

Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

Research Article

An Effort Estimation Method for Service-Oriented Architecture

Samson Wanjala Munialo1,*, Geoffrey Muchiri Muketha2 and Kelvin Kabeti Omieno3

1Department of Information Technology, Meru University of Science and Technology, Kenya

2Department of Computer Science, Murang’a University of Technology, Kenya
3Department of Information Technology and Informatics, Kaimosi Friends University College, Kenya

Received 24 April 2020; Accepted 16 October 2020

__

Abstract

Determining size and effort of SOA systems is critical for managing SOA projects. As a consequence, a number of methods
have been proposed to estimate effort of building SOA projects but the problem of estimating SOA development effort still
remains largely unresolved mainly because there is limited attempt in using size metrics to estimate SOA development
effort. To address this problem, this study proposed an effort estimation method for SOA centred on size metrics and effort
factors. The proposed method enables estimation of effort factors using fuzzy logic technique to improve on estimation
accuracy. The method was automated into a tool to facilitate entry of parameters and display of results. The study employed
experiment research design based on 15 SOA projects developed by computer science undergraduate students to validate
the proposed estimation method. To complement the experiment, we used a survey study involving 20 programmers from
the industry to confirm the relevance of effort estimation factors proposed in this study. Result from the experiment revealed
that the proposed method is more accurate and returned a lower Mean magnitude of relative error (MMRE). Response from
the survey showed that the proposed effort factors are valid and they have influence on SOA development effort.

Keywords: Service-oriented architecture, software metrics, software effort estimation, effort estimation model, effort multiplier factors
__

1. Introduction

Software effort estimation is the process of predicting human
effort required to build a software project. The bulk of the cost
of software development is due to human effort estimated in
person-months [1]. To stay competitive, software developers
need to deliver software products on time, within the budget
and to the agreed level of quality [2]. Most projects fail due
to planning issues such as cost, effort, time and requirements
specifications [3]. Consequently, there is need for reliable
effort estimation method to enable adherence to schedule and
budget for successful resource allocation and software project
implementation.
 SOA is a software system comprising of various
communicating services working in synergy to achieve a
defined objective. A service thus can be viewed as a reusable
component that represents a business process. It is a course-
grained, discoverable and self-contained software entity that
interacts with applications and other services through a
loosely coupled, asynchronous, message-based
communication model [4]. SOA defines an interaction model
between functional units, in which the consumer of the
service interacts with the service provider to find out a service
that matches its needs through a registry.
 Earlier size metrics and effort estimation methods
including Function point analysis [5] and COCOMO [6] have
had the interest of estimating accurately the effort for
developing software. However, these methods were
challenged when estimating SOA effort due to SOA features
such as integration among services within and outside the
organization, service internal structure and types of services

[7]. Various software effort estimation methods have
incorporated Artificial Neural Network (ANN) while others
have used fuzzy logic to improve on estimation quality.
However, due to limited SOA projects data sets, no estimation
method to date has used ANN to estimate SOA development
effort. On the other hand, according to our knowledge, there
is no existing fuzzy logic effort estimation method for SOA.
A number of research studies have attempted to introduce
effort estimation methods for SOA [8][9] [10] [11] [12] [4]
[13]. Despite the fact that these methods are promising, the
problem of estimating SOA development effort still remains
largely unresolved mainly because there is limited attempt in
using size metrics and relevant factors to estimate SOA
development effort. In addition, so far there is no attempt to
use fuzzy logic in SOA effort estimation method.
 The main objective of this study was to develop a more
accurate fuzzy logic effort estimation method for SOA
applications based on size metrics and SOA effort factors.
The proposed method was automated and hosted in
www.vsoft.co.ke/tool/ for entry of parameters and display of
results. Due to limited number of SOA UML SOA datasets
from the industry, research investigation was based on a
controlled laboratory experiment in the context of Meru
University of Science and Technology, 3rd year Computer
science undergraduate students. Furthermore, a survey was
done in the context of industry programmers to replicate the
experiment and determine the relevance of the identified
effort factors in estimating SOA development effort.

2. Related Work

Most effort estimation methods including earlier methods
such as Function Point Analysis (FPA) [5] make use of

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Jestr

r

*E-mail address: sammunialo@gmail.com
ISSN: 1791-2377 © 2020 School of Science, IHU. All rights reserved.
doi:10.25103/jestr.136.25

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 188

software size as the main indicator when estimating software
development effort. Albrecht [5] introduced FPA which
measures number of functionality in software by counting the
number of functional components. Furthermore, a number of
modified FPA metrics versions including 3D Function Points,
COSMIC full Function Points and International Function
Point User Group (IFPUG) were introduced. However, they
did not measure SOA key features.
 This prompted COSMIC [14] to introduce COSMIC-
SOA [14] which counts data movement among service
providers and users. However, COSMIC-SOA only focused
on data movement across services to measure SOA size,
disregarding other SOA attributes including service internal
structures and dependency among services. Munialo et al.
[15], defined SOA size metrics (SOASM) which takes into
account SOA internal structure, data movement, interaction
and relationship among services as key attributes for defining
SOA size metrics. The metrics were validated theoretically
based on Briand’s property framework
 To estimate software development effort, there is need to
package software size and software development effort
factors into a method or model to estimate effort more
accurately. Recent literature on SOA effort estimation
methods classified software development effort estimation
methods into traditional effort estimation methods and SOA
effort estimation methods. Traditional software development
effort estimation methods include Basic Constructive Cost
Model (COCOMO), Intermediate COCOMO, COCOMO-II
[6], Artificial Neural Network (ANN) methods and Fuzzy
logic methods. Boehm [6] introduced COCOMO methods
which compute software effort as a function of program size
expressed in thousands lines of codes (KLOC). COCOMO
methods take into account effort coefficient (a), economy of
scale constant (b) and Effort Adjustment Factors (EAF) to
compute software development effort ss shown in Eq. 1.

Effort = a(KLOC)b * EAF (1)

 EAF (Effort adjustment factors) are subjective assessment
of products, hardware, personnel and project factors.
COCOMO methods are the most validated method by
researchers and they are the most adopted method by the
industry. However, attributes related to SOA applications are
not captured among COCOMO effort factors. Hence, all
versions of COCOMO are inadequate in estimating SOA
development effort.
 Lately, various research studies have incorporated
Artificial Neural Network (ANN) in their estimation methods
with an aim of acquiring facts from previous software projects
and use the facts to predict software development effort more
accurately [16] [17] [16]. Neural network methods are
preferred when there is enough previous project data to train
the ANN method. However, due to limited data on previous
SOA projects, SOA project effort estimation data has not
matured to be subjected to ANN method.
 On the other hand, a number of research studies on
Software development effort estimation have integrated fuzzy
logic in their estimation methods to yield more accurate
results as compared to traditional algorithmic methods [18]
[19] [20] [21] [22] [23] [24]. However, according to our
knowledge, no research to date has proposed fuzzy logic
effort estimation method for SOA applications.
 Attempts to estimate SOA development effort have been
discussed in various studies [8] [9] [10] [12] [13] [25].
O’Brien [8] introduced SOA effort estimation method known
as SMAT-AUS framework which recognize types of service,

technical factors and social factors as key inputs when
determining scope, cost and effort of Service oriented
Architecture (SOA) projects. However, he excluded SOA
size as an effort factor and only provided a framework with
no details of the framework’s computation.
 Akkiraju & Geel [10] proposed SOA effort estimation
method based on business process model and linguistic
analysis approach to reveal business objects. Likewise,
Mishra & Kumar [13] used Business Process Modelling
Notations (BPMN) constructs to compute development effort
of business process SOA applications by counting the number
of processes, events, queries, links and tasks. One advantage
of estimating by considering business objects is the ability to
estimate effort at an early stage of software development.
However, at an early stage, key service attributes such as
structural attributes and message movement cannot be
captured for the purpose of measuring SOA size more
effectively.
 Li & O’Brien [9] proposed an effort classification matrix
for web service composition by considering context and
technology aspects of service composition. The method used
qualitative effort estimation hypotheses to identify effort
factors that influence web service composition. However,
they focused on qualitative analysis with no emphasis on
empirical analysis and validation on the proposed method.
 Li & Keung [25] defined a framework for costing SOA
using work breakdown structure approach by decomposing
SOA into sub-problems (services). They classified services
into available service, migrated service, new service and
combined service. Similarly, Farrag et al [11] also classified
services into Available service, migrated service, new service
and Composite service. However, the aspect of SOA size
factor was not captured.
 Gupta [12] proposed a model that takes service operation
as the unit of measurement whose complexity forms the basis
of computing service size. The model [12] provided a clear
and detailed analysis of SOA attributes focusing on service
internal structure complexity, technical complexity and
environment complexity. On the other hand, Verlaine, Jureta
& Faulkner [4] also introduced an effort estimation method
based on service structural complexity. The two methods
considered structural complexity metrics when computing
SOA size and effort but they didn’t include service
dependency and movement of data as key size attributes.
 Based on SOA effort estimation literature, researchers
have attempted to identify factors that have influence on SOA
development. All these approaches are promising but they
did not capture all relevant factors for SOA development
effort exhaustively. To bridge this gap, our research study
focused on consolidating SOA size, SOA Type Factors (STF)
and SOA Effort Multiplier Factors (EMF) to compute SOA
development effort more accurately.

3. Proposed SOA effort estimation method

The proposed SOA effort estimation method used SOA size,
Service type factors, Product factors, Development
environment factors, Requirements specification factors and
Personnel factors to estimate SOA development effort. The
proposed method was automated and hosted at
www.vsoft.co.ke/tool/. The tool provides facilities for entry
of parameters for size computation and effort estimation.

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 189

3.1 SOA size
Our proposed effort estimation method considered SOA size
as the main attribute that determines SOA development effort.
We adopted SOA size metrics (SOASM) [15] to compute
SOA size with minimal revision guided by quantitative
validation. SOASM defined Weighted Operation Count
(WOC) in Eq. 2, Service Dependency Count (SDC) in Eq. 3,
Weighted Message Count (WMC) in Eq. 4 and Weighted
Service Count (WSC) metrics in Eq. 5 as indicators of SOA
size as shown in Tab.1.

Table 1. SOASM Size Metrics [15]

Eq. Metric Description

(2) 𝑊𝑂𝐶(𝑆) =)(𝑂* + 𝑃*)
-

*./

Weighted Operation Count
(WOC)

WOC counts the
number and
complexity of
operations (Oi)
and parameters
(Pi) contained in a
service as
captured in UML
interface diagram.

(3) 𝑆𝐷𝐶(𝑋) = 𝑖 +)𝑎

-

*./

+)𝑔
-

*./

+)𝑡
-

*./

Service Dependency Count
(SDC)

SDC counts the
number and
complexity of
dependency by
considering fan-in
dependency (i),
fan-out
dependencies
classified as
atomic (a), lighter
aggregation (g)
and strong
aggregation (t) as
captured in UML
interface diagram.

(4) 𝑊𝑀𝐶(𝑋) =)𝑠

-

*./

+)𝑎
-

*./

+)𝑟
-

*./

Weighted Message Count
(WMC)

WMC counts the
number of
messages between
services based on
message type
which include
synchronous (s),
asynchronous (a)
and reply (r)
messages as
revealed in UML
sequence diagram

(5)

𝑊𝑆𝐶 = 𝑊𝑂𝐶 + 𝑆𝐷𝐶 +𝑊𝑆𝐶
Weighted Service Count

(WSC)

WSC counts the
number of
services based on
the sum of WOC,
SDC and WMC

 After we subjected the metrics to quantitative validation,
we revised WOC metric simple, average and complex
operation weights to 2, 3 and 4 respectively while parameter
weight remained 1. Secondly, we revised the equation for
computing SDC by eliminating fan-in dependency (i) from
the equation but maintained the weights as defined in SOASM
[15]. Lastly, we revised the weights for WMC to 3, 2 and 1
for synchronous message, asynchronous message and reply
message respectively.

 Likewise, we included Intermediate COCOMO constant
A and constant B for different project types to compute effort
as a function of size as indicated in Eq. 6. According to
Boehm [6], constant A represents effort coefficient scale
(exponential) factor and B accounts for relative economies of
scale for software of different size and type [6] as shown in
Tab. 2.

Effort (PM) = A * (SOA Size)B (6)

Table 2. Intermediate COCOMO effort coefficients

Project Type Coefficient
constant (A)

Exponential Scale
factor (B)

Organic (Small) 3.2 1.05
Semi-detached
(Medium)

3.0 1.12

Embedded
(Large)

2.8 1.20

 Various studies have related average LOC to Function
Point for various programming languages based on historical
data [23]. Programming languages including PHP, Java, Perl,
JavaScript and C++ Function Point have an average of 53
Lines of Codes (LOC) per Function Point [26]. Based on the
relationship between Function Point and Web service point
with regard to the use of functional aspect to measure size,
our method also used 53 LOC or 0.053 KLOC to be
equivalent to 1 Web service point. Therefore, for organic
projects, Effort is computed as shown in Eq. (7).

Effort (PM) = 3.2 * (SOA size * 0.053) 1.05 (7)

 Our proposed method estimates the final SOA
development effort by including Service Type Factors (STF)
and 13 Effort Multiplier Factors (EMF) in the computation.

3.2 Service Type Factors (STF)
This study introduced Service Type Factor (STF) and
classified STF into Service Construction Type (SC) and
Service Architectural Style (SA). STF is determined at service
level rather than at SOA application level because services in
SOA application may have different service types.

3.2.1 Service construction type (SC)
Service construction (SC) types are classified into available
(Discovered) service, migrated service and new service
centred on how the service was realized [25] [11]. Based on
previous research [11] on effort distribution, more effort is
spent at construction phase compared to other phases when
developing a new service as shown in the Tab. 3. According
to Tab. 3, effort to develop the three types of services is
constant at requirements and analysis, design, testing and
integration phases but varies at construction phase. The
variation of effort at construction phase resulted to 100 %,
80% and 60% of total effort to develop a new service,
migrated service and available service respectively.
Consequently, this study allocated weights of 1.00, 0.8 and
0.6 to new, migrated and available services respectively.

3.2.2 SOA architectural style (SA)
SOA architectural style defines the communication protocol
and style for developing web services [9]. The two most
common communication architectural style or protocols used
in SOA applications are REST (Representational State
Transfer) and SOAP (Simple Access Protocol). Basically
SOAP and REST are not directly comparable given that

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 190

SOAP is a protocol that make use of WS* technologies while
REST is an architectural style designed to communicate via
HTTP protocol [9]. However, this study compared SOAP and
REST with regard to service development effort.

Table 3. Service type Effort distribution (%) among
development phases [11]

Phase New
service (%)

Migrated
service

(%)

Available
service

(%)
Requirements
and Analysis

16 16 16

Design 15 15 15
Construction 40 20 0
Testing 22 22 22
Integration 7 7 7
Total Effort 100 80 60

 Li & O’Brien [9] compared development effort based on
REST and SOAP qualitatively and concluded that services
built using SOAP technology have more information and are
difficult to build as compared to REST services. They
assigned a factor of 2 to SOAP and a factor of 1 to REST
services based on development effort. In this regard, our
method allocated 1 to REST service and 1.2 to SOAP.
 Service Type Factor (STF) is computed by multiplying
the product of SC and product of SA of all services in SOA
application as indicated in Eq. 8.
 Service Type Factor (STF) = Service construction (SC) *
Service architecture (SA)

STF = ∏ 𝑆𝐶 ∗	∏ 𝑆𝐴-

*./
-
*./ (8)

Therefore, Effort for developing SOA with inclusion of STF
in Eq. 9.,

Effort (X) = STF * A * (service size) B (9)

 SFT has a tremendous impact on software development
effort which may be a decreasing or increasing effect on SOA
development effort.

3.3 SOA Effort Multiplier Factors (EMF)
SOA development effort is also determined by effort factors
also known as cost drivers which are proportional to the
amount of effort employed and whose values either increase
or decrease effort. This study proposed 13 SOA effort factors
also known as Effort Modifier Factors (EMF) grouped into 4
categories namely SOA product factors, development
environment factors, Requirement specification factors and
Personnel factors as shown in Tab. 4.

Table 4. SOA effort modifier factors (EMF)

S/N SOA Effort Factor
categories

SOA Effort factors

1

Product factors Database complexity (DC)
Data Size (DS)

User interface complexity
(UIC)
Integration complexity (IC)

2 Development environment
factors

Infrastructure capabilities
(ICA)

Development tool support
(DT)

3 Requirements specification
factors

Requirement elicitation (RE)
Business value /risk (BVR)
Security requirements (SR)

4 Personnel factors SOA experience (SE)

 Each EMF factor is classified into its respective categories
and weighted accordingly based on its influence on
development effort. When EMF is classified as normal it is
assigned a weight of 1 which has no effect on software
development effort. On the other hand, EMF that is assigned
a value that is less than 1 has a decreasing effect on software
development effort while EMF with a value greater than 1 has
an increasing impact on development effort. EMF is applied
at the SOA application level when computing development
effort. After allocation of weights to each category, our
research study used fuzzy logic to compute EMF values for
the purpose of accurate estimation, smooth transition from
one category set to another and to provide a realistic way of
representing effort attributes.

3.3.1 Product factors
Product factors include elements that add functional value to
SOA application with regard to the product structure [12].
Product factors proposed in our method are database
complexity, database size, interface complexity and
integration complexity.
 Database complexity (DC) [12] includes database
constraints that affects the complexity of a service. Another
product factor is database size (DS) factor which simply
counts the number of tables contained in a database. Thirdly,
user interface complexity factor (UIC) carries both functional
and non-functional features of the service application [4]. On
the other hand, integration complexity (IC) factor is
inherently the amount of effort used to configure a service to
integrate with other services and resources such as databases.
This study proposed Product complexity factors with their
description as shown in Tab. 5.

Table 5. Product factors description

Factor Normal
(1.00) High (1.10) Very High

(1.20)
Database
Complexity
factor (DC)

Simple
objects
including
tables and
views

Security
features such
as user roles
and rights.

Use of
procedures
and triggers.

Database
size weight
factor (DS)

Less than
50 tables
and views.

Between 50
and 100
tables and
views.

Above 100
tables and
views.

User
interface
complexity
(UIC)

Simple
form
elements

Form with
client-side
validation
e.g.
JavaScript

Interface
with touch
input, media
and security
features
such
biometrics

Integration
Complexity
(IC)

Service to
service
and
service to
database
integration

service to
services
outside the
organization
integration

Service to
legacy
application
integration

 We adopted COCOMO data factors classification of
product factors as normal, high and very high. This study
rounded off the COCOMO values to 1.00, 1.10 and 1.20 for
normal, high and very high respectively. The values were then
represented as 3 fuzzy sets namely normal, high and very high
linguistic variables.

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 191

3.3.2 Service development environment
Service development environment include hardware and
software required to support development and
implementation of SOA application. Service development
environment determines the amount of effort with regard to
efficiency, constraint and capability of available hardware
and software tools. This study focused on tool support and
Hardware/software capabilities. Less effort is spend when
developing a web service supported by tools and framework
rather than writing codes from scratch. The productivity of a
software development team is directly proportional to the
development tools employed by programmers in developing
the web service [12].
 This study classified software development tools (DT)
into three categories namely lowly automated, normal and
highly automated. The categorization is based on existing
development tools for programming languages used to
develop web service applications. Tools that support only
coding and compilation are classified as lowly automated
allocated a weight of 1.10, tools with code line assistant and
are user friendly are classified as normal allocated weight of
1 while fully automated tools are classified as highly
automated allocated of 0.9.
 On the other hand, Infrastructure capabilities (ICA)
include hardware, networking and software infrastructure
capacity. When facilities have low capacity and capabilities
to host and enable service development then more effort is
required as compared to when facilities are capable. Hardware
in this case includes storage infrastructure, processor and
hardware configuration issues. Networking infrastructure
includes data communication infrastructure, server and
network configuration issues. On the other hand, software
capabilities include software integration issues, operating
systems compatibility and configuration issues. Infrastructure
capabilities are classified as very low with a weight of 1.2,
Low with a weight of 1.1 and Normal with a weight of 1.

3.3.3 Requirement factors
Requirements are demands or needs defined by stakeholders
outlining what must be accomplished by software developers.
Without requirements, you cannot measure success or failure
of system development and implementation [11]. Critical
issues captured as requirement factors in this study include
Requirement elicitation factors, business risk and value, and
security requirements.
 Requirement elicitations (RE) provide a framework for
ensuring software product compliance with users’ needs and
demands. When requirements are clear and unambiguous less
effort is used to develop an application as compared to when
requirements are unclear and ambiguous. The proposed
requirements elicitation factors weights are 1.30, 1.15, 1 and
0.85 for very ambiguous, ambiguous, clear and very clear
requirements respectively.
 Secondly, business value is the perception on the need for
software product for organization’s improvement, survival
and image. On the other hand, business risk is also related to
business value in the sense that a system whose failure will
have great impact to an organization is valued more. Business
risk in relation to software development is a possible negative
event that may occur in a business as a result of software
implementation failure.
 More effort is required to build a system that is highly
valued and is of high risk to the organization as compared to
a system that is lowly valued and low risk. Thirdly, security
requirement (SR) is a condition or capability needed by

stakeholders to ensure confidentiality, integrity, availability,
authenticity and authorization of an application system [27].
The degree of security integration in the system determines
the amount of effort required to develop the application.
Description of business value/risk factor and security factor,
weights of 0.70, 0.85, 1, 1.15 and 1.30 for very low, low,
normal, high and very high respectively are as shown in Tab.
6

Table 6. Business value and security requirements
description effort factor

Factor Very
low

Low Normal High Very
high

Business
value/Ris
k (BVR)

applicati
on an
organiza
tion can
do
without

applicat
ion to
perfor
m non-
core
functio
ns

Applicati
on to
perform a
core
function

Critica
l
syste
ms

Very
Critical
system
s

Security
requirem
ents (SR)

No
security
feature
required
in a
service

Low
security
feature

confidenti
ality and
authentici
ty features

biome
tric
featur
es

Use of
encrypt
ion
algorit
hm

3.3.4 Personnel factors
People or personnel factors are personnel attributes that
contributes to SOA development effort. Personnel factors
proposed in this study include web service development
experience, Programming language experience, application
experience and team cohesion.
 Developers’ experience in web service application factor
is determined by how long developers have worked with web
service applications. On the other hand, application
experience factor defines a programmers’ knowledge on the
type of an application e.g. banking application system.
Thirdly, programming experience factor is a measure of how
long developers have worked with a programming language.
Team cohesion factor takes into consideration the team
members shared vision, teamwork and consistency of
members’ objectives. The more experienced developers’ are
with SOA, the application, programming language and are
more cohesive the team is the less effort the developers’ will
use to develop a web service system. Personnel factors
weights are as shown in Tab. 7.

Table 7. Web service developer’s experience effort
multiplier

Personne
l factors

Very
low

Low Normal High Very
High

SOA
Experien
ce (SE)

0 - 6
months

6 - 9
months

1- 2 years 2- 4
years

4 years
and
above

Applicati
on
Experien
ce (AE)

0 - 6
months

6 - 9
months

1- 2 years 2 - 4
years

4 years
and
above

Program
ming
Language
Experien
ce (PE)

0 - 6
months

6 - 9
months

1- 2 years 2 - 4
years

4 years
and
above

Team
Cohesion
(TC)

Highly
intolera
ble
team

Intolera
ble
team

accommo
date
opinions

Intolerab
le&
Consiste
ncy of
objective
s

Shared
long
term
vision
and
objecti
ves

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 192

 SOA experience, application experience, programming
experience and team cohesion are allocated 1.30, 1.15, 1, 0.85
and 0.70 weights for very low, low, normal, high and very
high respectively. To reduce subjectivity and to be more
realistic with EMF classification and weights, we introduced
fuzzy logic technique to manipulation EMF values to more
accurate results.

3.4 Fuzzy logic application to EMF
In this study, EMF factors are exposed to subjective
judgement and thus we proposed to apply fuzzy logic to EMF
factors. Fuzzy logic provides a better way of representing data
in fuzzy sets to express data that is unclear and vague in
nature. A case in point is requirements elicitation factor (RE)
which may be subjective from one developer from the other.
Secondly, representing data in a class or category provides a
wider representation. For example requirements elicitation
factor (RE) ambiguous value represented as 1.15 is
represented as a range from 1.00 to 1.1 in fuzzy sets. Fuzzy
logic processes include Initialization, Fuzzification, Inference
system rules and Defuzzification [18] [19] [20] [21] [22] [23]
[24].

i) Initialization: Initialization is the process of defining
linguistic variables which are words from a natural language
replacing values. The linguistic variable in this case is
requirements elicitation with 4 variables namely very
ambiguous, ambiguous, clear and very clear. Represented in
fuzzy set as follows:

Requirements elicitation = {very ambiguous, ambiguous,
clear, very clear}

ii) Fuzzification – Is a technique of using membership
function to convert crisp data to fuzzy values. It determines
the degree to which inputs belong to a particular fuzzy set. In
this study we used Triangular membership function to
determine the degree of membership of input x which belongs
to a fuzzy set. For requirements elicitation factor,
fuzzification for a value x1, will give 0.5 clear and 0.5
ambiguous as shown in Fig. 1.

µ (x1 = Very clear) = 0, µ (x1 = Clear) = 0.5 µ (x1 = Ambiguous) = 0.5, µ (x1 = Very ambiguous) =
0
Given examples of crisp input x1 at 1.05,
Fig. 1. Requirements elicitation factor

 Therefore, crisp data x1 = 1.05 falls under clear
requirements fuzzy set by 0.5 degree of membership and 0.5
degree of membership in ambiguous requirements fuzzy set.
iii) Fuzzy Inference System – It is a fuzzy logic component
that evaluates rules in the rule base to determine the outcome
of set conditions. Fuzzy inference system employed in this
study is Mamdani System. Rules for requirements elicitation
factor are as follows:

𝐼𝐹	(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠	
= 	𝑉𝑒𝑟𝑦	𝑐𝑙𝑒𝑎𝑟)	𝑇𝐻𝐸𝑁	𝑒𝑓𝑓𝑜𝑟𝑡	
= 	𝐿𝑜𝑤

𝐼𝐹	(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠	 = 	𝑐𝑙𝑒𝑎𝑟)	𝑇𝐻𝐸𝑁	𝑒𝑓𝑓𝑜𝑟𝑡	
= 	𝑁𝑜𝑟𝑚𝑎𝑙

𝐼𝐹	(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠	
= 	𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠)	𝑇𝐻𝐸𝑁	𝑒𝑓𝑓𝑜𝑟𝑡	
= 	ℎ𝑖𝑔ℎ

𝐼𝐹	(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠	
= 	𝑣𝑒𝑟𝑦	𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠)	𝑇𝐻𝐸𝑁	𝑒𝑓𝑓𝑜𝑟𝑡	
= 	𝑣𝑒𝑟𝑦	ℎ𝑖𝑔ℎ

 The result from the above rules are effort modifiers
including Low = 0.9, Normal = 1, High =1.1 and very High =
1.2 of SOA development effort.

iv) Defuzzification - Defuzzification is the process of
converting output data to crisp output value using a
defuzzification method such as Centre of gravity method as
in Eq. 10.

𝐶𝑒𝑛𝑡𝑒𝑟	𝑜𝑓	𝑔𝑟𝑎𝑣𝑖𝑡𝑦	(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠	𝑒𝑙𝑖𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛) = 	

∑ µ. 𝑤-
*./
∑ µ-
*./

𝐶𝑂𝐺 = 	 (U.V∗/.U)W(U.V∗/./)

U.XWU.Y
=1.05 of SOA development effort (10)

 The result of COG is a crisp output 1.05 which has a
normal influence on SOA development effort. The value is
multiplied with other modifiers then the product is multiplied
with the effort size function and service type to give the final
effort.

3.5 Final effort estimation
The Final effort for developing the entire system is calculated
by taking into consideration the SOA application size, product
of service type factors and product of EMF as indicated in Eq.
11.

Final Effort (X) = STF * A * (SOA Application size) B *
∏ 𝐸𝑀𝐹-
/Z (11)

Where,

 A and B are constants derived from COCOMO while
SOA Application size in web service point is computed by the
identified SOA size metrics known as SOASM as shown in
Eq.7.

Effort (PM) = A * (SOA size * 0.053) B

Service Type Factor (STF) is as shown in Eq. 8,

STF = ∏ 𝑆𝐶 ∗	∏ 𝑆𝐴-

*./
-
*./ (11)

 EMF is the product of all Effort Multiplier Factors as
shown in Eq. 12.

∏ 𝐸𝑀𝐹-
/Z = DC *DS* UIC * IC * DT * ICA * RE * BR *

SR * SE * AE * PE * TC (12)

 Based on our proposed effort estimation method, EMF
can be computed directly by assigning allocated weights or
through application of fuzzy logic.

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 193

4. Method

Experiment process involved 15 groups of Computer Science
3rd year students who developed SOA application known as
web service applications in groups of 5 students per project.
First of all, each group defined their concepts which were
corrected and validated. After which they were required to
develop software requirement specification (SRS) documents
and Software design documents (SDD) for their respective
SOA based projects. Each group submitted their SRS
documents which were verified and errors were corrected
before designing the projects.
 The groups designed their SOA applications which were
documented in SDDs. The SDDs comprised of UML interface
diagrams and UML sequence diagrams which revealed SOA
size attributes to expose to SOA size metrics (SOASM). Later
on, they constructed SOA based projects based on SDD after
which integration and testing were done. Individual
developers recorded the actual time taken in each phase which
was summed to give the actual time spend by a group. The
developed SOA based projects and documentations were
presented and submitted by the groups for verification and
validation. Each project size computed, development effort
estimated and actual time used to develop each project was
recorded for further analysis. The entire experiment process
was done in approximately 3 months including development
of the projects and validation of the proposed method.
 Preparation and planning for the expert survey was done
appropriately before the survey was conducted to ensure
validity and reliability of the instrument. Fifty questionnaire
were sent to experts requiring them to indicate if they had
worked with SOA, 46 were returned with 27 responded
positively having engaged in SOA applications while 19 said
they had never participated in developing SOA applications.
Random sampling was used to select 20 programmers out of
27 who had worked with SOA applications before. The
sampled programmers were taken through the proposed effort
estimation method annex. Upon satisfactory understanding of
the proposed effort estimation method, the sampled
programmers were issued with questionnaires accompanied
with annex documentation describing in detail the proposed
estimation method.

5. Results and discussions

This study further validated the proposed effort estimation
method through a laboratory experiment in the context of 3rd
year computer science students and expert opinions were
gathered through a survey.

5.1 SOA size metrics results
Data was collected from the 15 SOA based projects as shown
in data reference [a] and they were subjected to SOA size
metrics (SOASM) [15] as indicated in Tab. 8. Details
captured from each project included project name, WOC,
SDC and WMC to compute SOA project size (WSC) in web
service points. Being small projects developed by students,
the biggest project had 44 web service points and the smallest
project had 30 web service points.

Table 8. Data analysis for the 15 SOA projects subjected to
SOA size metrics

ID Project Name WOC SDC WMC SOA
size
(WSC)

1 Online carpool
system 31 7 6 44

2 Online doctors’
appointment
system 24 3 3 30

3 SACCO
management
system 32 4 6 42

4 Online event &
catering system 25 7 6 38

5 Bus service
online
reservation
system 27 5 5 37

6 Online
furniture
purchase
system 27 4 7 38

7 Construction
material online
purchase
systems 29 4 7 40

8 Prime freelance
systems 30 7 7 44

9 Real estate
online property
management
system 28 7 6 41

10 Tourism and
accommodation
online system 23 6 3 32

11 Apartment
rental online
system 27 6 6 39

12 Online
horticulture
sales
information
system 30 8 3 41

13 CDF
disbursement
management
system 25 5 3 33

14 Online
pharmaceutical
management
system 27 5 6 38

15 Online event
ticketing
system 24 5 3 32

5.2 Proposed effort estimation method descriptive
analysis
The product of EMF per project was multiplied to SOA size
and product of STF to compute effort estimation for each
project which was compared with actual effort to Magnitude
of Relative Error (MRE) as shown in Tab. 9. More details on
the data used in this study are captured in data repository
http://dx.doi.org/10.17632/sp or
http://data.mendeley.com/datasets/spdxkdry2s/1.
According to Tab. 9, the measured size and SOA development
effort factors were used to estimate effort for each project
based on organic projects as defined in COCOMO given that
each of the SOA based projects developed by students were
small, predictable and in a stable environment.

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 194

Table 9. Effort estimation analysis based the proposed
method

ID Project Name SOA
Size

STF EMF Estimated
Effort
(P/M)

Actual
Effort
(P/M)

MRE

1 Online Carpool
System 44 1.2 1.294 12.813 9.54

-
0.343

2
Online doctors’
appointment
system

30 1 1.294 7.142 6.32
-
0.130

3 SACCO
management
system 42 1.2 1.125 10.611 8.84

-
0.200

4 Online Event &
Catering system 38 1 1.176 8.322 8.12

-
0.025

5 Bus service
online
reservation
system 37 1.44 1.294 12.818 8.31

-
0.542

6 Online furniture
purchase system 38 0.8 1.125 6.368 7.14 0.108

7 Construction
Material online
purchase systems 40 1 1.294 9.661 7.06

-
0.368

8 Prime freelance
systems 44 0.72 1.238 7.354 8.43 0.128

9 Real Estate
online property
management 41 0.72 1.294 7.138 7.86 0.092

10 Tourism and
accommodation
online system 32 1 1.294 7.643 6.21

-
0.231

11 Apartment rental
online 39 0.8 1.294 7.526 6.53

-
0.152

12 Online
Horticulture
Sales Information
system 41 1 1.294 9.914 8.84

-
0.122

13 CDF
disbursement
management
system 33 1 1.294 7.894 6.23

-
0.267

14 Online
Pharmaceutical
management
system 38 0.864 1.238 7.565 6.62

-
0.143

15 Online Event
ticketing 32 1 1.238 7.310 5.73

-
0.276

 Mean Magnitude of relative error MMRE -
0.165

 Effort (SOA application) = STF * A * (SOA size) B *
∏ 𝐸𝑀𝐹-
/Z

 Where a = 3.2, b = 1.05 for organic project (Small-scale
and predictable projects) SOA size was multiplied by a factor
of 0.053 to convert web service point to KLOC based on
programming languages used in the experiment.

Therefore, Effort = STF * 3.2 * (SOA size * 0.053)1.05 *
∏ 𝐸𝑀𝐹-
/Z

 EMF had tremendous effect on effort due to SOA
experience among all groups which was at 1.30 points,
application experience factor at 1.15 points and Programming
experience factor at 1.15 points. On the other hand, business
value/risk and security requirements factors had 0.7 and 0.85
respectively for all groups given that the projects were done
for academic and research purpose. Database complexity and
database size were awarded 1 for each project due to
similarity in students’ projects based on these factors. Factors
that experience variance among different projects in the
experiment were user interface complexity, development tool
support, infrastructure capacity and requirements elicitation.
 The most common measures for effort estimation methods
accuracy according to literature are Magnitude of Relative
Error (MRE) and Mean Magnitude of relative error (MMRE)
[28].

𝑀𝑅𝐸 = \]\̂
\

 where y is actual effort and �̂� is the estimated
effort as in Eq. 13.

𝑀𝑀𝑅𝐸 =	 /

-
	𝑋	∑ 𝑀𝑅𝐸-

*./ 𝑖 (13)

MMRE is the average MRE for all projects in the
experiment where n is the number of projects and MREi is
for each project.
The accuracy of the proposed effort estimation method was -
0.165 MMRE which is within the acceptable margin of -0.25
and +0.25. Therefore, the accuracy of the proposed effort
estimation method as revealed in the experiment shows that
the method is more accurate when dealing with SOA based
applications.

5.3 Expert opinion survey
A survey was conducted to gather expert opinions on the
validity of the proposed SOA effort estimation method.
Expert opinion survey was also meant to complement
laboratory experiment done by students.

5.3.1 Demographic summary of the respondents
All the 20 questionnaires were returned successfully with no
outlier data. According to response on academic qualification,
2 of the respondents had MSc. Degree in computing related
field and the remaining 18 respondents had BSc. Degree in
computing related field as shown in Tab. 10. From the
analysis, it was confirmed that experts had enough experience
to assist in validating SOA size metrics and effort estimation
method.

Table 10 .Experts’ experience in Software development

Experience Below
1 year

Between 1
and 3 years

Above 3
years

Software
development

2 8 10

SOA
application
development

5 6 9

5.3.2 Survey results

5.3.2.1 Experts’ response on SOA size effect on effort
Respondents believed that SOA size has influence on SOA
development effort with 10 respondents strongly agreed and
10 agreed to the fact.

5.3.2.2 Experts’ response on influence of service type on
SOA development effort
Selected experts were asked to rate the influence of service
type to SOA development effort. Most experts sampled
agreed with our study on service type contribution to SOA
development effort as shown in Tab. 11.

Table 11. Experts’ response on influence of service type to
SOA development effort

 Service
type

Strongly
agree

Agree Disagree Strongly
disagree

Available
service

4 16 0 0

Migrated
service

10 10 0 0

New service 4 16 0 0
SOAP 8 12 0 0
REST 9 11 0 0

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 195

5.3.2.3 Response on influence of SOA effort modifier
factors (EMF) to effort
Expert confirmed that SOA effort modifier factors (EMF)
identified in this study are relevant when included in the
method to estimate SOA effort as shown in Tab. 12.
According to Tab. 12, all sampled experts agreed that the
proposed EMFs are relevant in estimating SOA effort.

Table 12. Experts’ response on influence of EMF on SOA
development effort

SOA
effort
factor

Description Stron
gly
agree

Agr
ee

Disag
ree

Stron
gly
disag
ree

Product
factors

Database
complexity

15 5 0 0

Database
size

10 10 0 0

Integration
complexity

11 9 0 0

Service
develop
ment
environ
ment
factors

Developmen
t tool
support

13 7 0 0

Hardware/S
oftware
capabilities

16 4 0 0

Require
ments
specifica
tion
factors

Requiremen
t elicitation

6 14 0 0

Business
risk/value

5 15 0 0

Security
requirement
s

14 6 0 0

Personn
el
factors

Service
developers’
experience

17 3 0 0

SOA
Application
experience

16 4 0 0

Team
cohesion

14 6 0 0

6. Conclusion and future work

The experiment tested the accuracy of the proposed effort
estimation method which was proved to more accurate and
within the agreed MRE. Due to the fact that the laboratory
experiment in this study was done by students, there was need
to subject the proposed effort estimation method to the
industry for further validation. In this regard, this research
conducted a survey involving 20 sampled experts to validate
the proposed effort estimation method. Based on the
experiment and expert survey results, the proposed effort
estimation method is relevant and valid for SOA based
applications. The research recommends further validation of
the SOA size metrics and SOA development effort estimation
method in laboratory experiments or case studies through the
use of industry based projects including medium-scale and
large-scale SOA projects.

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License

References

[1] S. Ramacharan and K. Venu Gopala Rao, “Software effort estimation

of GSD Projects Using Calibrated parametric estimation models,”
ACM Int. Conf. Proceeding Ser., vol. 04, pp. 113–125 (2016).

[2] F. Sarro and A. Petrozziello, “Linear Programming as a Baseline for
Software Effort Estimation,” vol. 1, (2018).

[3] M. Usman, R. Britto, L. O. Damm, and J. Börstler, “Effort estimation
in large-scale software development: An industrial case study,” Inf.
Softw. Technol., vol. 99, pp. 21–40, (2018).

[4] B. Verlaine, I. J. Jureta and S. Faulkner, “A Requirements-Based
Model for Effort Estimation in Service-Oriented Systems,” pp. 82–
94, (2014).

[5] G. Albrecht, A., Gaffney, “No Title,” A Softw. Sci. Validation, IEEE
Trans Softw. Eng., (1983).

[6] Boehm B.W., “Software Cost Estimation with COCOMO,”
Prentice-Hall, (2000).

[7] T. Urbanek, Z. Prokopova, R. Silhavy, and A. Kuncar, “Using
improved analytical programming algorithm for effort estimation in
software engineering,” MATEC Web Conf., vol. 76, pp. 4–7, (2016).

[8] L. O. Brien, , "Cost and Effort Estimation for Service Oriented
Architecture (SOA) Projects,” 2009 Australian Software
Engineering Conference A Framework for Scope, pp. 101–110,
(2009).

[9] Z. Li and L. O’Brien, “Towards effort estimation for web service
compositions using classification matrix,” Int. J. Adv. Internet
Technol., vol. 3, pp. 245–260, 2011.

[10] R. Akkiraju and H. Van Geel, “Estimating the cost of developing
customizations to packaged application software using service
oriented architecture,” in ICWS 2010 - 2010 IEEE 8th International
Conference on Web Services, pp. 433–440, (2010).

[11] E. A. Farrag, R. Moawad, and I. F. Imam, “An Approach for Effort
Estimation of Service Oriented Architecture (SOA) Projects,” J.

Softw., vol. 11, pp. 44–63, (2016).
[12] D. Gupta, “Service Point Estimation Model for SOA Based

Projects,” Vol no. Lxxviii, pp. 1–17, (2013).
[13] S. Mishra and C. Kumar, “Estimating development size and effort of

business process service-oriented architecture applications,” in 2014
2nd International Conference on Systems and Informatics, ICSAI
2014, pp. 1006–1011, (2015).

[14] COSMIC, Guideline for Sizing SOA Software. 2015.
[15] O. K. . Munialo W.S, Muketha M.G., “Size Metrics for Service-

Oriented Architecture,” Int. J. Softw. Eng. Appl., vol. 10, pp. 67–
83,(2019).

[16] P. Rijwani and S. Jain, “Enhanced Software Effort Estimation Using
Multi Layered Feed Forward Artificial Neural Network Technique,”
Procedia Comput. Sci., vol. 89, pp. 307–312, (2016).

[17] I. Kaur, G. Singh, N. Ritika, and W. Vishal, “Neuro fuzzy —
COCOMO II model for software cost estimation,” Int. J. Inf.
Technol., (2018).

[18] A. Hamdy, “Genetic Fuzzy System for Enhancing Software
Estimation Models,” vol. 4, (2014).

[19] V. Sharma and H. K. Verma, “Optimized Fuzzy Logic Based
Framework for Effort Estimation in Software Development,” vol. 7,
pp. 30–38, (2010).

[20] S. Tarannum and M. Arif, “Software Effort Estimation Using Fuzzy
Approach,” pp. 255–257, (2016).

[21] R. P. S. Bedi and A. Singh, “Software Cost Estimation using Fuzzy
Logic Technique,” Indian J. Sci. Technol., vol. 10, (2017).

[22] P. Reddy, S. K., and R. Sree, “Application of Fuzzy Logic Approach
to Software Effort Estimation,” Int. J. Adv. Comput. Sci. Appl., vol.
2, pp. 87–92,(2011).

[23] N. Shivakumar, N. Balaji, and K. Ananthakumar, “A Neuro Fuzzy
Algorithm to Compute Software Effort Estimation,” Glob. J.

Samson Wanjala Munialo, Geoffrey Muchiri Muketha and Kelvin Kabeti Omieno/
Journal of Engineering Science and Technology Review 13 (6) (2020) 187 - 196

 196

Comput. Sci. Technol. C Softw. Data Eng., vol. 16, (2016).
[24] H. P. Patra and K. Rajnish, “A Fuzzy based Parametric Approach for

Software Effort Estimation,” Int. J. Mod. Educ. Comput. Sci., vol.
10, pp. 47–54, (2018).

[25] Z. Li and J. Keung, “Software cost estimation framework for service-
oriented architecture systems using divide-and-conquer approach,”
in Proceedings - 5th IEEE International Symposium on Service-
Oriented System Engineering, SOSE 2010, pp. 47–54, (2010).

[26] A. L, “Function Point Analysis FPA on A Team Planning Website

Based on PHP and MYSQL,” J. Inf. Technol. Softw. Eng., vol. 08,
(2018).

[27] H. Assal and S. Chiasson, “‘ Think secure from the beginning ’: A
Survey with Software Developers.” In CHI Conference on Human
Factors in Computing Systems Proceedings, ACM, (2019).

[28] S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, “A systematic
review on software cost estimation in Agile Software Development,”
Journal of Engineering Science and Technology Review, vol. 10, pp.
51–64, (2017).

