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Abstract 
This paper proposed an artificial bee colony optimization (ABC) algorithm based despeckling framework to overcome 
the effect of speckle noise present in real ultrasound images.  A low pass filter and fast non-local mean filter along with 
Artificial Bee Colony (ABC) optimization algorithm are used for the quality enhancement of ultrasound images. The 
output results obtained for the real ultrasound images filtered with the proposed approach and the other most studied 
approaches discussed in the literature. The outperformance of the proposed method is verified by calculation of peak 
signal to noise ratio (PSNR), mean square error (MSE), mean absolute error (MAE), and structure similarity index (SSIM) 
quality measures. The proposed filtering approach is tested on eight real clinical ultrasound images of adrenal gland, 
appendicitis, bladder, pancreas, parathyroid gland, scrotal gland, thoracic wall, and uterus. The experimental results yield 
that the quantitative and qualitative results of the proposed framework are better than benchmark despeckling methods 
compared to real ultrasound images. Further, the proposed framework also preserves the fine details in real ultrasound 
images.  
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1. Introduction 
 
Currently, for the diagnosis of patients, there are so many 
modalities are available in the medical domain. Out of 
different imaging technique, ultrasound images has been used 
by a medical practitioner, to find out the desired information 
from the images to diagnosis the patients, other advantages of 
ultrasound imaging are its portability, cost-effectiveness, and 
non-invasive nature of the procedure. The relevant 
information extraction from real ultrasound images is a very 
tiresome task due to the low visual quality of the images. So 
there is a requirement of a procedure that improves the visual 
quality of real clinical ultrasound images. Currently, 
Ultrasound imaging is used in ophthalmology, cardiology, 
orthopedics, and gynecology. The visual analysis and 
quantitative analysis of these images are performed to find out 
the different diseases in the patients. But both kinds of 
research are difficult task in ultrasound imaging due to 
different artifacts presents in it. The various artifacts in 
ultrasound are occurred due to additive and multiplicative 
noise. The multiplicative noise component strongly affects 
the visual parameter of the image [1]. The visual qualities of 
Ultrasound images are governed by a unique noise know as 
speckle. Hence, there is a requirement of a framework to 
reduce it; researchers have been proposed a different type of 
speckle removing filters in the last two decades. Based on 
design approaches, the main filters are spatial filter and 
frequency domain filter. Speckle-noise reduction is 

performed carefully because it may contain important 
medical information of ultrasound imaging also [2].  
 The most studied spatial filter is the linear wiener filter 
and the mean filter [3-4]. The process  of these filters are 
causing blurring on the edges of the images so that the visual 
appearance of the image is not good. In the early stage of 
development, the filtering approach was inspired by the 
approach that is used for  SAR images, because of similar 
noise patterns present in these images[5].  Adaptive filters 
were also used to overcome the effect of this type of noise. 
Several different adaptive filters were also developed by 
different researchers [6-9] in previous years. These filters are 
also known as classical filters in literature. These filters model 
the speckle noise as a multiplicative signal model, in which 
the noise to be assumed as Gaussian distributed. The main 
disadvantage of classical filters is that they tend to remove the 
information of the tissue along with noise due to inappropriate 
speckle-noise modeling. To overcome the problem of 
classical filter, more elaborated filters are trying to define the 
edges of images by non-homogeneous diffusive phenomena 
of heat. The most discussed filters of this category are also 
model the speckle noise as a multiplicative noise model [10-
13]. In this filtering approach, the speckle pattern is erased 
during the diffusion of the image, which resulted in piece-
wise images. Although these filters perform better in 
comparison to early developed classical speckle removal 
filters are still suffered from the elimination of texture details 
of an image. After that, a new paradigm of speckle-noise 
removal filters is proposed; these filters used the concept of 
local filtering [14]. In this approach, the author used Pearson 
distance as the required criteria for patch comparison. The 
results show that this method is beneficial for smoothing 
homogeneous areas while preserving the edges of the images. 
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Recently many authors have been applied swarm intelligence 
to design the filters for image denoising [15-17]. Boudjelaba 
et al. in [18] compared all evolutionary techniques for the 
designing of FIR filter. In this research, the author 
demonstrated that the filter coefficients could be optimized 
with the help of an evolutionary algorithm present in the 
literature. Latifoglu in [19] used an artificial bee colony 
algorithm to design a despeckling filter for the medical 
images. This approach differs in no of ways because it does 
not use the wavelet or Fourier domain. The main advantage 
of this system is that it is straightforward to implement for 
speckle noise elimination. Out of different evolutionary 
algorithm, the ABC is a nature-inspired algorithm which has 
many advantages in comparison to other nature-inspired 
algorithms. The main benefits of this algorithm are, it can be 
easily implemented, quick local convergence, and global 
optimization ability. To solve the problem, it uses the foraging 
behavior of honey bees [20]. 
 The significant contributions of this research work are: 
 

• A new filtering approach provides the enhanced output 
images for the clinical ultrasound images. 

• The proposed filter contributes a significant role in the 
filtering of the speckle-noise present in real ultrasound 
images. 

• Simulation experiments have been conducted over 
several real ultrasound images.  

 
 The remaining part of this work is as follows; 
preliminaries for the proposed are explained in section 2, 
section 3 illustrated the proposed optimization-based 
framework, section 4 Components of the proposed 
framework. The comparative performance analysis of the 
proposed filter with different filtering approaches is presented 
details in section 5 in the form of a result, and the last 
conclusion is present in section 6. 
 
 
2. Preliminaries for Proposed framework 
 
2.1. Noise Model 
The nature of the noise presents in these images is random 
nature. the noise is locally correlated and the effect of it 
multiplicative, defined in Eq.1 
 

                                  (1) 
 
where  represents the noisy image,  is the 

noise-free image, and is the intensity of the noise. 
 
2.2. 2D Low Pass Filter 
The input reference image for 2D FIR filter  is 

generated by passing  through the 2D low pass filter. 
In this proposed framework same filter coefficients are used, 
which was already recommended in most of the literature and 
define as in Eq.2 and Eq.3 
 

 (2) 

 
 (3) 

 
2.3 2D-FIR Digital filter 
Generally, the denoising of the images is performed by the 
help of filters. The main filters used for denoising are FIR 
filter and IIR filter. Out of these two filter category, the IIR 
filter has a stability problem, so we prefer the FIR filter for 
our approach. Due to the high sensitivity of the human eye, 
the phase response of the system has the main concern; 
therefore, 2D FIR filters have a linear phase. Although the 
physical realization of FIR filter by software as well as in 
hardware is straightforward and it is always stable.  The 
output of its defined as Eq.4. 
 

                                        (4) 

 
  is the output corresponding to   noisy input 

signal and  represents the weight matrix of 

 order filter. The output, input, and weight matrix of 
the FIR digital filter can be represented as:   
 

   (5) 

 

                 (6) 

 

   (7) 

 
 2D digital FIR filter maintained the conditions of BIBO 
i.e. bounded input produces bounded output; hence the filter 
is always stable.  
 
2.3 Fast Non-Local Mean (FNLM) Filter 
The proposed filtering approach uses Non-local mean 
filtering to improve the results. The principle of FNLM filter 
is also based on non-local filtering [21]. In the patch-based 
approach , the local comparison of the image pixel is 
performed by the nonlocal comparison of patches. Non-Local 
filtering has no assumption for the most relevant image pixel 
to denoise the current pixel. Hence it works on available 
information redundancy in the image. Non-local filtering 
analyzes the pixel pattern in the image rather than intensity.  
NL-means filter works on two different approaches:  
 
1) Pixel-wise Approach:  in this approach The resorted 
intensity of the pixel  for  a noisy image 

which is defined over a bounded region (rectangle 
of size ) and  is  calculated as : 
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                                   (8) 

 
 is represent the weight used for restoring the 

value  given  and based on the similarity 
between  

 and  
 
2) Block-wise approach: the block-wise approach reduces 
the complexity of the pixel-wise approach of NL-means 
filtering. This approach consists of three steps;  
i) The total volume is divided into blocks with overlapping 
allow i.e. 
 

                                                                        (9) 
 
where  represents overlapping blocks. 
 
ii) Applying pixel-wise operation on each block, restoring 
the block  as follows: 
 

                                (10) 

 
iii) Replacing the pixel intensities from the restored blocks 

by calculating the mean of the restored values . 
In fast nonlocal mean filter, we used the blockwise approach 
along with PCA to calculate the different coefficient so that 
the speed of the procedure should be increase. 
 
 
3. Proposed Framework 
 
In this framework, the weights of despeckling filters are 
calculated by ABC algorithm. Recently Karaboga and 
Basturk [20] proposed an optimization algorithm that 
procedure analogue the behavior of honey bees, known as 
artificial bee colony (ABC) algorithm. It provides an efficient 
solution to complex problems of different research fields. In 
this algorithm finding the optimum solution of a problem is 
directly associated with the way of searching the best food 
source by the honeybees and it is optimized according to the 
fitness evaluations criteria. The origin of food refers to 
solution space, while the size of the solution is the value of 
the parameter for an expected solution. All the bees that help 
in the searching work are known as employed bees, 
onlookers, and scout bees, respectively. The number of 
solutions, employed bees, and onlooker bees are equal. The 
employed bees exploit all possibilities of food sources and 
convey all extracted information to the onlooker bees for the 
next step. Based on information received, the Onlooker bees 
decide which food source is exploited next. If employed bees 
are not able to search food sources, then they convert to scout 
bees. Hence the duty of scout bees is to find new food sources 
randomly. 
 The different initialization parameters for this algorithm 
are:  
 

(1). The initial population is equal to the employee or 
onlooker bees.  
(2). Employed bees convert into scout bees when all food 
sources are exploited. 
(3). The Maximum No. of iteration of the process is limited 
by the number of food sources.   
 
 In this proposed framework ABC optimization algorithm 
is used in pre-filtering along with fast non-local filtering. The 
schematic of the proposed filtering framework is shown in 
Fig.1 
 

 
Fig.1. Block Diagram of Proposed Filtering Approach 
 
 
 The ABC algorithm optimizes the filter coefficient as per 
the objective function of the proposed framework. The weight 
matrix corresponding to the coefficient matrix and the input 
image matrix is represented as their 1D lexicographic form 
[22] described as: 
 

 (11) 

 

     (12) 

 
where i represent the iteration number, and the 
corresponding output signal can be represented as  
 

                               (13) 
 
the error signal  is generated by the difference 

between the expected signal  and the actual output 

 of FIR filter. So we can define the error signal as: 

 
                                         (14) 

 
 In order to adaptively adjust the filter coefficients, the 
error signal is feedback in the proposed approach, and hence 
the coefficient of the filter is adaptively adjusted. The 
objective function for the proposed algorithm is to minimize 
the MSE between the expected signal  and the actual 

output  of the FIR filter; hence by minimizing the 
objective function, we obtained the optimum weight matrix.  
 

            (15) 
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 By using Eq.15, the proposed filtering approach optimizes 
the coefficients of the weight matrix as per the requirement of 
the objective function. 
 The different steps used in  the proposed framework are  
systematically shown in flow process of Fig.2 
 
Step 1: Represent the weight matrix and input image signal 
as a lexicographic form. 
Step 2: Fix the possible number of solutions present in 
solution space     ( :  

number of solution) ( : number of coefficient in the filter) 
Step 3: Calculate the fitness value for the given solution by 
using equation (15) 
Step 4: Iteration   =1  
 

 
Fig. 2. Process Flow of Filter Coefficients  Optimization by ABC 
Algorithm  
 
 

Step 5: Generate new solutions for the FIR filter  by 
using the equation 
 

                                                   (16) 
 

for employed bees where  and  

is a randomly chosen index and  

Step 6:  Select the best solutions from all generated 

by employed bees and by the help of a greedy selection 
procedure. 
Step 7: Calculate the probability value for the 

solution  using equations (15) and (16)  
 

                                         (17) 

 

                                                                       (18) 

 

Where  is the fitness value for the  solution 

and  is the value of the objective function for the 
solution. 
Step 8: Generate a new solution for the onlooker bees based 
on  and  analyze them by using Eq.15 

Step 9: Select the best solutions from all generated 

by onlooker bees and with the help of a greedy 
selection procedure.  
Step 10: find out the abandoned solution for the scout bees 
if exists and  replace   by  . 
Step11: Store the best solution till now. 
Step 12:  Increment the iteration by   

 Until (maximum iteration number) 
 
 
4. Components of Proposed Framework: 
 
The robustness of the proposed filtering approach is observed 
by comparing the proposed framework T-10: with the existing 
filtering methods : T-1:  SRAD filter [10], T-2:  DPAD filter 
[11], T-3: Wiener filter [4], T-4: Least Mean Square filter 
[23], T-5: Non Local Means filter [21], T-6: OBNLM filter 
[14], T-7: Anisotropic Diffusion filter [25], in spite of these 
filters, we compare our proposed work with the recently 
proposed algorithm such as T-8: filtering method based on 
ABC algorithm [19], and T-9: 2D-ABC adaptive filtering 
algorithm proposed in [26]. 
 
4.1 Open source database 
For the purpose of quantitative and qualitative comparison of 
different filtering approaches with our proposed work, a 
simulation experiment is conducted on the real ultrasound 
images of adrenal gland, appendicitis, bladder, pancreas, 
parathyroid gland, scrotal gland, thoracic wall, and uterus. 
These images are available on an open-source database 
(http:// www.ultrasoundcases.info).  
 
4.2. Quality measures 
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In image despeckling methods, the error is measured with the 
help of mean absolute error (MAE) and mean square error 
(MSE) defined as respectively 
 

                         (19) 

 

                         (20) 

 
 and  are the output and input value for an 

image of order . 
 
 The quality of the enhancement is measured by 
calculating the value of peak signal to noise ratio (PSNR) 
defined as 
 

                                           (21) 

 
 Where  is the maximum power of the input signal.  
High PSNR  and Low MSE value are desirable for a good 
method.  
 The similarity between input and output is measured by 
the structural similarity index (SSIM) defined as  [27]. 
 

                      

(22) 
 
I and O are the input and output signals. 
 

,  and  are mean, variance, covariance 
values for noisy and denoise images, respectively. (c1,c2) are 
constants for equation stabilization factors.  
 
 
5. Results and Discussion 
 
The performance analysis of the proposed framework is 
performed by conducting a simulation experiment on real 
ultrasound images. In the experiment, the noisy images were 
obtained by adding different noise intensity in the real 
ultrasound images. We calculate the different quality 
measures and get output image for all the despeckling 
methods. The visual results and numerical values of quality 
metrics of the proposed framework are compared with the 
nine most prominent benchmark despeckling filters. We 
calculate the quality measures for nine benchmark 
despeckling filters on the eight different ultrasound images 
and compared these results with the proposed filtering 
framework.  To optimize the filter coefficient in the proposed 
framework, ABC optimization was used due to its simplicity. 
The value of the controlling parameter of the proposed 
algorithm   is 50, 9, and 100, respectively. The 
controlling parameters of benchmark despeckling filters were 
taken, as suggested by the respective authors in the literature. 
 To justify the robustness of the proposed filter, we find 
out the results for eight different ultrasound images of adrenal 
gland, appendicitis, bladder, pancreas, parathyroid gland, 
scrotal gland, thoracic wall, and uterus. During the 
experiment, the noisy images are obtained by adding the noise 
variance σ=0.1, 0.2 in the original image. The numerical 
values of PSNR, MSE, MAE, SSIM for different despeckling 
filters are listed in Tables 1- 8, and the visual result for 
different real clinical ultrasound images for different 
despeckling filters are shown in Fig.3 -18. 
  Fig.3 to Fig.18  shows the comparative visual 
performance of the proposed filtering framework with the 
nine prominent despeckling methods on the images of adrenal 
gland, appendicitis, bladder, pancreas, parathyroid gland, 
scrotal gland, thoracic wall, and uterus respectively at 
different noise variance levels σ = 0.1,0.2. The comparative 
results of the proposed  

 
Table 1. Comparative Quality Measures  values for adrenal gland image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 22.22007 390.00801 10.76636 0.63495 22.12321 398.80366 10.44870 0.66082 
T-2 9.14023 

7926.06191 
74.27299 0.03388 9.13986 

dB 7926.73034 
74.27297 0.03389 

T-3 30.94221 52.34313 5.08799 0.87207 27.59813 113.04924 6.96563 0.81254 
T-4 26.26056 153.82396 6.68511 0.81609 20.40258 592.68326 14.05532 0.55877 
T-5 29.58977 71.46658 6.36767 0.73523 28.12013 100.24613 7.14563 0.72906 
T-6 29.82339 67.72386 6.06075 0.75615 26.23280 154.81058 8.81003 0.74236 
T-7 22.89403 333.94701 10.63129 0.66582 21.46161 464.42948 12.19507 0.61234 
T-8 18.35573 949.52771 8.78977 0.86019 18.48883 920.86828 10.10975 0.80218 
T-9 25.62818 177.93559 8.98163 0.78354 23.68959 278.04914 11.49598 0.66516 

T-10 31.26479 48.59608 4.89910 0.90558 28.60008 89.75775 6.76960 0.75976 
 

   

   

Real Image Noisy Image T-1 T-2 T-3 T-4 
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T-5 T-6 T-7 T-8 T-9 T-10 
Fig. 3 Comparative visual performance  of adrenal gland image at noise variance  σ=0.10 

 
 

  

   

Real Image Noisy Image T-1 T-2 T-3 T-4 

   

   

T-5 T-6 T-7 T-8 T-9 T-10 

Fig. 4. Comparative visual performance  of adrenal gland image at noise variance  σ=0.20 
 
 

Table 2. Comparative Quality Measures  values for appendicitis image 
 σ=0.10 σ=0.20 

Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 22.28476 384.24114 10.13732 0.74913 22.42340 372.16914 10.31160 0.72951 
T-2 10.80170 5406.42122 57.92872 0.04798 10.80099 5407.30757 57.92867 0.04801 
T-3 31.02511 51.35338 4.75764 0.90671 28.37216 94.59415 6.03267 0.87062 
T-4 27.88228 105.88936 5.18370 0.87408 22.50491 365.24935 10.73385 0.67295 
T-5 31.46478 46.40907 5.10364 0.82662 27.33261 120.17641 7.61761 0.80295 
T-6 29.89631 66.59625 5.98844 0.79259 29.01734 81.53547 6.42978 0.78825 
T-7 22.28550 384.17623 6.48729 0.91535 22.23751 388.44518 8.52422 0.85067 
T-8 18.88895 839.81884 8.10294 0.90473 18.77784 861.58173 8.89549 0.86481 
T-9 23.83444 268.92818 9.68002 0.87048 22.95041 329.63930 11.65377 0.67368 

T-10 31.88799 42.09996 4.49206 0.92109 29.65441 70.41077 5.85625 0.81860 
 

Fig. 5. Comparative visual performance  of appendicitis image at noise variance  for the value of σ=0.10 
 

   

   

Real Image Noisy Image T-1 T-2 T-3 T-4 

   

   

T-5 T-6 T-7 T-8 T-9 T-10 

 

  

   

Real Image Noisy Image T-1 T-2 T-3 T-4 
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Fig. 6. Comparative visual performance  of appendicitis image at noise variance  for the value of σ=0.20 
 
 

Table 3. Comparative Quality Measures  values for bladder image 
 σ=0.10 σ=0.20 

Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 24.28010 242.70018 6.01212 0.82268 24.09013 253.55228 5.63566 0.85456 
T-2 10.32218 6037.57254 51.92761 0.25781 10.32141 6038.63696 51.92759 0.25786 
T-3 34.71692 21.94769 2.56721 0.93831 28.92330 83.32027 4.50673 0.86782 
T-4 28.91946 83.39388 4.45341 0.85225 21.83512 426.15581 9.70799 0.67946 
T-5 30.89542 52.91004 4.46089 0.81394 27.13812 125.68071 6.59742 0.76794 
T-6 29.69893 69.69273 4.95591 0.79835 28.89018 83.95807 5.20200 0.79759 
T-7 23.16530 313.72576 7.32167 0.84219 22.45928 69.10688 8.36799 0.80090 
T-8 19.74489 689.59000 5.95651 0.92740 19.67348 701.02297 7.76771 0.87403 
T-9 23.95643 261.47951 8.76211 0.75017 24.08535 253.83121 9.12148 0.69856 

T-10 30.93989 52.37106 4.30781 0.87160 29.94910 65.79166 4.74363 0.81392 
 

Fig. 7. Comparative visual performance  of bladder image at noise variance  for the value of σ=0.10 
 

   

   

Real Image Noisy Image T-1 T-2 T-3 T-4 
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Fig. 8. Comparative visual performance  of bladder image at noise variance  for the value of σ=0.20 

 
Table 4. Comparative Quality Measures  values for pancreas image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 22.87196 335.64858 8.76861 0.74437 22.69103 349.92701 8.54327 0.76733 
T-2 10.52574 5761.11424 59.51635 0.08844 10.52518 5761.86041 59.51630 0.08847 
T-3 31.51453 45.88045 4.09551 0.92196 28.14180 99.74718 6.75777 0.80700 
T-4 28.12420 100.15212 5.21739 0.85886 22.49632 365.97249 10.88982 0.63714 
T-5 27.19469 124.05425 7.54450 0.70633 26.86688 133.78033 7.73621 0.70899 
T-6 26.95957 130.95526 7.79282 0.69942 26.50296 145.47357 8.05051 0.69856 
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T-7 25.51974 182.43404 2.61490 0.98123 23.63541 281.53967 7.93047 0.82920 
T-8 18.44191 930.87064 7.65002 0.90865 18.58495 900.71114 8.53813 0.86397 
T-9 26.14453 157.98906 8.28071 0.79278 23.14360 315.29768 10.67578 0.73581 
T-10 32.39232 37.48425 3.77489 0.92303 29.15688 78.95730 5.15594 0.88176 
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Fig. 9. Comparative visual performance  of pancreas image at noise variance  for the value of σ=0.10 
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Fig. 10. Comparative visual performance  of pancreas image at noise variance  for the value of σ=0.20 
 
Table 5. Comparative Quality Measures  values for parathyroid gland image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 22.87459 335.44530 8.99179 0.74525 22.69176 349.86787 8.84239 0.76235 
T-2 11.32876 4788.55470 52.80384 0.04285 11.32793 4789.47221 52.80383 0.04286 
T-3 32.08095 40.27031 4.02338 0.91152 29.24273 77.41184 5.16849 0.87849 
T-4 29.05217 80.88418 4.61425 0.89010 23.28434 305.24364 9.62673 0.69888 
T-5 27.05720 128.04439 7.66175 0.70428 26.61564 141.74782 7.86830 0.70587 
T-6 27.05288 128.17187 7.65316 0.71092 26.60066 142.23774 7.88946 0.71150 
T-7 26.51541 145.05724 2.38254 0.97219 26.18591 156.49082 2.77746 0.96496 
T-8 19.18250 784.92826 7.52026 0.89824 19.05468 808.37445 8.68883 0.85987 
T-9 27.93951 104.50306 5.62315 0.90085 23.42080 295.80125 9.83982 0.75018 
T-10 33.59422 28.42225 3.51663 0.93839 28.72346 87.24375 6.36115 0.83693 
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Fig. 11. Comparative visual performance  of parathyroid gland image at noise variance  σ=0.10 
 



Pradeep K. Gupta, Shyam Lal and Farooq Husain/Journal of Engineering Science and Technology Review 13 (5) (2020) 20 - 32 

 
 

28 

   

   

Real Image Noisy Image T-1 T-2 T-3 T-4 

   

   

T-5 T-6 T-7 T-8 T-9 T-10 
Fig. 12. Comparative visual performance  of parathyroid gland image at noise variance  σ=0.20 

 
Table 6. Comparative Quality Measures  values for scrotal trauma image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 23.56757 285.97212 8.89221 0.71653 23.50712 289.98006 8.37467 0.75757 
T-2 9.16201  7886.41917 73.75492 0.01518 9.16154  7887.27095 73.75491 0.01521 
T-3 30.84990 53.46754 5.21339 0.85409 26.50365 145.45065 8.34377 0.74283 
T-4 27.68515 110.80647 6.36455 0.79975 20.70806 552.42636 13.74739 0.54582 
T-5 27.69313 7.70625 110.60317 0.67021 27.21151 123.57453 8.00156 0.67268 
T-6 26.94320 131.44978 8.28371 0.65850 26.48751 145.99206 8.53535 0.65736 
T-7 24.95923 207.56672 6.15672 0.85519 22.68391 350.50096 10.44921 0.68150 
T-8 19.17972 785.43192 7.64295 0.89607 19.65715 703.66427 8.61831 0.83262 
T-9 23.41212 296.39316 10.94818 0.72201 25.70946 174.63611 7.69102 0.79123 

T-10 33.08060 31.99044 3.82591 0.91596 28.16770 99.15400 6.15824 0.82777 
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Fig. 13. Comparative visual performance  of scrotal trauma image at noise variance  σ=0.10 
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Fig. 14. Comparative visual performance  of scrotal trauma image at noise variance  σ=0.20 
 
Table 7. Comparative Quality Measures  values for  Thoracic wall image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 23.65584 280.21810 8.69644 0.76072 23.46404 292.87068 8.59664 0.77462 
T-2 11.30483 4815.01368 52.68119 0.02722 11.30369 4816.27052 52.68142 0.02725 
T-3 31.98635 41.15716 3.97073 0.92283 28.53348 91.14485 6.19464 0.85127 
T-4 28.07672 101.25302 4.70073 0.89397 22.67090 351.55287 9.79836 0.70747 
T-5 26.60269 142.17098 7.78141 0.71957 26.04464 161.66514 8.07021 0.72072 
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T-6 26.63330 141.17246 7.80292 0.73809 26.04971 161.47634 8.09929 0.73691 
T-7 20.50504 578.86399 4.61377 0.92140 22.40133 374.06555 4.98652 0.89927 
T-8 20.19739 621.35753 6.96510 0.91068 20.10861 634.18948 7.70413 0.88084 
T-9 28.75799 86.55276 5.15700 0.92437 22.59041 358.12874 12.42809 0.61407 

T-10 33.04144 32.28024 3.80459 0.93737 28.56056 90.57837 5.41049 0.88742 
 

   

   

Real Image Noisy Image T-1 T-2 T-3 T-4 
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Fig. 15.  Comparative visual performance  of Thoracic wall image at noise variance  of σ=0.10 
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Fig. 16. Comparative visual performance  of Thoracic wall image at noise variance  σ=0.20 
 
Table 8. Comparative Quality Measures  values for uterus image 

 σ=0.10 σ=0.20 
Filter PSNR MSE MAE SSIM PSNR MSE MAE SSIM 
T-1 22.90182 333.34853 7.82545 0.78269 22.72182 347.45502 7.67114 0.79531 
T-2 11.32440 4793.36278 45.34843 0.27540 11.32332 4794.55866 45.34840 0.27546 
T-3 30.86096 53.33153 4.32112 0.89798 28.47911 92.29306 5.91606 0.81796 
T-4 27.90631 105.30501 4.15858 0.89640 22.55270 361.25236 8.58462 0.74687 
T-5 27.85990 106.43649 6.12200 0.75613 27.34075 119.95133 6.37750 0.75732 
T-6 27.34979 119.70189 6.48463 0.74508 26.80808 135.60385 6.77318 0.74503 

T-7 27.29878 121.11624 1.11894 0.99541 27.14924 125.35939 1.22151 0.99408 
T-8 18.75033 867.05670 7.42265 0.91253 18.62626 892.18437 7.89001 0.88112 
T-9 23.84467 268.29553 9.49959 0.79011 21.50988 459.29521 12.08215 0.68693 

T-10 32.16512 39.49738 3.51504 0.92413 28.80761 85.56960 4.75579 0.89140 
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Fig. 17. Comparative visual performance  of uterus image at noise variance  σ=0.10 
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T-5 T-6 T-7 T-8 T-9 T-10 
Fig. 18 Comparative visual performance  of uterus image at noise variance  σ=0.20 
 
filtering approach show that the output images have high 
quality along with fine detail in comparison to other 
benchmark despeckling filters. The output results obtained by 
the proposed filter are not much blurred even when we 
increase the noise level. The visual results obtained by the 
proposed filtering approach are smoother, less noisy for 
different noise variance levels in comparison to other 
algorithms. The better visual results of the proposed filtering 
framework are also supported by the different quality 
measures. Table 1 to  Table 8 are shows the comparative 
quality measures for the images of adrenal gland, 
appendicitis, bladder, pancreas, parathyroid gland, scrotal 
gland, thoracic wall, and uterus, respectively. The lowest 
value of MSE and MAE for the proposed filtering approach 
proves the worthiness of the proposed filtering framework. 
 Out of different quality measures, the PSNR, SSIM values 
are significant criteria to analyze the comparative quality and 
similarity between the noisy and denoise images. The highest 
value of PSNR and SSIM also supports the visual results of 
the proposed system. In addition to this, noise suppression 
capability and better edge preservation capability of the 
proposed filtering approach in comparison to other methods 

are also justified. Therefore, we can say that the proposed 
filtering approach satisfies the requirement of an excellent 
despeckling approach, so that the proposed filtering approach 
may play a vital role in the field of medical image 
enhancement and help in the proper diagnosis of patients. 
Therefore, the results of the proposed filtering approach 
indicated that the proposed filtering framework is better than 
benchmark despeckling methods. The proposed algorithm 
improves the quality of the image, along with restoring the 
relevant edge information of the image. 
 
5.1. Effect of FNLM filtering  
In this proposed framework, we use the FNLM filter as a post-
processing filter. Table 9 shows the PSNR, MSE, MAE, and 
SSIM value of the proposed approach without FNLM ,from 
the values; it is clear that the FNLM filter plays an essential 
role in improving the output results of the proposed 
framework. Fig.19 and Fig.20 shows the visual impacts of 
FNLM filter in the proposed framework for different image 
of adrenal gland, appendicitis, bladder at different noise 
variance. 

 
Table 9. Performance Analysis of Proposed filter with or without FNLM filter 

Image σ=0.10 σ=0.20 
PSNR MSE MAE SSIM PSNR MSE MAE SSIM 

Adrenal  Gland 
(without FNLM) 30.24217 61.49834 5.77514 0.86746 25.89056 167.50366 8.68197 0.75030 

Adrenal Gland 
(with FNLM) 31.26479 48.59608 4.89910 0.90558 28.60008 89.75775 6.76960 0.75976 

Appendicitis 
(Without FNLM) 30.75858 54.60368 4.92239 0.90734 27.21912 123.35823 7.23972 0.80487 

Appendicitis 
(With FNLM) 31.88799 42.09996 4.49206 0.92109 29.65441 70.41077 5.85625 0.81860 

Bladder 
(Without  FNLM) 30.66581 44.30979 3.93530 0.89470 26.97366 130.53134 6.66783 0.77130 

Bladder 
(With  FNLM) 30.93989 52.37106 4.30781 0.87160 29.94910 65.79166 4.74363 0.81392 
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Fig. 19.  Effect of FNLM filtering on the images for  the value of σ=0.10 
 

 



Pradeep K. Gupta, Shyam Lal and Farooq Husain/Journal of Engineering Science and Technology Review 13 (5) (2020) 20 - 32 

 
 

31 

 
 
 
 

 
 

  
 
 

   

Adrenal  Gland 
without FNLM 

Appendicitis 
without FNLM 

bladder 
without FNLM 

Adrenal Gland 
with FNLM 

Appendicitis 
with FNLM 

bladder 
with FNLM 

Fig. 20.  Effect of FNLM filtering on the images for  the value of σ=0.20 
 
5.2. Time Consuming Analysis 
The time-consuming analysis is also performing to give a fair comparison of the proposed framework with other benchmark 
despeckling algorithms compared. Table 10 shows the time-consuming analysis of the proposed framework with other compared 
filters. Table indicate that the proposed framework consume 6.49 sec in comparison to filters T-1,T-2,T-3,T-4,T-5,T-6,T-7,T-8 
and T-9 which are consume 2.90,14.22,1.27,28.08,7.62,8.14,7.60,13.26,and 12.54 respectively. Fig.21 represent the graphical 
comparison of time analysis of proposed framework.From the results, it is clear that the proposed framework consumes more 
time in comparison to T-1 and T-3 filters but takes less time in comparison to all other remaining filters. So, we conclude that 
the proposed framework is also a speedy framework for despeckling of real ultrasound images.     
 
Table 10. Time Analysis of Proposed Framework 

Filter T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 
Time(sec) 2.90 14.22 1.27 28.08 7.62 8.14 7.60 13.26 12.54 6.49 

 
 

 
Fig. 21. Time analysis of proposed framework in comparison to all 
other compared filters 
 
 
6. Conclusion 
 
To improve the diagnosis finding of disease from real 
ultrasound images, it is pre-requisites to enhance the images. 
Thus, in this research work, we proposed a robust despeckling 
framework that mitigates the effect of speckle noise and gives 
a better-enhanced output image. In this approach, we used 
ABC optimization algorithm to find out the optimum value of 
the filter coefficient. To prove the worthiness of proposed 
framework, the different quality matrices value were 
calculated by performing the experiments on different real 
ultrasound images of adrenal gland, appendicitis, bladder, 
pancreas, parathyroid gland, scrotal gland, thoracic wall, and 

uterus. Noisy images were obtained by noise intensity (i.e., 
0.10, 0.20) in the original ultrasound image. The quantitative 
comparative performance analysis of the proposed framework 
with other benchmark despeckling algorithms were 
elaborated by calculating the PSNR, MSE, MAE, and SSIM 
values. To make a fair comparison between proposed filtering 
approach and other benchmark deseckling algorithms, all 
require parameters were fixed as suggested by the respective 
authors in the literature. The numerical and visual results of 
the proposed framework were better in comparison to other 
benchmark despeckling algorithms. The proposed framework 
successfully removes noise while preserving the important 
information of images. The main advantage of the proposed 
framework is, its low computational complexity and a fixed 
number of iterations that make it a better choice for the 
reduction of speckle noise. The limiting factor of our 
proposed framework is its objective function. We consider the 
MSE only an objective function for our proposed approach. 
Instead of MSE as an objective function, other quality 
measures may be used as an objective function to improve the 
results further. We have conducted an experiment only on real 
ultrasound images; in the future other images may be tested 
for further study. 
 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License  
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