQL still learns 
faster even with increased number of robots. Ren et al [83] 
describe the feasibility of Q-learning base on extreme 
learning machine (Q-ELM algorithm) in addressing mobile 
robot path planning problems. These problems include; high 
dimensionality, training difficulty and slow learning speed 
associated with the application of behavioral psychology 
neural network in mobile robot path planning. authors 
substantiate the feasibility of the Q-ELM through experiments 
carried out by Matlab 7.0. Results shows that the stability and 
convergence of the algorithm are proved by number of 
episodes. The advantage of ELM in terms of fast computing 
power, inherently accelerates the implementation of Q-
learning in the agent and improves the learning rate. 
Valiollahi et al [89] describe the combination of fuzzy logic 
and Q-learning algorithm for autonomous navigations of a 
Khepera mobile robot. Sensory data by limited range infrared 
sensors is the Fuzzy inputs. The fuzzy outputs are the robot 
speed and steering angle. Every sensed data is fuzzified for 
efficient handling of uncertain, imprecise, or noisy 
information. Q-learning algorithm is used for the online 
tuning of the fuzzy inference. This provides a flexible 
decision-making system, with inherent adaptability to 
unknown environments. Experiment carried out on 30 
simulated environments reveals goal reaching probability is 
95% and the tendency of the robot to go beyond the safe 
margin from obstacles or walls is15%. Xu et al [90] attempts 
the reduction of computation time and memory space of Q-
learning algorithm. They simplified the algorithm discrete 
value table into a new version that stores only one optimum 
action and its Q-value rather than storing every action’s Q-
value in each state for conventional Q-learning. Authors 
implemented their simplified online Q-learning (SOQ) 
algorithm in Java language using the LeJOS implementation 
for the Lego Mindstorms EV3 robot. Experimental result 
shows the SOQ algorithm promising capability of reduced 
memory complexity when dealing with thousands of state-
action values. Zheng et al [91] describe a solution to 
autonomous obstacle avoidance problem of mobile robot in 
static and dynamic environment. They applied the feature 
level fusion to fuse the sensory information of laser sensor 
and sonar sensor to complement their single application 
drawbacks. Q-learning algorithm is then applied to avoid 
dynamic obstacles as the robot heads for the goal coordinate. 
Their experimental setup is divided into; simulation in Matlab 
and actual mobile robot experiment. Experimental result 
shows that the robot can navigate through obstacles and safely 
attain the goal coordinate.  
 Muhammad and Bucak [87] attempt to solve the rate of 
convergence of the Q-table in large state-action space 
associated with mobile robot application. The Q-table stores 
the state-action pair. Their approach in solving this problem 
is to store all the state-action values visited by the mobile 
robot from start coordinate to the goal coordinate and then 
replaying or backtracking these state-action sequences to use 
the updated Q values after the goal state has been reached. 
The exploration/exploitation strategy of action-selection 
mechanism is the Boltzman or soft-max distribution. 
Simulation of this approach and it comparison with the 
conventional Q-learning algorithm in terms of cumulative 
change in Q-value and rate of change of the Q values was 
presented. The result shows significant improvement in the 
rate of change of the Q-table by the proposed algorithm as 
compared to the conventional Q-learning. Yang and Li [85] 
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describe the navigation control algorithm of a mobile robot 
base on Q-learning method. The authors considered only 
obstacles within 180o range ahead of the robot for algorithm 
simplicity and obstacles position is divided into the left, right 
and ahead directions. The Boltzmann selection mechanism is 
adopted for the training process to action selection. The 
feasibility of this algorithm is verified by two different 
simulation environments setups. Results after 237 training 
episodes presents a feasible path compared and robot attains 
the goal coordinate safely. Lakhmi and Atulya [82] propose a 
modification of the conventional Q-learning (CQL) algorithm 
and evaluate it increase performance in the path-planning 
problem. Their approach consists of four conditional rules for 
balancing the exploration/ exploitation factor. The feasibility 
of the proposed algorithm is evaluated using computer 
simulation and a created real-world environment. In the 
computer simulation a grid map of 20 × 20 under four 
experimental settings were used to compare the performance 
of the MQL, EQL and CQL. result shows MQL outperforms 
the CQL and EQL in all cases. Sichkar [92] evaluates the 
performance of Q-Learning algorithm and its modification 
SARSA reinforcement algorithm for global path planning for 
mobile robots. Cumulatively, 50 experiment were conducted 
for Q-Learning and SARSA algorithm with different 
parameters. The results show that Boltzmann distribution 
temperature parameter T from 0.01 to 0.04 for 1000 episodes 
achieved optimal solution between quality and learning 
speed.  
 Jiang and Xin [93] describe a novel learning algorithm for 
path planning of mobile robots in a large state space 
environment. Fuzzy rule is applied to fraction the state and 
action. Their approach is critical in large space application 
with Q-learning algorithm where the number of states and the 
lengths and directions of the actions are infinite. To achieve a 
trade-off between exploration and exploitation authors 
combine the ε-greedy with a described area allocation strategy 
to improve the learning convergence speed. Experimental set 
up was applied to evaluate the feasibility of the describe 
approach. The superiority of the proposed algorithm over the 
ε-greedy method and the SoftMax is evident.  Li et al [94] 
describe an innovative path planning method based on 
improved Q-Learning algorithm (IQL) and some heuristic 
searching strategies for mobile robot path planning problem 
in dynamic environment. The IQL combines the ε-greedy 
exploration with Boltzmann exploration to attain the balance 
between the exploration and exploitation appropriately. The 
heuristic searching strategies shows it significance in 
reducing the number of iterations in learning process and 
controlling the variation range of robot orientation angle. 
Authors validate their IQL approach via experimental set up 
and compare it performance with the performance of the IQL 
was compared with CQL, A* and EQL algorithm. Qualitative 
result shows IQL superiority to CQL in both distance and 
orientation angle of the path. Although the A* presents 
shorter distance but it doesn’t take the safe range with the 
obstacle nearby. Motlagh et al [95] design obstacle avoidance 
and goal seeking competence in a mobile robot with the 
combination of reinforcement learning and neural networks. 
Roy et al [96] presents the combination of image processing 
and Q-learning to solve the path planning problem of WMR 
in an indoor environment. The environment image is captured 
using a ceiling mounted camera. This image processed and 
the obstacles in the environment is processed using Adaptive 
Gaussian Threshold. Trajectory tracking for the robot is done 
using OpenCV template matching.     
 

 
5. Path Tracking Algorithms 
 
The efficient controller design for a differential drive WMR 
requires the incorporation of it kinematic and dynamic model. 
The general schematic of a differential drive WMR is given 
in Fig. 2.  
 

 
Fig. 2 General Schematic of a Differential Drive WMR 
 
where {𝑥#	𝑂	𝑦#}	 represents the global reference frame and 
{𝑥(	𝐶	𝑦(}	represents the mobile robots local reference frame. 
The left and right wheel velocity is 𝑣+ and 𝑣( respectively. The 
position of the center of the robot wheel at 𝐶 relative to the 
global reference frame is located by coordinate 𝑥 and 𝑦.  𝜑 is 
the difference in orientation between the global and local 
reference frames. The kinematic model of the mobile robot as 
described by [1, 8, 97] is given below: 
 

    (1) 

 
 Eq.1 presents the differential drive wheeled mobile robot 
kinematic model. Showing how 𝑣+ and 𝑣( transforms to �̇�, �̇� 
and �̇�. Where 𝑟 is the wheel radius, 𝐿 is the distance between 
the wheels; and 𝐿 21  is distance of individual wheel to the 
center 𝐶 of the mobile robot. However, is it more convenient 
to describe the linear velocity and rotation velocity of a WMR 
using single variable 𝑣(2324 and 𝜔(2324 rather than 𝑣+ and 𝑣( 
as in Eq.1. Hence, the kinematic model of a differential drive 
WMR is mapped with that of its unicycle WMR counterpart 
[8, 97]. The kinematic model of a unicycle is 
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                    (2) 

 
Comparing Eq.1 and Eq.2  
 

     (3) 

 

     (4) 

 
 So, Eq.3 and Eq.4 establish the connection between the 
translational velocity 𝑣 of the robot to wheel velocities 𝑣+ and 
𝑣( and angular velocity 𝜔  of the robot to wheel velocities 𝑣+ 
and 𝑣( respectively. Solving Eq.3 and 4 simultaneously we 
obtain Eq. 5 and 6 for 𝑣( and 𝑣+	respectively: 
 

                     (5) 

 
     (6) 

 
 Hence, from Eq. 5 and 6 we have 𝑣+ and 𝑣( in terms of the 
design parameter 𝑣 and 𝜔 and the measured parameter 𝐿 and 
𝑟. 
Similarly, the relation between the wheel velocities 𝑣+, 	𝑣( and 
the robot velocity 𝑣 and angular velocity 𝜔 as given by [1, 8]: 
 

                    (7) 

 
 It is important to state that the wheel velocities 𝑣+, 	𝑣( is 
derived from the DC motor velocities 𝜔+ and 𝜔( with the 
relations [1, 8]: 
 

                     (8) 

 
 Inserting Eq.8 into Eq.7, Eq.9 is obtained: 
 

        (9) 

 

                            (10) 

 
 So, Eq.10 presents the relation of robot translational 
velocity and rotational velocity to DC motor velocity.  
 The Dynamic model of a differential drive WMR can be 
derived from the Euler - Lagrange formulation with the 
general form [1, 8, 114]: 
 

    (11) 

 
 Where, 𝐿 is the Lagrange function, expressed as the 
difference between the WMR Kinetic Energy (K.E) and 
WMR Potential Energy (P.E)? However, the P.E is set as zero 
since robot is required to traverse on a plane. Hence, 𝐿 =
𝐾. 𝐸	(𝐾). 
 

    (12)

  
 
The summation of K.E on the WMR is:  
 

                   (13) 

 
𝑞>	is the WMR global coordinate  
𝑄> is the global force acting on the WMR?  
𝐾4 is the K.E associated with WMR translation 
𝐾( is the K.E due to WMR rotation  
𝐾@( is the K.E due to WMR wheel and rotor rotations.  
 
 The nonlinear nature of the WMR system makes the need 
for a controller inevitable. Thus, controller design have been 
adopted in literature to compensate for the system uncertainty 
and input disturbance. Hmeyda and Bouani [32] has presented 
a dual PID controller to output the linear velocity and angular 
velocity of a WMR wheel motor. The reference path is 
generated using PSO-Trajectory algorithm. However, the 
kinematic and dynamic model of the WMR was not 
incorporated and advance tuning algorithms for PID gains 
was not considered. Hence limiting the robustness of these 
approach to static environement with static obstacles. Rai and 
Rai [98] describe the speed control for an Arduino Uno 
microcontroller-based DC motor. They merge a multilayer 
neural network controller and PID controller to improve the 
performance of the controller. Rossomando and Soria [99] 
address the trajectory tracking control problem of a WMR 
using their designed adaptive neural network PID controller. 
Al Mutib and Mattar [100] have design ta differential drive 
WMR wheel actuator speed control using neuro-fuzzy 
controller. The input to the controller is the sensory 
information from onboard ultrasonic sensor for obstacle 
detection. Baturone et al  [101] describe a car-like mobile 
robot control using an embedded neuro-fuzzy controller.  
 Deshpande and Bhosale [102] introduce the adaptive 
neuro-fuzzy inference system controller for navigation 
control of a differential drive WMR with nonholonomic 
constraints. Al-Mayyahi et al [103] describe the control of a 
differential drive WMR wheel actuator angular velocity and 
heading angle control using an adaptive neuro-fuzzy 
technique inference system controller. Silva-Ortigoza et al 
[23] address the path tracking problem considering the 
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kinematic model of a two wheel differential drive WMR using 
Hierarchical control. The desired velocity profiles of the two 
wheels are generated using the upper level, input-output 
linearization control for the movement of the WMR along the 
reference path avoiding obstacles. A dual PI controller is use 
to control the DC motor of the right and left actuated wheel 
velocity respectively at the lower level. The lower level 
control is responsible for synchronizing the desire velocity 
obtain at the upper level with the actual velocity of the robot 
wheel hence, tracking the path. Simulation result shows some 
deviation between the actual velocities and the desire 
velocities using the PI controller. This indicate the necessity 
for an advance optimization algorithm for tuning the PI gains 
for better performance. Jayaprakash et al  [104] presents 
sensor fusion method for WMR absolute heading angle 
detection in an indoor environment. Onboard sensors: 
Gyroscope (L3G400), encoders and ultrasonic sensors were 
deployed to measure angular velocity, speed/direction of 
wheel rotaion and obstacle detection respectively. Kalman 
filter is applied to fuse the data from the gyroscope and 
encoders to accurately estimate the real-time heading angle of 
the WMR. PID controller is use to compensate for the 
deviation of the real-time heading angle and desire heading 
angle. Simulation result shows that using Kalman filter and 
PID controller effectively correct the heading angle deviation 
to marginal tolerable value of about ±2 degrees. Lee and Chia 
[105] design a straight path control of a four omnidirectional 
WMR wheel actuator DC motors using wheel eoncoder and 
Proportional controller. The actual wheel velocity is sense 
through the wheel encoder and sends the data to the onboard 
personal computer via serial communication using a USB 
cable. To track straight path deviation from the encoder 
reading for the right and left motor must tend to zero, thus the 
proportional controller compensate for this difference in 
encoder readings. Comaparison of the proposed design with 
logic control system result shows the proportional control 
system performed better with minimal oscillation. Koubaà et 
al [106] address the trajectory tracking problem of WMR with 
unknown skidding and slipping (dynamic model disturbance) 
using an adaptive sliding mode control. To eliminate the 
effect of dynamic model disturbance on the actual velocity 
resulting in its deviation from the desired velocity, the 
adaptive sliding-mode dynamic controller is proposed. The 
confirmation of system stability and the convergence of the 
tracking errors to zero is done using the Lyapunov theory. 
Illustration of the effectiveness of the proposed controller 
through computer simulation presents it robustness and 
efficiency superior to kinematic/torque controller.  
 Arantes and Sena Esteves [107] descirbe the wheel 
actuator velocity control for a four Mecanum wheels 
omnidirectional mobile robot using PID controller. Susan et 
al [108] presents fuzzy hybrid PID controller for steering 
control for an omnidirectional mobile robot with three-
wheels. The proposed controller is implemented on an 
autonomous wheel chair with active caster wheels to improve 
it maneuverability and environment accessibility. Ren et al 
[109] achieve the friction compensation of a three-wheeled 
omnidirectional mobile robot using a reduced-order extended 
state observer (ESO) based sliding mode control scheme. The 
comparative advantage of the proposed approach is that; 
precise friction model is unnecessary resulting in minimal 
computational cost. Mousavi [110] presents a path tracking 
controller for a mobile robot in a deterministic environment 
using fuzzy logic. The input variables are distance and 
angular difference and the two control inputs are linear and 
angular velocities. Simulation illustration of the proposed 

method and comparison with model predictive controller 
(MPC) shows it superiority in terms of speed, robustness and 
simplicity. Mahgoub and Sanhoury [111] develop a path 
tracking controller model for a WMR using backstepping 
approach. The controller development considers the 
kinematic model of  a WMR and the  system stability is 
confirm using Lyapunov function. Alouache and Wu [112] 
applied the GA as advance optimization algorithm to improve 
the peroformance of a PID controller in terms of control 
precision and speed of convergence for a mobile robot. 
Investigation of the effectiveness of the proposed GA-PID 
controller in comparison to PID in tracking a reference 
trajectory presents it superiority and robustness. Esmaeili et 
al [113] address the balancing and trajectory tracking problem 
of Two Wheeled Balancing Mobile Robots using 
backstepping Sliding Mode Controller (SMC). Lagrangian 
method with dynamics of DC motors is use to derive the 
mathematical model of the robot. Mallem et al [114] presents 
a path tracking method base on PID fast terminal sliding mode 
dynamic inverse control for WMR. The method considers the 
kinematics and dynamics models of WMR to ensure the 
asymptotic stabilization of the robot's position and orientation 
around the desired trajectory. Simulation results shows the 
practicability of the proposed method in real-world mobile 
robot application. Allagui et al [115] presents the trajectory 
tracking of khepera II WMR using three fuzzy logic PI 
controllers. The fuzzy logic output is the gains of the PI 
controller, thus, the quality of trajectory tracking and 
navigation is improved. Simulation result of the fuzzy PI 
controller and comparison with PI controller shows the 
proposed fuzzy PI controller eliminates the sensitivity 
problem associated with PI controllers. Nikranjbar et al [81] 
design a path tracking controller for a three-wheel mobile 
robot in the presence of varying-size triangular regularly 
shape dynamic obstacle using an an hybrid back stepping 
kinematic control along with the repressor based adaptive 
integral sliding mode. This presents the kinematic and 
dynamic control speedof the robot respectively. Simulation 
shows significant input disturbance suppression 
characteristic.  
 Alakshendra et al [15] evaluates the preformance of the 
Integral sliding mode controller (ISMC) and adaptive integral 
sliding mode controller (AISMC) for tracking a U- path on a 
trio-wheeled omnidirectional mobile robot considering 
friction disturbance and bounded uncertainties. Results 
presents the superiority of the AISMC to the ISMC in tracking 
the desired path. Alakshendra and Chiddarwar [14] discuss 
the nonlinear trajectory tracking competence of a 4-Mecanum 
Wheeled Mobile Robot  (4-MWMR) using second order 
sliding mode controller (SSMC). Authors incorporates the 
equation of motion derive using Newton Euler formulation 
with regard to motor dynamics, external forces and 
uncertainties which may vary the mobile robot from its 
trajectory. Simulation result showed a significant 
achievement of their proposed controller in ensuring that the 
4-MWMR tracks a non-linear reference trajectory 
successfully. Urrea and Muñoz [116] appraise and reports the 
perofromance of adaptive PID (ADP PID), model reference 
adaptive controller (MRAC), and fuzzy controller (FC) 
employed on a model two Wheeled Mobile Robot  for 
autonomous path tracking on a model farm. The performance 
metric is the path trajectory generated by the controller and 
the torque requirement by the actuating motors. Qualitative 
results of the applied indices shows MRAC presents better 
result on both metric. Vinod Raj and Abraham [8] address the 
response delay problem of controller to disturbances using a 
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cascaded PID control for reference path tracking considering 
the kinematic and dynamic model of the robot. This approach 
adopts the master and slave controller to control the linear and 
angular velocity of the robot base on it kinematic and dynamic 
model respectively. The two controllers are base on PID 
architecture. Simulation conducted for straight and circular 
path tracking reveals of the controllers ability in tracking the 
desired path but with visible deviation. This can be improve 
by using advance algorithms in tuning the PID gains. Yousfi 
Allagui et al [117] describe the application of three fuzzy 
logic PI controllers for the purpose of goal reaching and 
trajectory tracking of the khepera II mobile robot basd on it 
kinematic model. Individual controller consists of designing 
a classical PI controller and a fuzzy inference system with two 
inputs and two outputs. The inputs are the error and the error 
derivative; however the outputs of the fuzzy unit are the 
parameter corrections of the gains of the PI controller. The 
approach is base on conversion of linguistic inference systems 
into automatic control. The simulation of the approach reveal 
the desire target and trajectory tracking are realized. The 
comparison of fuzzy PI compare to classical PI gives 
satisfactory results due to it elimination of sensitive to initial 
conditions.   
 Dwivedi et al [118] presents an hybrid controller 
comprising of PSO base PID controller and Support Vector 
Machine (SVM) a supervised machine learning classification 
algorithm. The PSO base PID controls the wheel velocity and 
the SVM controls the turning angles by classifying the angles 
of the next position. The aim of the Authors is to develop a 
method to find the global optimum value of PID parameters 
under constraints with simplicity and computationally 
efficiency. Simulation result presents the robustness and 
accuracy of the controller in tracking random and circular 
path. Lee et al [119] presents the Taguchi method to 
determine the optimal design of PID controller parameters in 
path tracking task. Authors design a step response tracking 
task, and test the parameters of PID controller. The Tugachi 
proofs  to be fast and efficient in finding the best combination 
of PID gain parameters. The tuning time is also minimal 
compare with manual gains parameter tuning. Song et al [120] 
presents a control strategy combine with fuzzy control base 
on the Line of Sight (LOS) method. The research object is the 
Pioneer-3 wheeled mobile robot. The kinematic model of the 
mobile robot is developed and the path tracking control 
performance is evaluated on the straight and circular path. 
Simulation result reveals success of the propose approach in 
tracking  the straight and circular path with good 
performance. Shijin and Udayakumar [1] attempts the point 
tracking control problem of differential drive WMR using a 
PID controller. Authors describe the speed controller of the 
DC motors for a  differential drive WMR using a PID 
controller considering it kinematic model and dynamic 
model. The Ziegler-Nichols method is use to evaluated the 
PID gains. Qualitative ressult shows the significance of the 
controller in ensuring the speed set point of 100 rads/sec is 
achieved by both wheels. However, on point – to – point 
tracking the qualitative result shows the mobile robot took a 
curved path rather than the required straight path. Thus, the 
need for optimaization algorithm such as PSO and GA to 
optimize the PID gains for quick response of the controller. 
Heikkinen et al [121] propose a self-tuning-parameter fuzzy 
PID controller for rotational speed control of a differential 
drive WMR DC motors. The aim is to complete a straight 
trajectory using the self-tuning-parameter fuzzy PID 
controller on the DC motors. Qualitative result shows the 
effecitiveness of their approach in tracking a straight path in 

a wide parameter variation range compare with the 
conventional PID controller. Meng et al [2] investigates the 
effectiveness of PID controller as speed controller on a two 
wheeled differential drive mobile robot for straight and 
curved path. Their research object is a constructed two-wheel 
mobile robot platform based on STM32 Micro-controller. 
Simulation was conducted in Matlab-Simulink for the straight 
and curved path trajectory to validate the feasibility of the PID 
controller. resuts reveals centimeter deviations from the 
desired path sue to lack of robustness of the PID gain 
parameters.  
 Zhi et al [122] presents a shift control base on Neural 
Network and Fuzzy PID as the DC motor speed controller for 
a differential drive wheeled mobile robot. These advance 
algorithm for tuning of the PID gains is aimed to offset the 
limitation of conventional PID for the target purpose. 
Simulation and effect analysis of the propose method was 
done in Simulink and the control object is the DC servo 
motor. The result of the experiment compares the 
performance of the Fuzzy PID, Neural Network PID and the 
Neural Network and Fuzzy PID in terms of response time and 
maximum overshoot (%) of the set point. The Fuzzy PID 
control show fast response but with more overshoot converse 
to the performance of the Neural Network PID control. 
However, with the Neural Network and Fuzzy PID the 
demerits both are eliminated and their merits established. 
Chang and Jin [123]  decribe the implementation of an 
adaptive tracking controller base on the PID for mobile robot 
trajectory tracking. Their approach incorporates the non-
linear model of the differenetial drive WMR kinematics to 
ensure a precise prediction of the future trajectories. 
Qualitative result shows that their propose method has less 
error and less maximum overshoot than conventional back-
stepping method and ordinary PID. Ammar and Azar [124] 
investigates the application of PID controller and Fractional 
Order PID (FOPID) controller to achieve a robust controller 
for a differential drive WMR. The research object is the 
Pioneer-3 Mobile Robot and the control variable is the linear 
velocity and angular velocity through the linear velocity 
control loop and angular velocity control loop. Authors apply 
the Integral square error (ISE), Integral absolute error (IAE), 
Integral time-square error (ITSE) and Integral time- absolute 
error (ITAE) tuning algorithms to tune the gains of PID and 
FOPID. Computer simulation done in Matlab-Simulink and 
the measured performance metrics are response time, peak 
time, maximum overshot (%) and settling time. The result 
shows that PID-ITAE and FOPID-ISE presents the best 
parameters for the metric and FOPID-ISE achieved better 
performance parameter in relation to PID-ITAE. Other 
representative works are: Tamila et al [125], Salem [126], 
Barthelmes and Zehnter [127], Proaño et al [128].   
 
 
6. Conclusion  
 
This literature review presents the necessity for path planning 
and path tracking competence in WMR for it sustained 
integration to task that further require them to operate within 
the human environment characterized with uncertainty. 
Although numerous path planning and path tracking 
algorithms have been applied by researchers, however, static 
environment with static obstacles consideration are in the 
majority. Furthermore, performance evaluation of these 
algorithms is largely base on computer simulation but some 
researchers equally describe their algorithm feasibility on 
real-world robot miniature applications. This creates a gap 
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between available methodologies and their real-world 
practicability. Hence, this gap motivates the current research 
on the application of Q-learning algorithm for path planning 
and PID controller for path tracking with advance 
optimization algorithm in the development of a unit-load 
dispatch differential drive WMR in an office environment 
with static and dynamic obstacles. This present papers’ 
emphasis is on review of WMR path planning and path 

tracking control algorithms.  Hence, extensive insight on the 
discussed technology can be found in the sited references.  
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License  
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