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Abstract 
 
The perfect gas equation, laws, principles and processes as well as the van der Waals equation for real gases are 
represented geometrically. Intensive and extensive properties and the standard temperature and pressure (STP) 
condition are shown too. Plane geometry offers a supplementary method to the piston formulation for explaining and 
visualizing gas properties. Several difficulties and misconceptions of students may thus be resolved.  
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1. Introduction  
 
It is a common practice in almost every standard physical 
chemistry textbook [1-2] the properties of gases to be at the 
very beginning. This is pedagogically highly recommended 
because it introduces students, in a comprehensive way, to 
both the history and the major concepts of thermodynamics. 
The usual content includes: a) the perfect gas laws and from 
them how the perfect gas equation is constructed and b) the 
behavior of the real gases and how they deviate from the 
ideal situation; mainly explained with the aim of the van der 
Waals equation [3-4]. At the same time several definitions 
on extensive and intensive properties are given and several 
processes are described. 
 A cylinder with a piston enclosing the working gas under 
consideration is the main instrument for the visualization of 
all these concepts, processes and definitions [5-6]. Although 
the piston is a great paradigm, there are a few more things 
that may be better understood if this instrument is 
supplemented by another one of a completely different 
nature. To this end, a geometrical description for both real 
and ideal gas behavior is drawn here. 
 As a matter of fact, the use of geometry for explaining 
various physical chemistry processes has already been 
demonstrated. Levin has suggested that the phase rule and 
Euler’s equation are synonymous and again the phase 
diagram can be treated topologically [7]. Nash has deployed 
plane geometry to discuss the Carnot cycle and Maxwell’s 
relations in order to overtake partial differentials [8]. He 
stressed out that ‘this is the way Maxwell himself derived 
these equations’ in his theory of heat [9]. Notable to this 
direction are Gibbs diagrams for the perfect gas and a 
method for geometrical representation of the thermodynamic 
properties [10]. 
  In this article it will be shown how intensive and 
extensive properties can be defined geometrically and again 
how the perfect gas equation together with all relevant laws, 
principles and processes as well as the real gas equation of 
state can be derived from plane geometry. Several hidden 

details and several students’ misconceptions may thus be 
clarified.  
 
 
2. The Perfect Gas 
 
First, let us consider an angle defined by the interception of 
two semi-lines (Fig. 1a). Although OX and OY can extend 
to infinity the angle θ does not change; that is, the semi-lines 
are extensive properties of the system whereas the angle is 
an intensive one. Second, a line segment h normal to OX is 
also dependant from its location on OX (i.e. it is also an 
extensive property). However, by dividing it with its 
abscissa distance from the origin the resulting quantity turns 
to be an intensive one (h/q=h΄/q΄=const.).  
 Next, let us draw an arbitrary line kx to define an obtuse 
triangle Okx. The area of this triangle is A=½xh=½xksinθ. 
By rearranging this equation and changing the nomenclature 
results to: 
 

      (1) 

 
 Eq. (1) is a geometrical representation of the perfect gas 
equation, with two extensive (x=V/volume and k=n/moles) 
and two intensive properties (h/x=P/pressure and 
sinθ=T/temperature). When a molar version is more 
convenient, a geometrical representation may be constructed 
by setting Ok=1 to be the radius of a circle (O, k).  
 By drawing k΄x΄ parallel to kx, k/k΄=x/x΄ (see Fig. 1b), 
Eq. (1) takes on the form: 

 

   (2) 

 
Eq. (2) is the Avogadro’s principle.  
 In Fig. 1c the isothermal process is shown. By keeping θ, 
h and k constant and by extending (or shortening) x to x, Eq. 
(1) takes on the form: 
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   (3)  

 
 Eq. (3) is a geometrical representation of Boyle’s law.  
 
 

 
Fig. 1. Geometrical representation of perfect gas properties: a) equation 
of state; b) Avogadro’s principle; c) Boyle’s law; d) Gay Lussac law; e) 
Charles’ law; f) STP condition 
 
 In Fig. 1d the isochoric process is shown. By keeping x 
constant and by moving radius k to a different position on 
the perimeter of the circle (k=k΄), Eq. (1) takes on the form: 
 

  (4)  

 
 Eq. (4) is a geometrical representation of Gay Lussac’s 
law. 
 In Fig. 1e an isobaric process construction is depicted. 
Triangles Οkx and Ok΄x΄ are the required result because 
h/x=h΄/x΄. Notice that h=ksinθ and h΄=ksinθ΄ (where k=k΄). 
In order x΄sinθ to be equal to xsinθ΄, xz must be equal to x΄z΄. 
Then z΄΄z΄΄΄ is constructed normal to Ok and equal to xz and 
z΄΄x΄ parallel to Ok; point x΄ is now defined and Eq. (1) takes 
on the form: 
 

   (5)  

 
 Eq. (5) is a geometrical representation of Charles’ law. 
 In Fig. 1f the STP condition is shown. The arbitrary 
triangle Okx has an area equal to triangle Oxz (xz=h). Then 
an auxiliary right triangle Oz΄x΄ with height (xz΄)2=xh is 
constructed. After that, a right isosceles triangle Oz΄΄z΄΄΄ 
with Οz΄΄=z΄΄z΄΄΄= xz΄ and area equal to the original one, 
A(Οkx)=A(Oz΄΄z΄΄΄), is constructed too. By normalizing 
Oz΄΄z΄΄΄sides to Oy=Oy΄=1, the STP triangle Oyy΄is 
obtained. Since Oyy΄ is similar to Oz΄΄z΄΄΄ there must be a 
similarity factor Q such that:  
 

    (6) 

 
 Eq. (6) is a geometrical representation for the STP 
condition.  
 
 
3. Real Gases 
 
Real gases deviate from the ideal behavior and 
pedagogically the best equation to describe this deviation is 
the van der Waals equation. The pressure for the real gas is 
corrected by a factor α/V2 and the volume by a factor b; 
where α and b are the van der Waals coefficients. 
 In Fig. 2 the geometrical representation of the van der 
Waals equation (Ok΄x΄) is illustrated together with the 
perfect gas equation (Okx). The volume of the ideal gas 
x>x΄ (x-x΄=b) and the pressure h/x>h΄x΄. The area of triangle 
Ok΄x΄ (real gas) is equal to x΄h΄=k΄sinθ and that of Okx 
(ideal gas) is xh=ksinθ. By correcting the deviations, Eq. (1) 
takes on the form: 
 

      (7) 

 
 With the aid of Taylor series Eq. (7) becomes: 
 

    (8) 

 
Fig. 2. The van der Waals equation. 
 
 From the similar triangles Okx and Ok΄x΄΄ it comes that 
k΄x=kx΄΄. Since x΄>x΄΄ there will be a factor c΄>1 such that 
x΄/c΄=x΄΄ and thus k΄x=kx΄/c΄. Substituting to Eq. (8): 
 

   (9) 

 
 By replacing c΄ with a c such that c΄+bc΄/x=1+bc/x and 
by introducing a constant α=h΄bcx/x΄, Eq. (9) with k=1 
becomes: 
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 Where the subscripts R=real and I=ideal; Eq. (10) is the 
customary van der Waals equation for 1 mol. 
 
 
4. Conclusions 
 
The outlined geometrical representation of gas properties is 
based on a simple fact. The area of a triangle can be obtained 
from a Euclid calculation as well as from a trigonometric 
measure. In the first case the base of the triangle and its 
height are involved whereas in the second case the height is 
substituted by the sine of the formed angle. Landsberg has 
also defined the perfect gas by two equations: pV=gU 
(where g is a constant and U the internal energy) for the 
ideal gas and by the additional relation pV=NkBT (where N 
is the number of particles and kB the Boltzmann constant) 
for the ideal classical gas [11]. 
 From Fig. 1a it is easy to visualize the realm of intensive 
and extensive properties [12]. Sine of angle θ is an intensive 
property (e.g. like temperature defined by the zero law of 
thermodynamics [13]) because it is a ratio of two extensive 
properties, sinθ=h/k. Again h/q is an intensive property 
because it is also the ratio of two extensive properties (e.g. 
like pressure, defined as a fraction of force over area). Since 
k/k΄=q/q΄, q/k is in general an intensive property; as all 
molar quantities being.  
 The energy of the system is related to the height of the 
triangle. From equation x(h/x)=ksinθ it is concluded, for 
k=1, that h=sinθ. The internal energy of the system depends 
only from the temperature; as it is expected for the perfect 
gas. During an isothermal process h remains unchanged; i.e. 
ΔU=0 (see Fig.1c). 
 In Fig. 1f the STP condition is represented by an 
isosceles right triangle of unit side. The geometrical 
construction is based on equal areas. This is a legitimate 
modification of the original triangle and this is the kernel of 
the idea to have an STP condition. Algebraically a situation 
at a given P,V,n.T state can reduce to a standard condition 
Po,Vm,To because both ratios are equal to 1. In this study the 
STP triangle is similar to an intermediate triangle (there will 
always be such a triangle) having an area equal to the 
original one.  

 For real gases the derivation of the van der Waals 
equation reveals that the constant α=h΄bx/x΄ depends from 
the energy of the real gas times the excluded volume times 
the ratio of ideal to real volumes; but not from the 
temperature. Therefore, it is not a universal constant; it is 
limited to a given gas. The equation for 1 mol is commonly 
presented as:  
 

                 (11) 

 
 However Eq. (11) is a source of confusion. To what real 
or ideal quantity each parameter refers. If PR<PI and VR<VI 
the expected correction it would be: 
 

          (12) 

 
 Apparently, Eq. (12) is not the equation which van der 
Waals proposed; there is a twist on the constants which 
usually is omitted from textbooks. The given geometrical 
representation resolves this puzzle with Eq. (10) in a much 
easier way than other approaches [14-16]. 
 Pedagogically, Euclid geometry is the best instrument to 
describe, if possible, physical phenomena. The reason is that 
plane geometry is cognitively more perceptive than other 
methods; especially when connotations are involved. 
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