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Abstract 
 

Energy efficiency has turned into an undeniably essential worry in data centers as a result of issues related to energy 
consumption, including capital costs, working costs, and natural effect. While energy wastage, because of imperfect 
utilization of facilities and IT hardware, has to a great extent been decreased using best-practice advances, tending to energy 
loss in IT equipment, still requires the plan and usage of energy-aware resource management frameworks. Various methods 
aimed to enhance the energy efficiency in data centers have been developed in the field related to the development of 
resource allocation. In fact, researchers and scientists utilize numerous ways to improve effectiveness for optimized power 
and performance: scaling virtual machine and server preparing abilities to minimize energy consumption, enhancing 
resource use through exploiting its heterogeneity and consolidating the workload. To accomplish these objectives, there is 
multiple proposes models, calculations, algorithms, techniques, and procedures that diminish energy use using virtual 
machine scaling, virtual machine sizing for CPU and memory, CPU frequency adjustment, and also equipment power 
control for resource allocation in the server-level. The proposed online performance and power models catch framework 
conduct while adjusting to changes in the fundamental infrastructure. In this context, we present different formulas for 
calculating energy consumption in cloud data centers and we propose a simplified and completed deduced formula for 
energy consumption estimation 
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1. Introduction 
 
The advancement of Internet technologies has offered to 
ascend to the cloud computing paradigm, a model that 
empowers adaptable, cost-effective, and scalable resource 
allocation while offering usability to end consumers. The 
expanding interest in cloud administrations has prompted 
quick development in the number of computing resources and 
the number of large-scale processing data centers. 
 Data centers can involve a huge number of server units 
that possess a lot of space and consume impressive measures 
of power. A single data center can occupy 100,000 m2 space, 
contain 12,000 server racks, and host one server. As indicated 
by estimation by the Natural Resource Defense Council, 
12,000,000 data center servers are assessed to convey about 
all the USA’s online exercises in 2014 [1] 
 The data centers named “hyperscale” data centers will be 
the biggest data centers, and it will grow from 338 in 2016 to 
628 by 2021, as appeared in figure 1, and which will represent 
approximatively by 2021 53% of all installed data center 
servers [2]. 
 The energy consumption of data centers is likewise 
anticipated that would increment significantly: one estimate 
proposes the extent of power consumed by data centers all 

over the world will increment from 1.3% in 2010 to 8% by 
2020 [4]. The impacts of high-power utilization incorporate 
high energy costs for cloud suppliers, critical interest in the 
plant to cool servers in data centers, and high carbon dioxide 
emanations. Around the world, data centers acquire $27 
billion yearly expense of the energy required to control data 
centers [5]. Yearly, CO2 outflows are anticipated to increment 
from 116 million metric tons in 2007 to 257 million metric 
tons in 2020 [6], and carbon emanations from data centers are 
relied upon to match or surpass that of the airline industry by 
2020 [5]. 
 The impacts of high power utilization incorporate high 
energy costs for cloud suppliers, critical interest in the plant 
to cool servers in data centers, and high carbon dioxide 
emanations. Around the world, data centers acquire $27 
billion yearly expense of the energy required to control data 
centers [5]. Yearly, CO2 outflows are anticipated to increment 
from 116 million metric tons in 2007 to 257 million metric 
tons in 2020 [6], and carbon emanations from data centers are 
relied upon to match or surpass that of the airline industry by 
2020 [5]. This enormous consumption of energy by data 
centers can be credited to some extent to the developing 
numbers of data centers and servers because of expanding 
interest for cloud administrations. But it additionally reflects 
wasteful utilization of the energy expended. Not all the energy 
that is conveyed to the data center is used to help the core 
activity of giving cloud computing services; a noteworthy part 
of the energy is devoured by cooling frameworks, un-
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interruptible power supplies, and so forth. In legacy data 
centers, up to half of the power is used by non-server 
hardware [7]. While these data centers presently can’t seem 
to receive energy-efficient prescribed procedures in their 
structure and activity, in general, the industry has gained 
critical ground around there. 
 

 
Fig. 1. Projection of electricity use in data centers [3] 
 
 In this way, chances to ameliorate the power proficiency 
of data centers presently to a great extent rely upon 
discovering approaches to enhance the energy efficiency of 
the servers in the data center grounded in the calculation of 
energy consumption. This paper is made out of four sections. 
Section II presents an overview of the background related to 
the data centers. Section III offers an outline of the context 
along with the studied problem and which are referred to data 
centers, performance, and issues associated with energy-
efficiency in data centers. Section IV incorporate a review of 
related works in the areas of data center energy consumption 
calculation and the different formulas for calculating energy 
consumption in cloud data centers. In section V, a deducted 
simplified formula for calculating energy consumption in 
cloud data centers is proposed. Finally, the paper in the last 
part gives an outline of our commitments and their future 
aspiring expansions. 
 
 
2. Background 
 
Data centers commonly are powered by power electricity. Be 
that as it may, following the system for diminishing carbon 
emanations and conforming to manageable operational 
models, modern data centers utilize elective energy sources, 
for example, geothermal, wind and sunlight based power. The 
electric power streams from outside power grids into inner 
infrastructure facilities, Information Technology (IT) 
hardware and other support systems. The energy flows to the 
inner IT offices through Uninterrupted Power Supplies (UPS) 
to keep up a steady power distribution notwithstanding during 
conceivable power disappointments. 
 The design of a data center is complex and intricate since 
it does not just comprise of the equipment components yet, in 
addition, the software that keeps running in the IT framework 
infrastructure. Thusly, we can arrange its components into 
two layers which are hardware and software layers, as 
appeared in Fig. 3. The hardware or equipment comprises of 
multiple elements. The significant ones are cooling 
frameworks, power distribution units, lighting equipment, 
servers, and networking materials. The software layer can be 
additionally partitioned into two subcategories, the Operating  

 System/Virtualization layer, and the applications. The first 
refer principally to the host OS which is installed on the 
servers and the cloud deployment running over it. The second 
alludes to the distinctive sort of applications running in the 
servers which differ depending on the business and the 
industry cases. 
 

 
Fig. 2. A view with regards to energy consumption modeling and 
prediction in the cloud data centers layers (software and hardware layers). 
 
 Seeing how the energy is shared among the components 
of such a complex and an unpredictable system just as 
foreseeing energy utilization, requires a framework 
optimization cycle as exhibited in [11]. Regardless of whether 
we need to display the utilization of the entire data center or 
we are especially intrigued by the IT framework, the general 
methodology can be limited to the following procedure. At 
first, we have to measure the energy consumption of every 
part which is considered and distinguish where the most 
energy is expended. For that, we select the features that will 
develop the power model. Various procedures can be adopted 
for feature selection, for example, regression analysis. The 
precision of the power model should be approved. At long 
last, the model can be utilized to predict the energy 
consumption of the system and discover intends to 
concentrate on improving the energy efficiency of the data 
center. 
 There has been great deal of research on energy utilization 
prediction and expectation for Information Technology 
infrastructure of data centers. Activities and efforts to 
minimize the cost related with the power dissemination and 
cooling of the equipment are extending, hence the power 
management has turned into a fundamental issue in business 
environments. Server takes the most noteworthy part of the 
energy consumption in the racks [11]. Thus, there is need of 
considering how the energy is devoured and what are the 
principle parts of the server which effects the energy 
utilization the most. A few investigations [66] [67] assess 
power level consumption of the system and propose models 
which anticipate the energy considering different server 
components. Different studies [68] [69] [70] [71] center 
around processor’s power use. The processor is the segment 
inside the server which expends the most energy. 
 Equipment Performance Counters are proposed in 
numerous works such as in [68] [69] [71] to predict power 
consumption of any processor with the utilization of data 
investigation or statistical methods. They give multiple 
information about the processor performance. The event 
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counter mechanisms have distinctive implementation which 
varies relying upon the processor family, and thus does the 
quantity of the accessible hardware and software events. 
Additionally, there are limitations on how numbers of events 
can be estimated all the while. For instance, the IBM Power 
3-II has 238 accessible performance counters, while just 8 of 
them can be estimated at the same time [72] and, only 2 events 
out of 77 can be estimated simultaneously in the Intel Pentium 
II processor [72]. 
 
 
3. Context and Problem 
 
Since data centers are tremendous scale and have critical 
computing infrastructures which are nonstop working [8], [9], 
they are pushing the quick development of the IT industry and 
change widely the economy. 
 The critical nature of data centers has been filled for the 
most part by two wonders. First, the regularly expanding 
development in the interest in data computing, processing, 
and storage capacity by an assortment of extensive scales 
cloud services, like Google and Facebook. Also, banks and 
some telecommunication providers like British Telecom [10], 
engender the multiplication of huge data centers with 
thousands or millions of servers. 
 Moreover, the necessity for withstanding a tremendous 
assortment of applications that keep running for a couple of 
moments and which run constantly on jointed equipment 
stages [8] has advanced building large scale computing 
infrastructures. Thus, data centers have been praised as one of 
the key empowering advances for the quickly developing the 
IT industry and in the meantime, bringing about the 
worldwide market size of 152 billion US dollars in 2016 [11]. 
Data centers being substantial-scale computing 
infrastructures have colossal energy budgets, that offered 
ascend to different problems related to energy efficiency. 
 In the first place, energy effectiveness of data centers has 
accomplished a major significance in latest years since it has 
a high monetary effect including (i) high financial, (ii) 
ecological, and (iii) performance effect. An ordinary data 
center can expend energy equal to 25,000 households. 
 The electricity consumption of the data center can exceed 
100 times the equivalent of standard office space [5]. More- 
over, the energy expenses power of an ordinary data center is 
duplicated every five years [8]. In this way, with such 
increment in power utilization and thus electricity 
expenditures increase, also, power payments have turned into 
a huge cost for the present data centers [12], [13]. Sometimes, 
these charges can surpass the expense of acquiring equipment 
[14]. 
 Also, data center energy utilization makes various 
environ- mental issues [15], [16]. For instance, in 2005, the 
aggregate data center power utilization was 1% of the total 
power consumed in the United States and made as many 
discharges as a medium-sized country as Argentina [17]. 
 In 2010 the worldwide power use by data centers was 
evaluated to be in the range of 1.1% and 1.5% of the aggregate 
overall power utilization [18], while in the United States 
about 1.7% to 2.2% of all US electrical use was devoured 
[19]. According to this report [20], in 2012, the data centers 
overall devoured about 270 TWh of energy and this utilization 
has a Compound Annual Growth Rate (CAGR) of 4.4%. 
 Thus, currently, data center energy efficiency is viewed as 
a major worry for data center administrators, in front of the 
conventional examinations including availability and 
security. At last, notwithstanding running servers in the idle 

mode expend an important measure of energy. Extensive 
reserve funds can be done by turning off these servers. These 
different measurements, for example, workload consolidation 
should be taken to diminish data center power utilization. In 
the meantime, these power-saving methods diminish 
framework execution, indicating a harmony between energy 
reserve and high performance. Two sections of the energy 
devoured by a data center exist energy use by IT equipment 
(e.g., servers, networks, storage, and so forth.) and utilization 
by infrastructure facilities (including cooling and power 
conditioning frameworks). 
 The measure of energy consumed by these 
subcomponents rely upon the structure of the data center and 
also the efficiency of the equipment. In this paper, we cover a 
broad number of the different formula used in the modeling 
of energy consumption. A general way to deal with data center 
energy consumption comprises of four principal stages (see 
Figure 3): feature extraction, model development, model 
verification, and use of the model, for example, prediction. 
 

 
Fig. 3. The energy consumption modeling and the process of prediction 
[11] 

 
 
 In the feature extraction stage: To diminish the energy 
consumption of a data center, first, it is required to quantify 
the energy utilization of its segments [21] and recognize 
where the majority of the energy is wasted. This is the task of 
the feature extraction phase. 
 A model can be defined as a formal abstraction of a real 
system. Models for computer frameworks may be formulated 
as equations, graphical models, collection of representative 
examples, neural networks, and so forth. The decision of 
representation influences the exactness of the models, and 
their ability to interpret by individuals [22]. Exact power 
utilization models are extremely critical for multiple energy 
efficiency plans utilized in processing hardware [23]. There 
are various utilizations for power models: 
 -Design of data center frameworks: Power models are 
vital in the underlying plan of parts and frameworks because 
it is impracticable to assemble physical frameworks to 
evaluate each structure decision’s impact on power utilization 
[23]. For instance, this methodology was adopted for the 
project of Data Center Efficiency Building Blocks [24]. 
 -Forecasting the patterns in energy effectiveness: In 
every- day tasks of computer frameworks, clients and 
administrators of the data center have to comprehend the 
power use patterns of computer frameworks to augment their 
energy efficiency. Separate physical power estimation can not 
answer because it is not possible to anticipate future power 
utilization [25]. Estimated measurements additionally don’t 
give a connection between resource utilization and power 
consumption [23]. Test confirmation using real experimental 
data is commonly costly and non-flexible. Energy models are 
also less expensive and increasingly adaptive to changes in 
operating parameters [26]. 
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 -Energy utilization improvement: Multiple distinctive 
power utilization enhancement plans have been created over 
power consumption models which are formulated as 
mathematical functions [27]. Power modeling is an active 
zone of research including examining relationships between 
the framework use and power utilization [28]. 
 But, modeling the correct energy consumption conduct of 
a data center, at the entire framework level or the individual 
part level is quite difficult. Specifically, the data center 
utilization designs rely upon numerous components, for 
example, equipment details, workload, cooling prerequisites, 
types of applications, and so forth, which cannot be estimated 
with ease. 
 The power devoured by equipment, software that keeps 
running on equipment and the cooling and power framework 
of the building in which the data center frameworks reside are 
altogether firmly coupled [29]. Moreover, it is unrealistic to 
perform detailed estimations of the energy utilization of all 
lower level parts, since the estimation infrastructure 
introduces an overhead to the framework. Because of these 
reasons energy utilization expectation strategies have been 
created which can estimate the level of energy consumed by 
a system for a given workload. Energy consumption 
prediction methods can likewise be used for forecasting the 
energy use of a given data center working in an explicit 
setting. 
 Note that the context of our research will be limited by the 
study of energy consumption at the server level and we will 
neglect the power models which consider the System’s heat 
generated by the server cooling and the server power 
dissipation. 
 When approved the model can be adopted for various 
tasks, for example, prediction of the energy consumption of 
the data center. The experiment picked up by the prediction of 
the energy consumption of a real framework can be used for 
enhancing the energy consumption model. 
 
 
4. Related works: analysis and modeling of energy 
consumption in cloud data centers 
 
Data centers are so critical since its energy-hungry 
infrastructures run large-scale Internet-based services. Energy 
consumption models are crucial in planning and optimizing 
energy-efficient operations to check over the excessive 
energy consumption in data centers. Nothing that, 
establishing an energy consumption model is related to 
establishing the relations between some parameters (such as 
CPU, memory, etc.) of resources and thus the energy 
consumption of the overall system. And in light of the targets 
of our research, we survey an in-depth study of the current 
research jointed to the areas of data center energy 
consumption and we present some different formulas for 
calculation, modeling, and prediction for data center energy 
consumption. 
 
A. Energy vs Power 
Energy (E) represents the aggregate sum of work achieved by 
a system in a period of time (T) and power (P) is the rate at 
which the work is executed by the system. The link between 
these three amounts is presented as follows: 
 

      (1) 
 
Where: 
 

• E represents the energy consumption of the system 
measured in Joules, and P is estimated in Watts; 
• T represents the period of time in seconds. 
 
 If T is quantified in-unit times (hour), so the estimations 
of energy (Watt-hour) and power (Watts) turn into equal. The 
following formulation can be marginally improved by 
considering energy as the integration of power values in a 
period beginning from t1 and closures at t2. It should be noted 
that we utilize the terms energy and power reciprocally in our 
work. 
 
B. Server power models 
In this subsection, we examine the additive power models 
which consider the whole power consumption of the server as 
a summation of its subcomponents. 
One of the simpler power models was presented in [30], 
which designed the server power as a summation of the CPU 
and memory power utilization and this power model is as 
follows: 
 

    (2) 
 
Where: 
• Ecpu (A): represents the energy consumption of the CPU; 
• Ememory (A): represents the energy consumption of the 
memory. 
 
 Other exhaustive power models have been made by taking 
into account other parts of a server, for example, disks, net- 
work peripherals, and so forth. Server energy utilization 
model depicted in [31] enlarges the following power model 
with Input/Output (I/O) parameters. This model can be 
appeared as: 
 

     (3) 
 
 Where energy utilized by the server is formulated as a 
function of energy used by CPU, memory, and I/O devices. In 
any case, the vast majority of the present platforms do not 
permit estimating the power devoured by the three primary 
sub-frameworks (CPU, memory, and disk) of servers 
independently. Only the full system power presented by Etotal 
may be estimated [32]. 
 Other researchers have additionally presented an 
equivalent power model by modeling the framework power 
utilization as a summation of CPU, memory, and other 
framework components [33]. The power model depicted in 
equation (3) may be extended as follows [34]: 
 

   (4) 
 
Where: 
• Ecpu, Ememory, Edisk, and ENIC: represent the energy expended 
by CPU, memory, disk, and network interface card (NIC) 
respectively. 
 Moreover, this model can consolidate an extra term for 
energy utilization of mother board as depicted in [35], [36] 
and [37] or a baseline constant, for example, presented in [38].  
 This energy model can be additionally extended by 
considering the way that energy can be estimated by 
duplicating average power with execution time as follows 
[34]: 
 

E = PT

E(A) = cpuE (A)+ memoryE (A)

totalE = cpuE + memoryE + I /OE

totalE = cpuE + memoryE + diskE + NICE
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  (5) 
 
Where:  
 
• Pcomp: signifies combined CPU and memory average 
power use; 
• Tcomp: is the average computation time; 
• PNIC: denotes the average network interface card power; 
• Tcomm: represents the total network time. 
 
 This energy model additionally considers the energy cost 
from network devices power Pnet-dev and the running time 
denoted by Pnet-dev when the devices are under load. Another 
form of this energy model can be developed by taking into 
account the levels of resource usage by the main parts of a 
server [39] as follows: 
 

 (6) 

 
Where: 
 
• Ucpu: refers to the CPU utilization; 
• Umemory: denotes the memory access rate; 
• Udisk: represent the hard disk I/O demand quota; 
• Unet: is the network I/O demand amount. 
 
 Also, Pt is associated to the predicted power consumption 
of server at a time t, and the Ccpu, Cmemory, Cdisk, and Cnic refers 
to the coefficients of CPU, memory, disk and network 
interface card respectively. 
 An alternate kind of power models depend on the sort of 
tasks led by a server. In this methodology, which is like the 
power utilization of CMOS (Complementary Metal Oxide 
Semi-conductor) circuits, the energy consumption of data 
center systems is split into two segments called static power 
Pfix and dynamic power Pvar [40], [41], [42], knowing that the 
division between static and dynamic power relies upon both 
the considered system and the workload itself. We can model 
it as follows: 
 

    (7) 
 
Pfix refers to is the static power utilization with regards to a 
server, and which is the power that is devoured by the system 
independent of its state of operation. This incorporates power 
lost due to discharge in semiconductor parts, for example, 
CPU, memory, I/O and more motherboard segments, and so 
on [43]. 
 This classification additionally incorporates power 
required to keep fundamental working system processes and 
other idling tasks (e.g., power required to keep the hardware 
clocks, timer interrupts, disk drives active, and network ports 
[44]). The leaking currents should be kept least to maintain a 
strategic distance from such energy waste. But, this requires 
enhancement of the lower level (semi-conductor chip level) 
energy utilization [40]. 
Also, dynamic power utilization with regards to a server is 
built by movements, for example, the actions of circuits, 
connection to disc drives (I/O), and so forth. It relies on the 
most part on the category of workload which performs on the 
computer and in addition to how the workload adopts CPU, 

memory, I/O, of the system and so on. [43]. Moreover, 
approximately about 30–40% of the power is consumed on 
the disk, the network, the I/O and peripherals, the regulators, 
etc. 
In fact, the majority of the power models already depicted 
depended on segment wise power utilization decomposition. 
But, there can be other diverse sorts of energy utilization 
models created for a server dependent on its periods of 
execution. As an example, equation (8) is the energy model 
described by Orgerie et al. [45] (however, it is not specifically 
attributed to servers by them). 
 

    (8) 
 
Where: 
 
• Eboot: refers to system booting; 
• Ehalt: corresponds to halting energy utilization which is 
null if the equipment requires not be booting or halting during 
its activity life cycle. 
 
 But, the adoption of this sort of activity stage based energy 
models is quite uncommon in the real world. Instead, 
framework usage-based power models are intensely adopted 
in data center power modeling. The use of the virtual machine 
(VM) power as a parameter in the power model is adopted for 
modeling server power which is treated as another 
componentwise power breakdown approach. This power 
model of the server is presented as follows [46]: 
 

   (9) 

 
and: 
 
• Pserver: denotes the total power of the server; 
• Pbaseline: represents the baseline power which is 
empirically determined; 
• Pvm: refers to the power of an active VM; 
• n: represents the number of VMs hosted in the server. 
 
And every single VM’s power consumption can be modeled 
as: 

   (10) 

 
Where: 
 
• Ucpu, Umem, and Uio: denotes CPU utilization, memory 
usage, and disk IO throughput, respectively; 
• e: represents an adjustment value. 
• α, β, and γ : denotes the weights that should to be qualified 
off-line. 
 Indeed, this equation is relatively identical to the power 
model presented in equation (3), which likewise modeled the 
power of the server by the use of a component wise 
breakdown. 
Thus, the total server power can be modeled as: 

              

(11) 
 

totalE = compP compT + NICP commT + net−devP net−devT

tP = cpuC cpu,tu + memoryC memory,tu

+ distC disk,tu + nicC nic,tu

totalP = fixP + varP

E = bootE + workE + haltE

serverP = baselineP + vmP (i)
i=1

n
∑

vmP = cpuαU + memβU + ioγU + e

serverP =α cpuU (k)+ β memU (k)+ γ ioU (k)
k=1

n
∑

k=1

n
∑

k=1

n
∑

+ne+ baselineE
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and: 
 
-n: represents the number of VMs in the physical host. 
 X. Xu et al. [47] conceived a similar power model for 
server by taking into account CPU, disk and idle power 
consumption. In this model, CPUs and disks are treated as the 
considerable parts which mirror the framework movements 
[47]. 
 Also, Z. Zhang et al. [48] aimed to create a platform 
autonomous way to deal with the system for power 
consumption estimation dependent on hardware achievement 
measurements in virtualized cloud computing, which can give 
evaluations to control the power management. 
 Basically, because of the isolation, it is not possible to 
estimate the performance measurements of explicit 
equipment from the host operating system in the time when a 
part of escalated workloads are running inside VM instances. 
So performance metrics in VM level are gathered and 
compiled to evaluate power consumption for an individual 
server. 
 In a general sense, the power use can be found in two 
viewpoints. The first is the static power utilization which is 
principally founded on the hardware configuration and 
mirrors the idle power utilization of a framework. For the 
most part, static power utilization is easy to model for 
disposed equipment setup, which around record for close to 
half of maximum power utilization. The other detail is the 
dynamic power utilization produced by running extra 
intensive workloads. These additional workloads may 
powerfully change uses of power-aware equipment devices. 
 According to [48], CPU, memory and hard disk are 
considered as the ultimate three powerful and dynamic power 
expending devices in the computer. Regarding CPU, there are 
many variables identified with power utilization. 
 In the system proposed in [48], CPU usage and CPU 
frequency are selected as basic power-aware elements. In 
virtualized computing framework, CPU resources are linked 
to VM instances according to the software configuration of 
VM hypervisor. VM hypervisor is responsible for resource 
allocation among VM instances. 
 CPU frequency may affect the power use of maximum 
devices in a computer and high CPU frequency will influence 
RAM and hard disk to exhaust more power. Memory is 
another noteworthy power-aware device. Yet, memory use 
isn’t totally immediate compared with power use of memory 
and this problem is tended to by viewing the memory 
utilization as a distinct rate rather than a persistent one. I/O 
use is indicated by bytes written and read every second, which 
may, generally, emulate the power utilization in I/O channel. 
In light of these I/O performance measurements, the 
calculation of the power consumed by hard drive may be 
estimated. 
 By the use of the performance measurements, the model 
for server power calculation might be composed as [48]: 
 

(12) 

 
Where: 
• wcpu, wmem, wio: represent the linear coefficients; 
• ε: denote the error term of linear model; 
• Ucpu (k), Umem (k), Uio (k): represent the overall use of 
CPU, memory, and I/O in the time stamp k. 
 
 In this design [48], the power utilization of other different 
resources is not taken into consideration, on the grounds that 

their dynamic scope of power consumption is generally 
limited and can be incorporated into the error term. 
 The power utilization in an individual server is 
determined by including resource uses of all the residing VMs 
collectively and implementing these data to determine power 
calculation as: 

    (13) 

 
Where: 
 
• : signifies the power use of a single server; 
• N: indicates the number of physical servers in the 
framework. 
 
 Likewise, the performance can be introduced as an overall 
performance by discovering some parameters, for example, 
an application running around or overhead in an individual 
VM and include them together as:  
 

    (14) 

 
Where: 
 
n: illustrates the number of VM instances in the system. 
 
 The VM Consolidation (VMC) is a procedure fused in 
Cloud Resource Management System (CRMS) to build the 
energy proficiency of Cloud. Equipment failure of existing 
PMs and expansion of new ones are constant occasions in the 
data center. Besides, a resource necessary to achieve the rest 
of the assignments of existing service demands is in a 
continuous increase. Subsequently, as time advances, 
remapping of residual workload to currently available 
resources wind up unavoidable to maintain the enhancement 
of Cloud resource utilization. The VMC method is adapted to 
move available VMs into a minimum number of dynamic 
physical machines (PMs), so the PMs with no VM can be 
maintained into a sleep state. And since energy consumption 
by the PM in a sleep state is fundamentally reduced than the 
energy consumption by the PM in an active state. Thus, by 
VMC, the energy consumption of Cloud data center is 
reduced.  
 The more number of VMs are put at one PM, the lesser 
turns into the general energy consumption with a minimum 
number of active servers. Thus, resource use rate of the PM 
Pi, RPi (4) would become bigger which thus would increment 
the resource usage proportion of cloud data center (CDC) 
RCDC (5). 
 
𝑹𝑷𝒊	 = 𝑼𝒔𝒆𝒅	𝒎𝒆𝒂𝒔𝒖𝒓𝒆	𝒐𝒇	𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆	𝒐𝒇𝑷𝒊

𝑻𝒐𝒕𝒂𝒍	𝒎𝒆𝒂𝒔𝒖𝒓𝒆	𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆	𝒐𝒇	𝑷𝒊
                  (15) 

 
 
And: 
 
N: indicates the total number of active hosts in CDC. 
 

       (16) 

wP (k) = cpuw cpuU (k)+ memw memU (k)+ iow ioU (k)+ ε

wP (k)= jPw (k)
j=1

N
∑

jPw (k)

fP (k)= iPf (k)
i=1

N
∑

CDCR = 1
N PiR
i=1

N
∑
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 In [49], the proposed model for energy optimization in the 
cloud data center uses different controllers and allocation 
techniques. Also, to characterize the performance metrics 
needed to define the state of a PM, the efficiency of a disposed 
resource (Pi). The researchers considered the utilization pro- 
portion of the (CPU), the use proportion of the fundamental 
memory (MEM) and the energy consumption of a resource 
(CONSi). Also, identified with VM, they considered the inner 
level of CPU and memory utilization, but not the rate 
dissipated by the VM on the PM. Additionally, according to 
[49], the estimation of the efficiency of every resource by 
considering the PMs can be defined. 
 

 (17) 

 
 At the PM stage, every PM will host various VM, and 
each indicates a user. These VM don’t use data in common, 
they are self-reliant. Every PM memorizes a record of states, 
where a state is characterized as a vector that encloses the 
above parameters: 
 
Where: 
 
• CPUPM : indicates the CPU use of a PM; 
• MEMPM: indicates the memory use of a PM; 
• CONSCPUPM: represents the power consumption of a 
PM in relation to CPU; 
• CONSMEMPM: expresses the power consumption of a 
PM in relation to memory; 
 
 The Autonomic energy-aware tasks scheduling approach 
proposed by researchers in [50], the metric considered to be 
minimized for each host Hj by considering the CPU as the 
primal parameter, is represented as follows (18): 

(18) 
 
Also: 
 

 

Where: 
 
• 𝑃567

89:;: indicates the power deliver by a CPU of a host at 
idle state; 
• 𝑃5<=

89:;: indicates the power deliver by a CPU of a host at 
full state; 
• 𝑃8:>>

?@ : indicates the current capacity of the host in million 
instructions per second (MIPS); 
• 𝑃5<=

?@ : indicates the maximum capability of the host in 
MIPS; 
• 𝑃8:>>

89:;: indicates the current capacity of the CPU in MIPS; 

• 𝑃5<=
ABC: indicates the maximum capacity of the VM in 

MIPS. 
 
 This measurement permits to find the best green host at a 
given time t, by considering every current CPU frequency. 

In [51], researchers have explained a method of estimating 
energy consumption. So, the power model is: 

 
 (19) 

Where: 
 
• Ei: represents the amount of energy expended by a host; 
• CPUUsage: indicates the average of mutual CPU usage 
among VMs running in the host; 
• max(Ei): represents the maximum amount of energy 
consumed by the host in his maximum load; 
• min(Ei): indicates the minimum energy expended by the host 
in his idle state [52]. 
•  
 Some researchers [53] have used the same previous 
formula, except that the symbols adopted are different. So, the 
calculation of the power consumption of the data center at 
time (t) is as follows: 
 

                 (20) 

 
 For the calculation of power utilization of servers, 
according to [54], the power use of the CPU is taken in 
consideration, since this is the unit that exposes the higher 
change in power utilization concerning its use ratio. 
 Thus, for each server i at a time (t), the CPU use 
percentage Ui(t) is equal to: 

   (21) 

 
Where: 
 

  

 
represents the CPU use of a container k on a VM j a server i 
at a time (t). 
 
 Also, by considering that the power consumption of a 
server is almost equal to null when it is turned off, then, its 
consumed power Pu at any specific processor use U, can be 
modeled as follows: 
 

(22) 
 
 Also, as estimate the total energy use of data center, other 
researchers like in [55], have adopted the server power model 
already proposed by known researchers like in [56]. The 
server power consumption calculation model is presented as: 
 

          (23) 
 
Where: 

CPUE = PMCPU

PMCPUCONS
MEME = PMMEM

PMMEMCONS

WPN=

(( max
iCPU

P − min
iCPU

P )× max
KVM

Mk=1
VMNb∑

max
jH

M

)i=1
CPUNb∑

CPUNb

min
icpu

P = min
jhost

P × curr
icpu

M

curr
jH

M

max
icpu

P = max
jhost

P × curr
icpu

M

curr
jH

M

E=min( iE )+ UsageCPU ×(max( iE )−min( iE ))

dcP (t)= iP (t)
i=1

sN
∑

iU (t)= (k, j,i)cUk=1

cN
∑

j=1

vmN
∑ (t)

(k, j,i)cU (t)

iP (t) = i
idleP + ( i

maxP − i
idleP )× iU (t) when vmN 〉0

i
serverP = i

idleP + u( i, jVMj=1
iw∑ )× i

dynamicP    when   iw 〉0
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• 𝑃6DE>FE>: refers to the composition of idle power and 
dynamic power. Knowing that the idle power is considered as 
fixed and the dynamic power is linear to the total CPU 
utilization of all the VMs on the server; 
• 𝑃66GHE: refers to the power when the server i is in idle state; 
• 𝑃6

GI7<568
 : refers to the power when the server i is 

fully loaded; 
• 𝑉𝑀6,M: indicates the j VM on the i server; 
• 𝑢O𝑉𝑀6,MP: indicates the utilization of the j VM  
on the I server; 
• 𝑤6: indicates the number of VMs referred to a server i.  
 The utilization u(V Mi,j) is determined as the calculation 
of the sum of all the application utilization on the j VM as 
follows: 

                (24) 

 
Where: 
• c: indicates the component; 
• Aj: indicates the number of application component. 
Also, in [57], researchers have designed another power model 
which is expressed as: 
 

               (25) 

 
 Where: r represents an adjustment constant to reduce the 
square error that should be attained on an experimental basis. 
In [58], the researchers relied on the explanations of other 
researchers. S. Srikantaiah, et al. [59] explained that the 
power utilization of the hosts is controlled by CPU, RAM, 
network interfaces, and disk storage. 
With an end goal to expand on the power model in formula 
(22), in [60], it is made to some degree refined power 
consumption model as follows: 

 

Where: 
• Pxidle: denotes the power utilization of a server x at an 
idle loaded state; 
• Pxf ull: corresponds to the power utilization of a server x 
at a fully loaded state; 
• α, and β: represents dependent constants of a server; 
• Ux: refers to the CPU use of a server x at a time t. 
 
 Prominent distinction from the power model expressed in 
formula (22) is the sum of a temporal parameter and the 
feature of accounting numerous diverse servers. 
 Other researchers [57] clarified that CPU utilization is the 
essential origin of the host’s energy consumption. 
 As per the examination [61], the power model linked to 
CPU usage is characterized in the following formula: 
 

                                (27) 
 
and: 
 
• ℎ5<=indicates the max power of the host h when its CPU 
utilization is equal to 100%; 
• K: represents the rate of power consumption of an idle 
host. 

 
 Also, since the CPU can change over the time, we can 
consider [58], that the CPU utilization of a host is a function 
time and thus, the full energy consumption of a host can be 
represented as: 
 

    (28) 

 
 According to [62] the energy consumption is determined 
by an accurate energy model formalized as follows: 
 

                                                       (29) 
 
Also: 

   (30) 

 
Where: 
 
• Etotal: indicates the sum of cloud energy consumption; 
• Eservers: represents the energy consumption of physical 
servers/nodes; 
Enetwork: refers to the energy consumption of network 
equipments (routers, switches, etc.); 
• predict(h): designates the computed prediction function 
adopted to determine a server consumption according to its 
metrics (CPU, RAM, disk, etc.) that is computed by a defined 
programmed algorithm based on machine learning. 
 
 In [63], for estimating the actual energy consumption EnC 
in the cloud data center, researchers adopted the following 
formula (31): 

   (31) 

 
Where 
:
 • EnCDatacenter: indicates the energy consumption of the data 

center; 
• EnCTransceivers: indicates the energy consumption of all the 
switching equipment; 
• EnCMemory: refers to the energy consumption of the 
storage device; 
• EnCExtra: designates the energy consumption of other 
components, like the fans, the current conversion loss and 
more... 
 
 Also, another further disintegrated formula is adopted 
[63] to express the data center energy consumption of a d data 
centers, t transceivers material and a centralized memory 
equipment: 
 

       (32) 

u( i, jVM )= u( cApp )c=1
jA∑

uP =( maxP − idleP )(2u− ru )+ idleP

xP (t)=( x−idleP )+( x− fullP − x−idleP )+ βx
xa xU (t) (26)

P(h) = K × maxh + (1− K )× maxh × uh

EC= P( uh (t))dt0t
1t∫

totalE = serversE + networkE

totalE = predict(h)
h=host

n
∑ + networkE

EnC = DatacenterEnC + TransceiversEnC
+ MemoryEnC + ExtraEnC

EnC = d( ProcessorEnC + PrimaryStorageEnC
+ SecondaryStorageEnc + MotherboardsEnc + NetworkCardsEnC )

+t '( HardwareEnC + LANcardsEnC

+ connectors, fd + fEnc )
f =0

F
∑

+( NetworkAnalysisServerEnC + MemoryManagerEnC +

NetworkAttachedStorageArraysEnC )+ ExtraEnC )
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Where: 
-EnCHardware: indicates the energy consumption by the 
transceiver; 
-EnCLANcards: related to the energy consumption of any active 
network LAN card; 
-EnCf: represents the energy consumption of a connector 
(port) running at a frequency f; 
 
 Also, in the formula (32), just the last component appears 
to be dependent on the connection recurrence while other 
components, as EnCHardware and EnCLANcards stay fixed for all 
the duration of transceiver activity. Consequently, EnCHardware 
and EnCLANcards can be kept away by turning the transceiver 
off or making it into sleep mode. 
 Moreover, in [63], the energy consumption at a given time 
t EnCt,i(r) is defined as follows: 
 

  (33) 
 
Where: 
 
• EnCmax: indicates the maximum energy consumption 
when resource is entirely used; 
• q: represents the division of energy consumed by idle 
resource; 
• ru: related to the resource utilization. 

 
 
6. Proposition of a simulated and completed formula for 
calculating energy consumption in cloud data centers 
 
As already specified, the aim of the cloud supplier is to 
minimize the actual energy consumption. The cloud workload 
will run just when the current energy consumption signified 
as (Eact) is lower than the threshold value of energy 
consumption. 
 For a specific cloud workload, to measure the energy 
consumption of resources for execution of heterogeneous 
cloud workloads, the information on its energy consumption 
and processor use is adopted. 
 The energy model is conceived on the assumption that 
resource use has a immediate association with energy 
consumption [64] [65]. In fact, The energy consumption of 
the data center at time t is determined as follows (34): 
 

     (34) 
Where: 
∑ 𝐸:	7
6VW : refers to the energy consumption estimation of the 

whole server n of a user u in a time interval (t). 
 
Formulating the problem 
So as to reduce the power consumption of the data center with 
N VMs and M servers, we represent the issue as: 
 

    (35) 
 
As well as: 
 

     (36) 
 
Where: 
 

∑ 𝑃:	7
6VW : represents the total power consumption estimation of 

the whole server n of a user u in a time interval (t). 
And by considering some constraints, including: 
 

              (37) 

 
Where: 
 
• 𝑈F5@,; (t): represents the resource use of VM j on the 
whole server i a time interval (t); 
• S(i,r): represents the server i capability of a resource r. 
 
 Also, the measure of energy consumption (Eact(t)) of 
using resources can be defined and as the coming equation 
(38): 
 

               (38) 

 
Where: 
 
• Eact(t): the total energy consumption in a time interval (t); 
• Edc: represents the data center’s energy consumption; 
• Ecpu: represents the energy consumption of the CPU 
device; 
• Emem: expressed the energy consumption of the storage 
device; 
• Edisk: indicates the energy consumption of the disk device; 
• Enet: refers to the energy consumption of all the switching 
and network material (network cards, network connectors, 
etc); 
• Eext: is the energy consumption of other parts, including 
the iops, the current conversion loss, the connectors, ports, 
motherboards, transceivers, and so forth. 
 
 The above formula can be further disintegrated; by 
defining the module Eext to have a complete measure of energy 
consumed in the cloud data centers. 
 Also, the resource use vary in time and its function of time 
is expressed as RUi,t in equation (39): 
 

    (39) 

 
We consider that: 
 
• Eactt,i : indicates the sum of the energy consumption at a 
given time t, where n is the number of cloud workloads 
running at time t; 
• 𝑟𝑢Z	: represents the resource utilization at a given time (t). 
According to the studied researches, the simplest and most 
complete formula for calculating the actual energy 
consumption Eact(t) of a resource rut at a given time t is 
expressed as (40): 
 

                                 (40) 
 
Where: 
 
• Emax(t): represents the maximum energy consumption of 
server i at the peak load (fully utilized server e.g 99% 
utilization); 
• 𝐸567: represents the minimum energy consumption in the 

t ,iEnC (r) = q × maxEnC + (1− q)× maxEnC × ru

actE (t) = uEi=1
n∑

min( actE (t) = uEi=1
n∑ )

min( uPi=1
n∑ )

j ,ivmUj=1
vmN∑ 〈 ( i,r )S ,∀i∈[1, sN ],

∀r ∈{CPU ,memory,disk,banwith}

actE (t) = dcE + cpuE + memE + diskE + netE + extE

i,tRU =
t ,iactEi=1

n∑ × tru

actE (t) = i,tRU + ( maxE − minE )+ minE
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active/idle mode (low utilized server e.g 1% utilization). 
 
 
6. Synthesis and discussion 
 
Data centers represent the foundation of the present cloud 
computing systems. Because of the expanding interest in 
energy by data centers, it is important to represent the huge 
measure of expended energy. Power modeling and prediction 
of data centers assume a crucial aspect for this aim. 
 Thus, it was important to make a precise, in-depth and 
large research related to current studies in energy 
consumption modeling in the data center environment. 
This study has shown us that according to the decomposition 
of the layers at the data center level: hardware layer and 
software layer, we can see that this has produced a hierarchy 
at the power model level.  
 Also, we noticed that there is an extensive quantity of 
researches directed on the energy utilization modeling in 
lower levels of the data center scale, considerably fewer 
studies are effected in the elevated layers. This can be 
considered as a crucial restriction of the actual state-of-the-art 
of researches related to power modeling. 
 Moreover, the exactness, generality, and practicality of 
most of the power consumption models stay open. In view of 
the direction deduced by our investigation, we predict 
noteworthy raise in energy modeling and prediction studies 
for higher levels of data center systems very soon.  

 
7. Conclusion and perspectives 
 
Cloud computing is a figuring recent paradigm used for 
demonstrating powerfully virtualized resource as a service via 
the network. Present data centers have widely included 
several technologies including virtualization, migration, and 
consolidation to acknowledge cloud computing. 
 However, these cited advances have their performance 
dis- advantages. Indeed, a trade-off between the performance 
and energy efficiency still exists. 
 And as the fast development of server amount and scale 
in the data center, the energy used by this data center which is 
specifically identified with the quantity of hosted servers and 
their workloads is turning into an incredible challenge. Thus, 
it is crucial to design and develop energy-efficient 
advancements for the data center. 
 In this work, we made an exhaustive scientific 
categorization of power modeling and prediction strategies by 
presenting different formulas for calculating energy 
consumption in cloud data centers. In fact, various diverse 
insights gained through this review were described. And the 
major aim is to deduct a simplified and completed formula for 
energy consumption estimation. 

 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License  
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