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Abstract 
 

The non-parametric methods have been proposed in the research literature as an alternative to parametric methods for time 
series forecasting. However, scarce evidence is available about the relative performance and computational ability of both 
parametric and non-parametric methods. This paper reviews the comparative studies conducted for evaluating the accuracy 
of parametric and non-parametric methods, especially ma-chine learning methods. For this, we briefly review widely 
applicable the parametric and non-parametric methods. Moreover, an empirical study has been carried out on real time 
series datasets to evaluate the comparative performance of parametric methods over machine learning methods. 
Additionally, the limitations of the machine learning methods are highlighted which leads to the selection of parametric 
methods over non-parametric methods by the researchers in recent years. Further, some recommendations for future 
research are presented. 

 
Keywords: Parametric methods; non-parametric methods; machine learning. 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Forecasting of future events such as the next year rainfall 
measurement [1] or a stock market volatility [2] with 
achieving higher accuracy constitutes a challenging problem 
for the field of applied and theoretical time series research. 
Time series analysis is applicable in many areas like statistics, 
econometrics, signal processing, pattern recognition, 
mathematical finance, weather forecasting, ECG, control 
engineering and astronomy etc. The methods and techniques 
for time series analysis can be categorized as parametric and 
non-parametric methods. The parametric methods assume 
that the basic stochastic stationary process has a certain 
structural formation which may be described by utilizing a 
small number of parameters (for e.g., applying a 
autoregressive moving average (ARMA) model [3] or an 
autoregressive integrated moving average (ARIMA) model 
[4]). The main task of parametric approaches is to evaluate 
the parameters of the time series model that outlines a 
stochastic process. [5] In contrast, non-parametric methods 
explicitly evaluate the spectrum or the covariance of the 
stochastic process without assuming that the stationary 
process may have any specific structure [6] [7]. Furthermore, 
only parameters are required from the historic data of the 
model while using parametric models, to forecast the future 
values of time series. On contrary, the non-parametric models 
require current state of data with number of parameters to 
predict the future values of time series data [8]. Moreover, 
non-parametric models are computationally slower than 
parametric models, but make lesser assumptions about the 
time series data. Further, parametric models significantly 

varies from non-parametric models due to some assumptions 
required by parametric models regarding the temporal and 
spatial covariance structure and the marginal probability 
distributions of the time series data, whereas non-parametric 
models only maintain the empirical structure of the observed 
time series data. 
 The parametric methods and non-parametric methods 
both can be opted for time series analysis, however, it is 
important to know beforehand which type is best suited for 
particular time series problem. Therefore, a comprehensive 
review of comparative studies of parametric methods and 
non-parametric methods is conducted in this paper to address 
the problem of method selection. Moreover, an empirical 
study has been carried out on real time series datasets to 
evaluate the comparative performance of parametric methods 
over machine learning methods. Additionally, the limitations 
of the machine learning methods are highlighted which leads 
to the selection of parametric methods over non-parametric 
methods by the researchers in recent years. It is important to 
note the limitations of machine learning as these methods 
claims superiority [9], however several recent studies chose 
parametric methods over machine learning methods for 
addressing different forecasting problems [10-14]. 
 The remaining part of the paper is organized as follows. 
Brief description of widely applicable parametric and non-
parametric time series forecasting methods is presented in 
Section 2. Thereafter, comparative studies of parametric 
methods and non-parametric methods are reviewed in Section 
3. Further, an empirical study of popular parametric and non-
parametric methods is presented in the Section 4. In Section 
5, the reasons for applicability of parametric methods in 
machine learning era are highlighted. Some recommendations 
for future studies are discussed in Section 6. Finally, 
conclusions are presented in Section 7. 
 

 
JOURNAL OF 
Engineering Science 
and Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: rs176@iiita.ac.in  
ISSN: 1791-2377 © 2020 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.133.18 



Anjali Gautam and Vrijendra Singh/Journal of Engineering Science and Technology Review 13 (3) (2020) 165 - 171 

 166 

2. Widely used parametric and non-parametric time series 
forecasting models 
 
This section describes popular parametric and non-parametric 
time series fore-casting models. The discussion begins with 
exponential smoothing and stochastic models (ARMA and 
ARIMA). Thereafter, the non-parametric which includes 
regression models, neural networks, Gaussian process and 
long-short term memory (LSTM) model are briefly described. 
 
2.1. Parametric models 
For analysis of time series data, a parametric model is a good 
choice as it is easy to use due to transparency and less 
computing power requirement. The theory behind parametric 
time series models is rich and their applications can be found 
in many fields, including the augmentative area of studies 
which involve financial and environmental data. In a 
parametric modeling, we estimate the parameters of the 
probability distribution assumed for the time series data. In 
next sections, few popular parametric methods are described 
briefly. 
 
2.1.1. Exponential smoothing (ES) 
 
Exponential smoothing model is originated with the work of 
Holt [2004], Brown [2004] and Winters [1960] by 
generalizing exponentially weighted moving average 
(EWMA) to include trend component in producing forecasts 
and it also allowed effects of seasonality in time series 
forecasting. Mathematically, simple ES model can be 
represented as 

 
𝑍" = 𝑤𝑌" + (1 − 𝑤)𝑍"+,                                                  (1) 
 
where 𝑍" is the smoothed level of the series computed after 𝑌" 
is observed, and 𝑌" is observed value of time series in period 
t. The ES methods are considered as ad-hoc since these 
methods are formulated without any well-specified statistical 
model. In [18], provided a statistical basis for exponential 
smoothing in terms of Wold decomposition for a random walk 
with noise. Further, research to provide a statistical 
framework was done by [19] and [20] which shows that the 
forecasts produced by some linear ES methods arose as a 
special case of ARIMA methods. Later, several researchers 
provide various exponential methods to include damped trend 
[21], state space model [22], kernel regression [23] and 
double smoothing [24] etc. to produce forecasts. 
 
2.1.2. Autoregressive Moving Averages (ARMA) model 
ARMA is an arrangement of two different types of model, 
namely the autoregressive (AR) model, and the moving 
average (MA) model. These models are developed with the 

work of [25] which describes the notion of stochasticity in 
time series. This idea led to the development of AR and MA 
time series models [26] [27]. An AR (p) model is a serially 
dependent forecasting model which predicts the future time 
series values based on past values of the observed series. This 
is done by calculating a coefficient or set of coefficients that 
refer to consecutive values of the series from particular and 
time-lagged values. Mainly MA(q) is used for identification 
of patterns in time series and smoothing of time series data 
but this is also modeled for predicting future values of time 
series [26]. Although, this method smoothens out the irregular 
patterns in time series, however, these smoothing abilities of 
MA model is useful in decomposing a time series. This 
property of MA model is well utilized in ARMA and ARIMA 
model for identifying the shock effects in white noise terms. 
Moreover, an ARMA method describes the conditional mean 
of 𝑌" as a function of both previous observations, 𝑌"+,, …, 
𝑌"+- and previous innovations, ℇ"+,, …, ℇ"+/. The number of 
previously observed values that, 𝑌"depends on, p, is the order 
of AR. The number of previous innovations that 𝑌" depends 
on, q, is the order of MA [5]. In general, these models are 
represented by ARMA (p, q). A stationary ARMA model of 
orders p and q for a time series 𝑌"	is defined as 
 
𝑍" = 𝛼2+	∑ 𝛼4

-
45, 𝑌"+4 + ℇ"+	∑ 𝛽4

/
45, ℇ"+4                               (2) 

 
where 𝑍" is the smoothed level of the series computed after 
𝑌",  is observed, 𝑌", is observed value of time series in period 
t, ℇ is the white noise and 𝛼, 𝛽 are parameters [3]. Moreover, 
it is possible that an effect of an AR term may be canceled out 
by an MA term in ARMA model or vice versa. Although both 
the terms are important in modeling the time series using 
ARMA and ARIMA model. 
 
2.1.3. Autoregressive Integrated Moving Averages 
(ARIMA) model 
Basically, the ARMA models were developed for stationary 
time series, however a new class of models was introduced by 
integrating a phase for removal of non-stationarity in a time 
series. These models known as ARIMA models and 
developed by Box and Jenkins [5] which is a stochastic 
process. ARIMA is described as three stage iterative model 
which includes time series identification, estimation, and 
verification. The Figure 1 shows the Box-Jenkins approach 
for ARIMA modeling of time series data. The Box-Jenkins 
approach mainly use three filters namely integration filter, 
AR filter and MA filter. The integration filter produces a 
filtered (differenced) series from observed data. The AR filter 
generates an intermediate series which is further processed by 
MA filter which results in random white noise [5]. 

 
 

 
Fig. 1. Process of ARIMA Modeling 
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 Usually, ARIMA is represented as ARIMA (p, d, q) 
where, p denotes the number of Autoregressive terms, d 
denotes the degree of differencing, and q denotes the number 
of lagged forecast error. All these parameters are computed 
with the help of autocorrelation function (ACF) and partial 
autocorrelation function (PACF) [4]. The ARIMA models are 
linear in nature, but it is not satisfactorily possible to model a 
real time series in linear fashion obtained through real-life 
problems. Further, it is difficult to apply these models to non-
stationary time series, as it is only applicable to the stationary 
or weakly stationary time series. Assuming that the non-
stationarity can be removed with differencing which may 
distort the actual behaviour of time series. It is noted that the 
residuals of MA model grows exponentially when the 
estimated parameters are not in the appropriate range and the 
computed residuals for later observed values of the series 
could be very large or could overflow. The orders of ARMA 
and ARIMA models are identified through the ACF and 
PACF plots, which is difficult and requires much experience 
even for the simplest models. ARMA models are a 
conditional expectation and non-conditional variance models, 
thus it is not really recommended for heteroscedastic time 
series. 
 
2.2. Non-parametric models 
Non-parametric methods have attained prominence in the last 
decade. Its success lies on the ability to learn by trial-error 
method and also by improving the accuracy over iterations. 
Different models such as neural networks (NN), support 
vector regression (SVR) [28] [29], regression trees [30] [31], 
Gaussian process (GP) [32], long short-term memory (LSTM) 
[7] and others that are collectively known as machine learning 
algorithms which have been applied to time series 
forecasting. 
 
2.2.1. Regression models 
Regression models depicts the relationship between an output 
(response) variable, and one or more input (predictor) 
variables. Most popular machine learning regression methods 
include linear regression, CART regression trees (CART) 
[31] and support vector regression models (SVR) [28]. The 
CART is recursive tree like method for partitioning the input 
variable and based on the idea of decision trees. Additionally, 
the regression trees have been widely used in diverse 
regression problems such as environment [31], electricity 
load [30], and neuroscience [33]. Further, some different 
variations of regression trees are also available in literature 
such as random forest regression [33], gradient boost 
regression tree [31], and bagging regression trees [30]. 
 Moreover, the SVR is developed from support vector 
machines which identifies the hyperplane that maximizes the 
margin between two different classes. Further, SVR have 
been utilized for forecasting problems in different fields, such 
as financial time series [34], software management [35], 
traffic management [29], electric load [28] and many more. 
Empirically, SVR reported the poor forecasting accuracy, due 
to lack of knowledge regarding the selection of parameters in 
SVR model. Although, structural methods for ensuring 
optimal parameters selection are scant in literature. Moreover, 
few searching algorithms such as simulated annealing 
algorithm and genetic algorithm were also utilized to test the 
suitability of parameter selection for SVR model [36]. 
Further, a chaotic version of genetic algorithm was applied to 
parameter selection for electric load forecasting [28]. 
However, these searching algorithms are time consuming for 
searching the optimal parameters of SVR model [29]. 

2.2.2. Neural network model 
A neural network is a system composed of many simple 
processing elements operating in parallel whose function is 
determined by network structure, connection strengths, and 
the processing performed at computing elements or nodes 
[37]. A simplest neural network is known as multi-layer 
perceptron (MLP) [38]. Moreover, neural networks are 
extremely popular for load forecasting, the review of different 
architectures can be found in [6] and [39]. The main reason 
for the preference of neural network models over other non-
linear methods is the neural network models emerged as 
universal approximators. Furthermore, these methods can 
achieve high degree of prediction accuracy by approximating 
a large class of functions due to its ability to process the 
information parallelly [40]. There are also some promising 
features such as robustness, high learning capabilities and 
fault tolerance. However, neural network models are also 
have some shortcomings, such as selection of architecture 
according to complexity of problem, disruptive and unstable 
training, over-fitting, hyper-parameter selection and weak 
extrapolation capacity. The most demanding shortcoming of 
neural network is to find optimal architecture which include 
relevant input variables, hidden layer size, learning rate, 
momentum term. 
 
2.2.3. Gaussian process model (GP) 
A GP is a generalization of a multivariate Gaussian 
distribution to infinitely many variables. GP can also be 
considered as special case of Bayesian inference in which all 
the variables can be assumed to be Gaussian. Moreover, GP 
assumes that all the data is utilized to make a prediction and 
all the attributes can be represented by one joint distribution 
[32]. GPs are relatively recent when compared to other 
machine learning methods which are applied to non-linear 
modeling [41]. A GP is a generalization of a multivariate 
Gaussian distribution to infinitely many variables. GP can 
also be considered as special case of Bayesian inference in 
which all the variables can be assumed to be Gaussian. 
Moreover, GP assumes that all the data is utilized to make a 
prediction and all the attributes can be represented by one 
joint distribution. Further, covariance function of GP requires 
fewer hyper parameters in comparison to other advanced 
machine learning approaches such as neural network and 
SVR. GP is also suitable for the development of control 
strategies based on model as GP describes the distribution of 
new forecasts. These advantages leads to the implementation 
of GP for different areas such as load forecasting, [32] solar 
radiation [42] and remote sensing [43]. 
 
2.2.4. Long-short term memory model (LSTM) 
LSTM architectures [44] is a deep neural architecture with 
long-term memory which considered as an improved 
architecture over recurrent neural networks (RNN) 
architecture. RNNs are able to process the input information 
as well as previously obtained information, due to its 
recurrent connections in the architecture. These re-current 
connections allows the direct processing of temporal 
dependencies for time series modeling. However, RNNs 
cannot capture the long temporal dependencies for long term 
time series prediction. This leads to the exploration of 
different LSTM architectures for the problem of time series 
forecasting [7] [45]. There is also one limitation with the 
LSTMs that these cannot perform well, when forecasts are 
dependent on recent past observations [45]. 
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3. Comparison of parametric models to non-parametric 
models 
 
This section reviews the some studies published in the recent 
years which are conduct for the comparison of parametric 
models and non-parametric models. The non-parametric 
models have been proposed as an alternative to parametric 
models in the academic literature for time series analysis, 
however, there is scant evidence available about relative 
performance of parametric and non-parametric models in 
terms of computational ability and accuracy. Many a times, it 
is reported that parametric models are more efficient than 
non-parametric models and vice versa. Although, this 
difference in performance is normally not that much of a 
problem, because it depends on the type of problem being 
addressed. Some researches demonstrated that non-
parametric model for forecasting can outperform in chaotic 
stochastic dynamical systems [9] [46]. These studies 
highlights two main reasons for the failure of parametric 
models. The first one is the instability of parametric inference 
in chaotic systems [47] and the other one is the “true myth 
model” which is presented in [48] and showed the necessary 
gap of real problem with its simplified model representation. 
However, Hartig and Dormann [2013] argued to the previous 
claims regarding non-parametric models and presented a 
study which demonstrated parametric modeling also preferred 
for forecasting by applying theta-logistic example described 
in [48]. Moreover, Hartig and Dormann [2013] showcased the 
advantages of theoretical understanding and transferability 
offered by parametric modeling which lacks in non-
parametric modeling. Furthermore, Jabot [2015] provide 
claims that parametric modeling favors forecasting by 
focusing on two comparative advantages over non-parametric 
modeling. First one is the diagnosis can be done using simple 
modeling procedures such as Bayesian approach for the 
likelihood of parametric modeling failure. Second one is the 
reliability of forecasts produced by parametric forecasting. 
 Recently, literally hundreds of different machine learning 
algorithms have been proposed, that claim the accuracy 
improvements and methodological advances for different 
time series forecasting problems [6] [7] [39]. However, 
machine learning models’ superiority proclamations are only 
based on single or few time series data which raises questions 
about the generality of produced outputs. These proposed 
machine learning models are tested for one-step ahead or 
short-term forecasts, without considering medium or long-
term forecasts. In spite of that, scant evidences are avail-able 
that certify performance claims of machine learning models 
as a forecasting tool [51-53]. In Adya and Collopy [1998] and 
Ahmed et.al [2010] the authors summarized numerous 
empirical studies and concluded that the outcome of all 
compared studies in terms of accuracy are somewhat mixed. 
Several similar empirical competitions are conducted for 
exploring machine learning methods such as NN3 [54] NN5 
[55] and ESTSP [56] under different conditions, which results 
in debates among the scientific community for the area of 
time series forecasting [57]. Later, in Crone et.al [2011] the 
authors published the outcome of NN competitions and stated 
that no machine learning methods is able to outperform the 
Theta method [58] which is a statistical decomposition 
method (parametric method). Thus, the results obtained from 
objectively evaluated machine learning methods cannot be 
generalized and also not enough to persuade researchers and 
academicians to utilize machine learning methods over 
parametric methods for time series forecasting. Further, it has 
been shown that machine learning methods does not 

automatically guarantees the improvement in accuracy of the 
produced forecasts [59]. Recently, Makridakis  et.al [2018] 
also presented an empirical study which provides insights 
about the inability of non-parametric models for time series 
forecasting using M3 competition monthly time series 
dataset. This study reveals that the traditional parametric 
forecasting outperforms the non-parametric machine learning 
models. It also suggested that non-parametric model require 
to be more accurate and should be of less black box. To 
examine the computational ability and performance of para-
metric and non-parametric methods, a simulation study is 
presented in the next section. 
 
 
4. Comparative analysis via simulation 
 
A simulation study has been carried out to compare the 
relevant parametric models and machine learning models. To 
conduct the empirical comparison, 8 para-metric methods are 
selected namely: ES, AR, ARMA, ARIMA, seasonal ARIMA 
(SARIMA), SARIMA with exogenous variable (SARIMAX), 
ARMA with exogenous variable (ARMAX) and ARIMA 
with exogenous variable (ARIMAX). Further, 6 popular 
machine learning methods for prediction are chosen which are 
MLP, SVR, GP, LSTM, linear regression and regression 
trees. To test the aforementioned methods, 5 real time series 
datasets of different fields are selected from Kaggle website. 
The description of 5 real time series datasets is presented in 
Table 1.  
 
Table 1. Summary of selected datasets 

Name Time 
Period 

Type Description 

Oil 1960-
2017 

Monthly Oil prices in USD 
from World banks 
global 
economic monitor. 

AP 1949-
1960 

Monthly US air passengers data 

HEC 2004-
2018 

Hourly Hourly electricity 
consumption data 
from American 
electrical power 

S&P 2013-
2018 

Daily Stock prices data of 
American airlines 
group 

GT 1751-
2015 

Monthly Global land average 
temperatures data 

   
 To test the forecasting performance, we obtained the 5-
steps ahead forecasts for each selected datasets. Moreover, 
symmetric mean absolute percentage error (sMAPE) measure 
has been used for evaluating the prediction performance of 
time series forecasting methods. Mathematically, sMAPE can 
be defined as 
 
𝑠𝑀𝐴𝑃𝐸 = <

=
∑ |?@+?@A |

|?@|+|?A@|
=
"5, 	× 100                                (3) 

 
  
where r is the forecasting horizon, 𝑌" are the original 
observations and Y𝑌" are the produced forecasts by the time 
series model at time period t. The methods are implemented 
using MATLAB and Python. The comparisons are carried out 
on a workstation with 3.4 GHz processor and 32 GB RAM 
memory. Furthermore, the comparative results are presented 
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in Table 2. The 8 parametric methods: ES, AR, ARMA, 
ARIMA, SARIMA, ARMAX, ARIMAX and SARIMAX are 
represented as P1-P8 respectively in Table 2. Moreover, 6 

machine learning methods SVR, linear regression, GP, 
Regression trees, MLP and LSTM are represented as M1-M6 
respectively in Table 2. 

 
Table 2. Forecasting performance (sMAPE) of widely used parametric and machine learning methods 

Data P1 P2 P3 P4 P5 P6 P7 P8 M1 M2 M3 M4 M5 M6 
               

Oil 6.1 6.5 6.7 6.1 6.1 7.6 7.6 7.0 4.2 33.0 7.0 6.9 8.5 14.4 
AP 18.1 28.1 27.2 28.4 17.6 26.2 2.9 26.3 13.6 12.7 24.3 15.6 9.5 33.8 
HEC 2.2 1.3 0.9 5.0 5.0 5.0 1.5 6.7 36.0 33.3 3.5 6.5 23.2 5.4 
S&P 3.4 5.0 5.1 5.44 5.3 5.6 5.3 5.6 2.2 2.4 4.8 3.7 2.3 11.0 
GT 36.9 31.8 32.3 6.0 6.0 41.6 30.2 41.6 33.4 34.0 33.8 33.0 76.4 10.9 

               

 
Fig. 2. Comparison of forecasting performance of parametric and 
machine learning methods. 
 
 
 The forecasting performance (in terms of sMAPE error) 
of each aforementioned 14 methods (both parametric and 
non-parametric) for predicting 5-steps ahead are displayed in 
Table 2 for five selected datasets. The minimum error 
achieved for each dataset is highlighted with a boldface. The 
results indicate that the parametric methods outperforms 
machine learning methods for 3 datasets (AP, HEC and GT). 
Further, for 2 datasets (Oil and S&P) parametric methods are 
competitive with machine learning methods. Thus, it is di cult 
to infer whether parametric metric is better than non-
parametric methods or not. Furthermore, the averaged error 
for each 5 datasets for 14 methods is presented in Figure 2. 
The Figure 2 shows that the parametric methods have lower 
approximated error for all datasets in comparison to widely 
used machine learning methods. Lastly, it is important to note 
that parametric methods which are much simpler and 
computationally in-expensive than machine learning methods 
are highly competitive with compared machine learning 
methods. Therefore, the limitations of machine learning 
methods are highlighted in subsequent Section, which leads 
to the applicability of parametric methods for different 
forecasting problems [10-14] during the outburst of machine 
learning methods. 
 
 
5. Reasons for applicability of parametric methods in 
machine learning era 
 
In recent years, non-parametric models gained popularity in 
the field of time series forecasting due to its ability to capture 
subtle patterns in time series data [6] [7] [39]. However, it is 
evident from the literature that the parametric models still are 
widely applicable for time series data obtained from real 
world problems such as electricity load forecasting [10] [11] 

[61] [62], demand of different quantities such as coal and gold 
[12] [63] [64], healthcare [65] and environmental problems 
[13] [14] [66] [67]. The researchers and academicians choose 
parametric models over machine learning models for these 
time series forecasting problems in during the outburst of 
machine learning methods is due to the following reasons: 
 

(1) The machine learning models are of black-box type, 
thus it has been difficult to understand how the 
forecasts are generated using machine learning 
models. Moreover, obtaining numbers from a black 
box is not acceptable to practitioners who need to 
know how forecasts arise and how they can be 
influenced or adjusted to arrive at workable 
predictions [68]. 

(2) The machine learning methods have high 
computing requirement than parametric forecasting 
methods. 

(3) The machine learning methods require specialist 
knowledge for its implementation as compared to 
statistical time series forecasting methods. 

(4) Due to randomness of time series data, machine 
learning methods should be able to differentiate 
patterns from noise in the time series data, so over-
fitting can be avoided. In contrast, parametric 
methods can directly control over-fitting by 
applying some information criteria such as AIC or 
BIC [60]. 

(5) Mostly machine learning methods require 
preprocessing of the input data which specifically 
needed attention for the proper transformation 
selection. However, there is no best transformation 
available in the literature that can be utilized to 
automate the learning process and probably improve 
the forecasting accuracy [40]. 

(6) Machine learning methods are unable to address the 
uncertainty in forecasts or defining the con dence 
intervals for them. To overcome this issue, many 
researchers propose simulating the intervals by 
iteratively generating multiple future sample paths. 
Yet, even in that case, the forecast distribution of the 
methods is empirically and not analytically derived, 
raising many doubts about its quality [60]. 

(7) Too much e ort is required to select optimal 
architectures of machine learning models. 
Moreover, these methods also need to ensure proper 
hyper-parameter selection for particular time series 
forecasting problems [36] [69]. 

 
 Usually, machine learning methods are expected to 
perform better but these sophisticated methods are not able to 
surpass much simpler parametric methods (see Table 2). 
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However, it is little disappointing from scientific view as 
machine learning methods require specialist knowledge and 
ample time for implementation. 
 
 
6. Recommendations for future research 
 
There is no critical evidence about the clear superiority of 
parametric over non-parametric time series forecasting 
models and vice versa [9] [46] [49] [50] [60]. Therefore, some 
researchers have tried to incorporate the strengths of both 
parametric and non-parametric models to time series 
forecasting [70-72]. Theses studies have reported the success 
of hybrid methods. Thus, we encourage the researchers to 
further explore the evolving machine learning models with 
the parametric models for forecasting and to assess the 
reliability of generated forecasts. Moreover, a recent 
empirical study [60] suggested the need for unbiased and 
specific ways to evaluate the performance of time series 
forecasting models which can be accomplished by comparing 
open competitions. Finally, we recommend designing of the 
machine learning methods which particularly include the time 
dependency and volatility of time series data. 
 
 
7. Conclusion 
 
Predicting a time series has been a very challenging problem 
owing to the fact that the higher uncertainty exists in larger 
forecasting horizon. Since 1960, researchers put their 
significant effort in developing sophisticated methods, 
frameworks, and accuracy or error measures for time series 
forecasting. Mainly, the time series methods are categorizes 
as parametric and non-parametric methods. The non-
parametric methods have been proposed in the research 

literature as an alternative to para-metric methods for time 
series forecasting. However, scarce evidence is available 
about the relative performance and computational ability of 
both parametric and non-parametric methods. This paper 
reviews the comparative studies conducted for evaluating the 
accuracy of parametric and non-parametric methods, 
especially machine learning methods. Furthermore, a 
simulation study has been conducted on real time series data 
to compare the performance of popular parametric and 
machine learning methods for different forecasting problems. 
The empirical study has indicated that the simple parametric 
methods are highly competitive with the machine learning 
methods. The simulation study supports our intuition that the 
parametric methods are highly competitive with the machine 
learning methods which require more expertise and demand 
more computational power. Although, recently proposed 
hybrid methods and semi-parametric methods which uses ma-
chine learning concepts provided very impressive results for 
M4 competition [73]. The authors are not denying the 
potential of machine learning methods, however more 
research is needed to develop the efficient machine learning 
methods for time series data. As structural instabilities, noise 
and uncertainty exist in time series data and therefore, should 
be considered before modeling time series data with machine 
learning methods that might interfere in obtaining optimal 
weights. Additionally, the limitations of the machine learning 
methods are highlighted which leads to the selection of 
parametric methods over non-parametric methods by the 
researchers during the outburst of machine learning methods. 
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