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Abstract 
 

Despite today’s smart grid’s deployment of more information and communication systems, it is more prone to data injection 
attacks. Researchers have developed several methodologies for successful intrusion into the system by means of False Data 
Injection Attacks (FDIAs) which result in system vulnerability. Practical FDIAs are called Load Redistribution Attacks 
(LRAs). LRAs target bus active power injections and line active power flows. The most damaging Load Redistribution 
Attack Vector (LRAV) of a classical LRA is found by solving a Bilevel Programming Problem (BPP) where attacker in 
the upper level develops most damaging LRAV and operator in the lower level performs basic static Security Constrained 
Optimal Power Flow (SCOPF) along with false measurements. But in dynamic operations, generator ramp rates play a 
crucial role. So, in this article, generator ramp rate constraints are included in SCOPF to show the impact of Generator 
Ramp Rate Constraints induced LRA (GRC-LRA) in means of Economic Loss, $/MWh, without attacking any generator. 
GRC-LRA vector is solved by using Karush-Kuhn-Tucker (KKT) based single level Mixed Integer Linear Programming 
Problem (MILPP) and Benders Decomposition methods. An optimal attack-defense strategy is also found by playing static 
zero-sum game, a method of probabilistic defense. Attack and defense mechanisms for GRC-LRA are tested on modified 
IEEE-14 bus test system and validated at fixed and variable ramp rates in low load varying and high load varying conditions. 
 
Keywords: Load Redistribution Attack (LRA); Generator Ramp Constraints induced Load Redistribution Attack (GRC-LRA); Bilevel 
Programming Problem (BPP); KKT based single level MILPP Method; Benders Decomposition Method; Probabilistic defense; Static 
Zero-Sum Game; 
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1. Introduction 
 
Modern power systems is a fundamental asset in the 
development of every nation’s economy, reliability and 
security. Smart grid advancements in power grid have made 
the power system not only physical but also cyber. Cyber-
Physical Power System (CPPS) is complex as the cyber layer 
covers every part of the physical layer by sensing, 
communicating and processing to operate Supervisory 
Control and Data Acquisition (SCADA) system in a better 
way [1]. Even though CPSS has many advancements, it is 
vulnerable to cyber threats/attacks due to its wide usage of 
information and communication systems [2]. It is a real 
experience to Ukrainian power system, by coming across such 
cyber attacking through a pre-installed malware by opening 
breakers autonomously [3]. So it is a fact to get aware of the 
effect of cyber-threats on the power systems.  
 Various researchers have developed many proposals and 
more literature to develop, analyze and defend cyber-attacks 
[4]. CPSS’ components can be hacked or their keys can be 
cracked to disrupt the grid, furthermore smart measuring units 
can be compromised, to create man-in-middle attacks [5], to 
build Denial-of-Service (DoS) attacks [6] by injecting 
false/bad data into smart units. To detect false/bad data 
injected into the system, classical bad data detection methods 
(𝜒! −distribution hypothesis testing) were been used by the 
operator at control center. But Liu et al. have proposed that 

there is a chance to bypass those classical detection methods 
and intrude into the system by injecting undetectable false 
data into the system and named that attack called False Data 
Injection Attack (FDIA) and that specific attack vector is 
False Data Injection Attack Vector (FDIAV) [7]. FDIAs 
divert the operator to make erroneous decisions due to 
incorrect state estimates caused by FDIAVs. 
 FDIA that especially targets bus active power injection 
measurement values and line active power flow measurement 
values is popular as Load Redistribution Attack (LRA) and 
that injected vector is Load Redistribution Attack Vector 
(LRAV). These practical FDIAs (LRAs) were proposed by 
Yuan et al. to deteriorate the system economics and reliability 
[8]. Generally, basic detection methods are based on residual 
analysis, i.e., if the residue of actual and estimated 
measurements is within tolerance, then as per 𝜒! - hypothesis 
testing, the measurement doesn’t have bad data. If tolerance 
value is low, then the capability of detecting bad data can be 
high. So, if an attack vector is within tolerance then perhaps 
the attacking values cannot be detected. It should be also 
noted that an attack vector can be undetectable, if mean of 
change in errors is zero. Hence a successful LRAV can be 
developed such that the sum of load changes must be equal to 
zero. In other means, actual load should be redistributed 
among the loads. Hence, this attack is named as LRA. LRAVs 
were developed based on Kirchoff’s laws [8]. LRAs severely 
cause load shedding, economic loss and line outages too. 
LRAVs are of two types one is Immediate LRA [8] and other 
is Delayed LRA [9]. LRAs are generally solved by framing 
Bilevel Programming Problem (BPP) solved by Karush-
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Kuhn-Tucker (KKT) conditions based single level MILPP 
[10] or by Benders decomposition [9]. Liu et al. have 
approximated the load shedding and economic loss on solving 
two levels individually within less time [11]. Choeum and 
Choi have proposed a new type LRA in three-phase 
distribution system in which BPP is solved by KKT based 
single-level MILPP and results are validated on IEEE-13 
node distribution feeder [12]. Kaviani and Hedman have 
developed a new structure of LRA problem, mentioned that 
attackers view can be trivial and used physical laws on 
transmission line flows (by making the sum of change in line 
flows equals to zero) to build a successful LRAV [13]. 
 More research is done on various types of attacks like 
local LRAs [14, 15], cyber-physical coordinated LRAs [16-
18], cascading failures coordinated with LRAs [19] and also 
the reliability analysis after a successful LRA [20, 21]. 
Shayan and Amraee developed LRAs in conjunction with 
Security Constrained Unit Commitment (SCUC) problem 
(with ramp constraints, minimum up and down times). To 
lessen LRAV’s loss, Cyber Secured Unit Commitment 
(CSUC) problem has also been developed [22]. Dae-Hyun 
Choi and Le Xie have proposed a special type ramp induced 
data attacks that target the real-time market by using look-a-
head SCOPF dispatch model. Initial generation dispatches are 
disrupted by attacker. Obviously ramp rate constraints 
(dependent on initial dispatches) can get deviated from 
actuals which result in financial arbitrage in the market. In 
this type of attack, attacker needs to compromise the 
generator’s measuring unit [23]. Che et al. have developed a 
special type of attack called “Ramp Induced Data Attacks” 
which create power imbalance (either surplus/deficient power 
generation) by attacking a generator but not loads [24]. From 
literature, it should be noted that generator ramp rates can 
provide assistance for an attacker to maximize his/her 
objectives and it is needed to concentrate on ramp constraints 
integrated attacks. Xiang and Wang proposed that an optimal 
attack-defense strategy can be found by probabilistic based 
game theory, where critical measuring units are selected 
based on critical operating points in the system [26] or 
entropic degree [27]. This method of selecting may not be 
applicable all time if any load changes occur. 
 In this article, the impact of ramp rates of a generator is 
shown in means of economic loss without attacking a 
generator but attacking loads/lines using LRA. This is 
achieved by inducing ramp rate constraints along with LRA 
on basic SCOPF problem, proposed as Generator Ramp 
Constraints induced Load Redistribution Attack (GRC-LRA). 
It should be noted that in the proposed GRC-LRA, no 
generator is attacked. In the upper-level of GRC-LRA’s BPP, 
an LRAV is developed for given load/line attacking resources 
and in the lower level of dynamic SCOPF (basic SCOPF and 
generator ramp rates) contributes to deviated uneconomic 
generation dispatches.  
Major Contributions of this research article are as follows: 

1. Framing the overall BPP of GRC-LRA to find the 
most damaging GRC-LRAV and solving it by KKT 
conditions based single-level MILLPP and Benders 
decomposition methods. 
2. Finding the critical measuring units and obtaining 
the probabilities of an optimal attack-defense strategy of 
GRC-LRAV using static zero-sum game theory. 
3. Exhibiting a numerical analysis to show the impact 
of GRC-LRAV on a modified IEEE-14 bus test system 
with low load changing and high load changing at fixed, 
variable ramp rates and protection against GRC-LRA.  

 This research article is organized in a way that section 2 
deals with literature of FDIAs, LRAs and modelling of ramp 
constraints in SCED/SCOPF whereas section 3 presents a 
BPP to find most damaging GRC-LRAV, two methods to 
solve that BPP by using KKT based single-level MILPP and 
Benders decomposition methods and probabilistic defense 
static zero-sum game theory. Section 4 depicts a numerical 
analysis of LRAV versus GRC-LRAV applied on modified 
IEEE-14 bus test system in two load varying conditions at 
fixed and variable ramp rates. Moreover, Section 4 also 
represents probabilities of optimal attack-defense strategies 
and finally conclusions are described in section 5. 
 
 
2. Background 
 
2.1 False Data Injection Attacks (FDIAs) and Load 
Redistribution Attack (LRA) 
Power system online monitoring system is more prone to 
undetectable false data that can be injected into the network 
measurement devices like Phasor Measurement Units 
(PMUs)/Remote Terminal Units (RTUs) which are used for 
measuring, controlling and observing the system time-to-time 
[25]. Generally, sensed real-time active and reactive power 
injections and line flows are sent to the control center by 
means of communication and security equipment like 
Intelligent Electronic Devices (IEDs), firewalls and WANs. 
At the control center various analysis like DC state 
estimation, SCOPF/SCED, load forecasting, contingency 
analysis and Energy Marketing System (EMS) marketing will 
be undergone. Undetectable FDIAs, developed by Liu et al. 
in 2011 makes system vulnerable. If 𝒛, 𝒂	and 𝒛𝒂	are the actual, 
attack and damaged/attacked measurement vectors 
respectively. Let 𝒙( be the actual state estimate of	𝒛, 𝒙(𝒇 be the 
false state estimate of	𝒛𝒂 = 𝒛 + 𝒂, 𝑐	be the reflected 
erroneous estimate of	𝒛𝒂	and 𝑯	be the Jacobian matrix, then 
the 𝐿!	norm of the residual with damaged measurements is 
||𝒛𝒂 −𝑯 ∗ 𝒙(𝒇|| is simplified as shown in Eq.1.  
 
But		𝒙( 𝒇 = 𝒙( + 𝒄,  
then ||𝒛𝒂 −𝑯 ∗ 𝒙(𝒇|| = ||𝒛𝒂 −𝑯 ∗ (𝒙( + 𝒄)|| 

⟹ ||𝒛𝒂 −𝑯 ∗ 𝒙(𝒇|| = ||𝒛 + 𝒂 −𝑯𝒙( −𝑯𝒄)|| 
⟹ ||𝒛𝒂 −𝑯 ∗ 𝒙(𝒇|| = ||(𝒛 − 𝑯𝒙() + (𝒂 −𝑯𝒄)|| (1) 

 
 If	𝒂 = 𝑯𝒄, 𝐿!-norm of attacked measurement residual 
becomes 𝐿!-norm of non-attacked measurement residual [7]. 
Hence, it can be clear that 𝐿!-norm of damaged measurement 
residual is also within the threshold and it is obvious that 𝒛𝒂 
can bypass classical detection method and disrupt the system. 
The attack vector 𝒛𝒂	is called FDIAV. 
 A practical example of FDIA is LRA. In LRA the attacker 
targets are bus active power injections’ and line active power 
flows’ measurements. Load Redistribution Attack Vector 
(LRAV), the name itself defines that load must be 
redistributed among loads and that vector can be undetectable 
if the sum of redistributed load is zero (as per Gaussian 
distribution mean of errors is zero).  Redistribution among 
loads should be done within a tolerance	±𝜏, so that LRAV can 
be undetectable by control center [8].  
 Attacker always seeks to maximize the operating cost 
with minimum number of resources and tries to develop a 
most damaging undetectable LRAV within the available 
resources abided to his/her constraints at one-time step. In the 
next time step the operator tries to minimize operating cost 
subjected to basic SCOPF constraints like supply-load 
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balance, power flow constraints, and generator, line and load 
curtailment bounds. This problem can be framed as a BPP 
where in the upper level attacker maximizes and in the lower 
level operator minimizes the operating cost. The bilevel 
representation to obtain a most damaging undetectable LRAV 
is given in Fig. 1 [8].  

 
Fig. 1. Bilevel Representation of LRA 
 
 
 The mathematical representation of a most damaging 
LRAV’s BPP is given by Eq.2-Eq.14, where upper level 
replicates attacker and lower level denotes operator. 
Objective functions of upper level, Eq.2 and lower level, Eq.9 
are maximization and minimization of generational 
operational and load shedding costs respectively. Eq.3 and 
Eq.4 show that sum of load redistributed must be zero and 
load change at particular node must be within tolerance	±𝜏, 
Eq.5 gives the changes in line flows due to LRAV, however 
Eq.6 and Eq.7 deal with attacker compromising the 
measurements and Eq.8 shows the number of attackable 
resources. Furthermore, Eq.10-Eq.14 are the basic SCOPF 
constraints and their bounds.  
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2.2 Ramp Constraints in SCOPF/SCED 
Practically, generators may take time to reach a new level 
from the operating point especially in case of steam and 
hydrothermal generating units (due to their inner dynamics) 
which is called ramping. Generally, ramping in generators is 
of three types: startup, shutdown and operating ramp 
constraints. Startup and shutdown ramping constraints exist 
when a decommitted generator is committed and a committed 
generator is decommitted correspondingly. When a unit is 
committed from off position, the generator reaches its 
minimum operating capacity by increasing gradually within 
some time periods is startup ramping. If a generator is to be 
decommitted to off position, the generator reaches it 
minimum operating capacity by decreasing gradually within 
some time periods is shutdown ramping. These two ramping 
constraints come into existence in unit commitment problem. 
But in economic dispatch operating ramp constraints are 
considered which are neither startup ramping nor shutdown 
ramping constraints. Operating ramping deals with the 
generation dispatches of two successive time periods 
subjected to generator bounds. Let 𝑃&"(𝑡) and	𝑃&"(𝑡 − 1) be 
the dispatches of	𝑖5= generator at time steps of	𝑡 and	𝑡 − 1. Let 
𝑅_𝑢&"and	𝑅_𝑑&" be the ramp rates for up and down ramping 
of 𝑖5= generator and	∆𝑡 = (𝑡) − (𝑡 − 1) be time step size then 
ramp up (Eq.15) and ramp down (Eq.16) constraints, as 
functions of generation power dispatches are as follows:  
 
𝑃&"(𝑡) − 𝑃&"(𝑡 − 1) ≤ 𝑅_𝑢&" + 𝑃&"

9)<      (15) 
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𝑃&"(𝑡 − 1) − 𝑃&"(𝑡) ≤ 𝑅_𝑑&" + 𝑃&"
9)<   (16) 

∀	𝑖𝜖	1,2, … ,𝑁& and ∀	𝑡𝜖	1,2, … , 𝑇 . 
 
 Eq.15 and Eq.16 approximate that 𝑖5= generator may be 
able to step up or down from the operating point within the 
ramp up and down limits respectively, but not beyond.  
 
 
3. Generator Ramp Constraints Induced LRA (GRC-
LRA) 
The main aim of this research is to show the impact of ramp 
constraints on the system when an attacker is intruded into the 
system and able to develop a successful LRAV. As in 
practice, for high rating generating units, ramp constraints are 
mandate and hence ramp constraints need to be included 
while analyzing LRAs. So to find most damaging Generator 
Ramp Constraints Induced Load Redistribution Attack Vector 
(GRC-LRAV), the incorporation of ramp constraints at upper 
or lower level of BPP must be known. It is an assumption in 
LRAs that generators cannot be attacked [8] and in this article 
no generator is attacked. So, inclusion of ramp constraints in 
the upper level is not possible however it is needed to include 
ramp up and ramp down constraints in the lower level of BPP 
i.e., in SCED/SCOPF. Hence the overall problem of most 
damaging GRC-LRAV is as follows, given by Eq.17-Eq.20: 
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∆>)
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-*+    (17) 
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𝑠. 𝑡. (10) − (14), (15), (16)    (20) 

 
 The BPP to find most damaging LRAV with induced 
generator ramp constraints (i.e., GRC-LRAV) can be solved 
by various methods. Basic method is like converting the BPP 
into single level MILPP using KKT conditions or dual 
conditions and thereafter solving single level MILPP by using 
MILPP solvers [8-10]. Other method is solving BPP directly 
by one of the decomposition methods like Benders 
decomposition [9]. In this article, most damaging GRC-
LRAV is obtained by solving using KKT conditions based 
single-level MILPP and Benders decomposition methods. 
 
3.1 Most Damaging GRC-LRAV by KKT Conditions 
based MILPP 
The most damaging GRC-LRAV is obtained by converting 
upper and lower levels of GRC-LRA’s BPP into single level 
MILPP using KKT conditions are given below. The overall 
objective function is maximization of operational cost 
subjected to upper level constraints Eq.3-Eq.8, lower level 
constraints Eq.10-Eq.14 and Eq.9 is replaced by new 
equations with new variables Eq.21-Eq.30.  
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 Eq.21-Eq.30 are KKT based necessary feasibility 
constraints and Eq.26-Eq.29 are obtained by complementary 
slackness conditions. 
 
3.2. Most Damaging GRC-LRAV by Benders 
Decomposition. 
Benders decomposition algorithm has the capability to 
decompose an integer programming or MILPP into master 
problem and sub problem(s) which can be solved separately 
by iterative process. General Benders decomposition method 
when used to find worst GRC-LRAV may result in local 
optima. So, it is better to use multi-start Benders 
decomposition algorithm to obtain global optima of most 
damaging GRC-LRAV [9].  
The Master Problem (MP) of GRC-LRA’s BPP is given by 
equation Eq.31: 
Min
∆>)

−𝛼 

𝑠. 𝑡. (18) 

−𝐶&"𝑃&)
∗ − 𝑐𝑠-𝐿,-
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(∆𝑷𝑫 − O∆𝑷𝑫
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O∆𝑷𝑫 − ∆𝑷𝑫
(4:,5	9	:5	<2+,<2+)Q ≤ 𝛼	𝑖𝑓	𝑛 > 1	  (31) 

 
And the Sub Problem (SP) of GRC-LRA’s BPP is given by 
Eq.32 

Min
>#,3*

�𝐶&" ∗ 𝑃&"
∗

(#

)*+

+�𝐶,$ ∗ 𝐿,-
∗

(%

-*+

 

𝑠. 𝑡. (20) 

∆𝑃.$ − ∆𝑃.$
(9,<) = 0    (32) 

 
 Let the global optima of BPP be	𝑧JK5, Benders loops 
iteration counter be	𝑚 and the Benders restarting counter 
be	𝑛. The procedure to solve GRC-LRA’s BPP by multi start 
Benders decomposition is given as follows: 

 
1. Initialize n=1, m=1 and	𝑧JK5 = ∞. 
 
2. Solve MP and update	∆𝑃.$ = ∆𝑃.$

(9,<)and	𝑧4J
(9,<) =

𝛼(9,<) . 
3. Solve SP and update	𝑃&
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4. To avoid the global optima not to stuck at local 
optimal	∆𝑃.$ need to be updated as: 

 

				�
𝑖𝑓	∆𝑃.$

(9,<) = 𝜏𝑃.$
(9,<), 𝑎𝑛𝑑	𝜇-

(9,<) > 0, 𝑡ℎ𝑒𝑛	𝑠𝑒𝑡	𝜇-
(9,<) = 0

𝑖𝑓	∆𝑃.$
(9,<) = −𝜏𝑃.$

(9,<), 𝑎𝑛𝑑	𝜇-
(9,<) < 0, 𝑡ℎ𝑒𝑛	𝑠𝑒𝑡	𝜇-

(9,<) = 0
  

 
5. Update global optima as	𝑧JK5 = 𝑧GK

(9,<) if	𝑧GK
(9,<) <

	𝑧JK5 . 
 
6. Check the convergence criteria	|𝑧GK

(9,<) − 𝑧4J
(9,<)| <

𝜀. If “Yes” then go to step-10, else go to step-7. 
 
7. If	𝑧GK

(9,<) − 𝑧4J
(9,<) > 0, update	𝑚 = 𝑚 + 1 and go to 

step-2. 
 
8. If	𝑧GK

(9,<) − 𝑧4J
(9,<) < 0, go to step-9. 

 
9. Update	𝑛 = 𝑛 + 1, go to step-2 (neglect 𝜇(9,<) of all 
previous iterations except the last iteration	𝜇(9,<2+)). 
 
10. Stop. 

 
 The flowchart of solving GRC-LRAV by Benders 
decomposition method is shown in Fig. 2. 
 

 
Fig. 2. Flowchart to obtain most damaging GRC-LRAV by Benders 
decomposition 
 
 
3.3. Probabilistic Defense Against GRC-LRAV: 
Various analysis regarding LRAs or GRC-LRAs is carried out 
to find an optimal defense mechanism against attacks as 
attacker tries to maximize the economic loss and defender 
targets to minimize it [26, 27]. So certain optimal cyber-
defense must be provided such that attacker cannot inject a 
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successful LRAV into the system even if he/she intrudes. An 
LRAV can become unsuccessful/detectable, if ∑ ∆𝑃.,

-
9*+ ≠

0. If any of the critical measuring units is not attackable 
(means defended), then that unit won’t help the attacker to 
develop a successful LRAV. Attacker may not have access to 
all measuring units and defender also can’t defend all units 
(may be due to budget issues). So, certain critical measuring 
units must be considered which have high rank in attacking. 
If any unit has high rank of attacking, then that unit is highly 
probable for defending. That unit can be called as a critical 
measuring unit. It is also not an optimal strategy to protect 
only one unit all time. To obtain optimal defense, attack or 
defense strategies should be changing. Hence it can be 
derived that the units must have some probability for 
attacking or defending. In the literature, critical measuring 
units are selected based on entropic degree [27] and units 
operating at critical points [26]. These methods are deficient 
if the load changes.  
 To select an optimal number of critical measurements for 
prior known load and given attack resources, a method can be 
followed as follows: 

Step-1: Apply defense to the measuring unit of  𝑘5= load 
or 𝑙5= line i.e., 𝜃.$ = {	}	or  𝜃3& = {	} and find economic 
loss where { } represents null set. 
Step-2: Find economic loss to all units where one unit is 
defended each time. 
Step-3: Select the units which give minimum economic 
loss ≅ 0 and treat them as critical units. 

 It is to be noticed that this method is applicable if the 
approximate load demand is known prior to both attacker and 
defender and the maximum approximate number of attacker 
resources should also be known. 
 Hence to find an optimal attack-strategy, probabilistic 
based game theory framework can be used. This game has two 
players, attacker and defender. Attacker tries to maximize 
his/her utility and defender minimize his/her utility. The 
utility function in this game is economic loss. Attacker and 
defender have their own strategies (actions) and are 
independent. Hence this game is a static game. It is considered 
that attacker and defender spends unit cost for attacking or 
defending [26]. Perhaps, an optimal attack-defense strategy 
can be obtained from a Nash equilibrium point by playing a 
static zero-sum game. Nash equilibrium is an equilibrium 
point for both players which says that any player moving from 
this point may not get extra incentives. In this problem, Nash 
equilibrium (optimal attack-defense strategy) results in pure 
probability of one attack-one defense strategy or mixed 
probabilities of possible attack or defense strategies [26]. 
Based on the Nash equilibrium, it is found that which attack 
strategy is highly probable and based on that defense can be 
provided by the operator. 
 
 
4. Numerical Example 
The main aim of the article is to show the impact of generator 
ramp constraints induced into LRA’s BPP model i.e., to show 
the economic loss created by most damaging GRC-LRAV 
and also to obtain optimal attack-defense strategy considering 
economic loss as utility. Sections 4.1. and 4.2. show the 
analysis in two scenarios namely fixed ramp rates and 
variable ramp rates. In each scenario (in each section of 4.1. 
and 4.2.), it is again considered that the load variations are 
low and high. Low load variations are given in sub-sections-
4.1.1. and 4.2.1. and high load variations are given in 4.1.2. 

and 4.2.2. Moreover, it is also analyzed in a way that if fixed 
ramp rates are slack (not-tight) or tight, are demonstrated in 
subsections 4.1.1. and 4.1.2. whereas, variable ramp rates as 
slack and tight in low load and high load changes are analyzed 
in subsections 4.2.1.1., 4.2.1.2., 4.2.2.1. and 4.2.2.2 
respectively. Section 4.3. shows the selection of critical 
measuring units and probabilities of optimal attack-defense 
strategies. 
 In this research article, the test case considered is 
modified IEEE-14 bus system where data is obtained from 
MATPOWER [28]. Modified IEEE-14 bus system has five 
generators, one zero injection bus, eleven load buses and 
twenty transmission lines. As per the assumptions in LRA, it 
is clear that generators and zero injection buses can’t be 
attacked. However, the attackable measuring units are one 
measuring unit at each load bus and two measuring units for 
each line. Hence the maximum number of attackable 
resources be 11+2*20=51 for a modified IEEE-14 bus 
system. For analysis, it is considered that the maximum power 
transfer capabilities of the first, second and remaining lines 
are 160MW, 70MW and 60MW respectively. It is also 
considered that the attacker may be capable to attack 20 
measuring units. CPLEX solvers are used to solve the 
MILPPs and LPPs in this work [29]. 
 Basically in look-a-head market, generation dispatches 
are calculated for all hours of next day whereas in real-time 
market, generator dispatches are calculated for every 10-15 
minutes. So the step size in look-a-head market is high and 
which means that the load change can be large and similarly 
in real-time market step size is comparatively low where load 
change is also low. At the two loading conditions the load 
changes from 𝑡 − 1 to 𝑡 is low and the other is the load change 
from 𝑡 − 1 to 𝑡 is high. It is considered that for analysis in 
high load variations, the number of time instances be 24 and 
in low load variations the number is 6. In this research, the 
ramp rates,	𝑅_𝑢&" and	𝑅_𝑑&" are considered as fixed and 
variable in all time instances. It is also assumed that the 
attacker might not attack all time during all instances. He/she 
also tries to induce the LRAV at the instant when the load is 
high or the load change is high, so that the attacker can 
maximize his/her profit. 
 Most damaging GRC-LRAV of the test system in low 
load and high load variations’ scenarios at fixed/variable 
ramp rates is found by using two methods explicitly KKT 
conditions based single level MILPP and Benders 
decomposition methods. The number of variables used to 
solve Eq.18, Eq.20, Eq.21-Eq.30 by KKT conditions based 
single level MILPP and to solve MP (Eq.31) and SP (Eq.32) 
by Benders decomposition respectively, are given in Tab.1. 
 
4.1 Economic Loss due to Most Damaging GRC-LRAV at 
Fixed Ramp Rates 
 
4.1.1 Scenario-1: Low Load Variation with	𝑻=6 at Slack 
and Tight Fixed Ramp Rates 
Let the load variations within six time instances and the attack 
triggering are as given in Tab.2. For better analysis of GRC-
LRAV, it is considered that the ramp rates are slack (not-tight) 
and tight which are given by 𝑅_𝑢&=𝑅_𝑑&= [150 25 15 25 10] 
and 𝑅_𝑢&=𝑅_𝑑&= [30 5 3 5 2] respectively. It is also assumed 
that generator dispatches at 05= instant are	𝑃&

(L)= [230 5.41 
14.33 0 8.27] where the considered initial load demand is 
258MW. 
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Table 1. Parameters to obtain most damaging GRC-LRAV of a modified IEEE-14 bus test system  

Parameter 
KKT Conditions based single level 

MILPP Benders Decomposition 

Low Load Change High Load Change Low Load Change High Load Change 
Variables Number 2070 8280 961 3841 
Equalities’ Number 468 1872 318 1272 

Inequalities’ Number 3162 12648 1933 7729 
Integer Constrained 

Variables 1050 4200 558 2232 

 

Table 2. Low load variation and attack triggers with 𝑇 = 6 

Time Instances 1 2 3 4 5 6 

Load 259 254 260 260 253 259 
𝑹 0 0 20 0 0 20 

 
 
 Most damaging GRC-LRAV, at low load varying 
conditions i.e., analogous to real-time market operations, 
applied on test system is obtained by solving KKT conditions 
based single level MILPP and Benders decomposition 
method. As the variable size is high (as shown in Tab.1), it is 
not possible to represent all solved variables. So, generation 
dispatches (𝑃&), load shedding (𝐿,), attack vector  (∆𝑃.) and 
operational cost are represented in Tab.3 and Tab.4. 
 𝑃&, 𝐿, and ∆𝑃. satisfying all constraints of GRC-LRAV at 
low load variation within 6 time instances with tight ramp 
rates are shown in Tab.3.  If attack is not triggered, 

irrespective of ramp rates, load shedding is zero. At 3rd and 6th 
instances attack is triggered.  Hence, in case of LRA, total 
load shedding is 26.3421MW whereas in case of GRC-LRA, 
total load shedding is 40.5788MW as shown in Tab.3. It is to 
be noted that in this research, generator is not attacked (only 
loads and lines are attacked), so the attack vector, ∆𝑃. in case 
of LRA and GRC-LRA is same as shown in the 3rd and 4th 
rows of Tab.3. 
 Total operational cost and load shedding at low load 
variation at fixed tight ramp rates in 6 time steps of LRA and 
GRC-LRA are given in Tab.4. 

 
 
Table 3. Generator power dispatches, 𝑃& and attack vector, ∆𝑃. in LRA and GRC-LRA at tight fixed ramp rates in low load 
variation 

𝑹_𝒖𝒈=𝑹_𝒅𝒈= 
[30 5 3 5 2] for six 

instances 

Bus 
No. 

Time Instances 

1 2 3 4 5 6 

LRA 
𝑷𝒈 

1 230.00 230.00 196.52 230.00 230.00 196.14 
2 5.47 5.14 0.00 5.54 5.07 0.00 
3 14.67 12.94 30.00 15.02 12.60 30.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 
8 8.85 5.92 20.00 9.44 5.33 20.00 

𝑳𝒔 - 0 0 13.4819 0 0 12.8602 

GRC-LRAV 
𝑷𝒈 

1 229.57 228.78 206.11 230.00 223.11 207.19 
2 5.00 0.00 0.00 1.11 0.00 0.00 
3 17.33 20.33 23.33 24.00 27.00 30.00 
6 0.20 0.00 0.00 0.00 0.00 0.00 
8 6.89 4.89 6.89 4.89 2.89 4.89 

𝑳𝒔 - 0 0 23.6677 0 0 16.9111 

LRAV ∆𝑷𝑫 

2 

Eleven 
zeros 

Eleven 
zeros 

-10.8918 

Eleven 
zeros 

Eleven 
zeros 

-10.8500 
3 38.553 38.4047 
4 -23.9922 -23.9000 
5 -3.6688 -3.6547 
6 0 0 
9 0 0 
10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 0 0 

GRC-LRAV ∆𝑷𝑫 
2 Eleven 

zeros 
Eleven 
zeros 

-10.8918 Eleven 
zeros 

Eleven 
zeros 

-10.8500 
3 38.553 38.4047 
4 -23.9922 -23.9000 
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5 -3.6688 -3.6547 
6 0 0 
9 0 0 
10 0 0 
11 0 0 
12 0 0 
13 0 0 
14 0 0 

 
Table 4. Operational cost and load shedding due to LRA and GRC-LRA at fixed ramp rates in low load variation 

Attack 
Resources, R 

Operational Cost, $/MWh Load Shedding, MW 
Fixed Slack Ramp 
[150 25 15 25 10] 

Fixed Tight Ramp [30 5 3 
5 2] 

Fixed Slack Ramp 
[150 25 15 25 10] 

Fixed Tight Ramp [30 5 
3 5 2] 

LRA GRC-
LRA LRA GRC-LRA LRA GRC-

LRA LRA GRC-LRA 

[0;0;0;0;0;0] 33638.52 33638.52 33638.52 33653.13 0 0 0 0 
[0;0;20;0;0;20] 36567.46 36671.8 36567.46 37523.68 26.3420 29.2941 26.3420 40.5788 

 Economic loss only due to attack=Operational cost with	𝑅 
in LRA − Operational cost without	𝑅 in LRA ⟹
36567.46 − 33638.52 = 2928.94 
 Economic loss only due to ramp=Operational cost 
without	𝑅 in GRC-LRA− Operational cost without	𝑅 in LRA 
⟹ 33653.13 − 33638.52 = 14.61 
 Economic loss due to attack and ramp separately= 
Economic loss only due to attack+ Economic loss only due to 
ramp ⟹ 2928.94 + 14.61 = 2943.55 

 Economic loss due to both attack and ramp in GRC-LRA= 
Operational cost with	𝑅 in GRC-LRA− Operational cost 
without	𝑅 in LRA ⟹ 37523.68 − 33638.52 = 3885.16 
From the above economic loss analysis, it is clear that the 
economic loss in GRC-LRAV regarding scenario-1 is 
3885.16$/MWh and sum of economic loss due to ramp and 
attack individually is 2543.55$/MWh as shown in Tab.5 and 
Fig.3. So, economic loss in GRC-LRAV is 1341.223$/MWh 
greater than the summation of economic losses due to LRAV 
and ramp.  

 
Table 5. Economic loss due to Ramp, LRA and GRC-LRA at fixed ramp rates in low load variation 

Ramp Limits Economic Loss, $/MWh 
Ramp LRA Ramp and LRA GRC-LRA 

Fixed Slack Ramp 0 2928.938 2928.938 3033.286 
Fixed Tight Ramp 14.612 2928.938 2543.542 3885.161 

 

 
Fig. 3. Comparison of economic loss w.r.t. Ramp, LRA, ∑𝑅𝑎𝑚𝑝, 𝐿𝑅𝐴 
and GRC-LRA at fixed ramp rates in low load variation 
 
4.1.2 Scenario-2: High Load Variation with	𝑻=24 at Slack 
and Tight Fixed Ramp Rates 
Let the load changes and attack triggering within 24 time 
steps is as given in Tab.6. Let the slack and tight ramp rates 
are 𝑅_𝑢&=𝑅_𝑑&= [150 25 15 25 10] and 𝑅_𝑢&=𝑅_𝑑&= [60 10 
6 10 4] respectively. It is assumed that generators power 

dispatches at 0th instant are	𝑃&
(L) = [111	0	0	0	0]. Total 

operational cost and load shedding of high load variation at 
fixed slack and tight ramp rates in 24 time steps of LRA and 
GRC-LRA are given in Tab.7. 
 From Tab.7 economic loss calculations are done which 
are given in Tab.8. The economic loss in GRC-LRAV at slack 
ramp constraints (𝑅_𝑢& = 𝑅_𝑑& = [150	25	15	25	10]) is 
5480.489$/MWh and economic loss due to ramp and attack 
separately is 4317.856$/MWh as shown in Tab.8. So, 
economic loss in GRC-LRA at fixed slack ramp rate in high 
load varying conditions is 4211.243$/MWh greater than the 
sum of economic losses of attack and ramp individually. From 
Tab.8 it is also clear that the economic loss in GRC-LRAV at 
tight ramp constraints (𝑅_𝑢& = 𝑅_𝑑& = [60	10	6	10	4]) is 
8755.397$/MWh and economic loss due to ramp and attack 
separately is 4544.154$/MWh as shown in Tab.8 and Fig.4. 
So, economic loss in GRC-LRA is 4211.243$/MWh greater 
than the sum of economic losses due to attack and ramp 
individually.

 
Table 6. Load changes and attack triggering within 24 time steps 

Time Instances 1 2 3 4 5 6 
Load 148 173 220 244 259 248 
𝑹 0 0 0 0 20 20 

Time Instances 7 8 9 10 11 12 
Load 227 202 176 134 100 130 
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𝑹 0 0 0 0 0 0 
Time Instances 13 14 15 16 17 18 

Load 157 168 195 225 244 241 
𝑹 0 0 0 0 20 20 

Time Instances 19 20 21 22 23 24 
Load 230 210 176 157 138 103 
𝑹 0 0 0 0 0 0 

 
 

Table 7. Operational cost and load shedding due to LRA and GRC-LRA at fixed ramp rates in High Load Variation 

Attack Resources, 
R 

Operational Cost, $/MWh Load Shedding, MW 
Fixed Slack Ramp 
[150 25 15 25 10] 

Fixed Tight Ramp [60 
10 6 10 4] 

Fixed Slack Ramp 
[150 25 15 25 10] 

Fixed Tight Ramp [60 
10 6 10 4] 

LRA GRC-
LRA LRA GRC-LRA LRA GRC-

LRA LRA GRC-LRA 

[0;0;0;0;0;0;0;0;0;
0;0;0;0;0;0;0;0;0;0

;0;0;0;0;0;0] 
91604.8 91604.8 91604.8 91831.09 0 0 0 0 

[0;0;0;0;20;20;0;0;
0;0;0;0;0;0;0;0;20;

20;0;0;0;0;0;0] 

95922.6
5 97085.28 95922.65 100360.2 24.089 34.816 24.089 65.252 

 
 

Table 8. Economic loss due to Ramp, LRA and GRC-LRA at Fixed Ramp Rates in High Load Variation 

Ramp Limits Economic Loss, $/MWh 
Ramp LRA Ramp and LRA GRC-LRA 

Fixed Slack Ramp 0 4317.856 4317.856 5480.489 
Fixed Tight Ramp 226.298 4317.856 4544.154 8755.397 

 
 

 
Fig. 4. Comparison of Economic loss w.r.t. Ramp, LRA, ∑𝑅𝑎𝑚𝑝, 𝐿𝑅𝐴 
and GRC-LRA at fixed ramp rates of high load variation 
 
4.2 Economic Loss due to Most Damaging GRC-LRAV at 
Variable Ramp Rates 
 
4.2.1 Scenario-1: Low Load Variation with	𝑻=6 
Similar to fixed ramp rates for the low load variation, the 
generation dispatches at 05= instant are	𝑃&

(L)= [230 5.41 14.33 
0 8.27]. 
 
4.2.1.1 Slack Variable Ramp Rates 
In this article, most damaging GRC-LRAV is obtained at the 
variable ramp rates in all time instances. Variable ramp rates 
are simulated in random within the ±10 tolerance of fixed 
ramp rates i.e., slack fixed ramp rates (𝑅_𝑢& = 𝑅_𝑑& = [150 
25 15 25 10]) are considered and the slack variable ramp rates 
are generated such that [135 22.5 13.5 2.5 9] ≤
𝑅G&(𝑜𝑟)	𝑅_𝑑& ≤ [165 27.5 16.5 27.5 11]. The considered 

variable slack ramp rates at low load variation are presented 
in Tab.A1.  
 Total operational cost and load shedding of low load 
variation in 6 time steps at slack variable ramp rates in case 
of LRA and GRC-LRA are given in Tab.9. 
 From Tab.9 economic loss calculations are done which 
are given in Tab.10. It is clear that the economic loss in GRC-
LRAV at variable slack ramp rates given in Tab.A1 is 
3067.124$/MWh and economic loss due to ramp and attack 
separately is 2928.938$/MWh as shown in Tab.10 and Fig.5. 
So, economic loss in GRC-LRA is 138.1861$/MWh greater 
than the summation individual loss by ramp and LRA. 
 
4.2.1.2 Tight Variable Ramp Rates 
Tight variable ramp rates are also simulated in random within 
the ±10 tolerance of fixed tight ramp rates (𝑅_𝑢& = 𝑅_𝑑& = 
[30 5 3 5 2]) are considered and the tight variable ramp rates 
are generated such that [33 5.5 3.3 5.5 2.2] ≤
𝑅G&(𝑜𝑟)	𝑅_𝑑& ≤ [27 4.5 2.7 4.5 1.8]. The considered variable 
tight ramp rates at low load variation are presented in Tab.A2. 
Total operational cost and load shedding of low load variation 
in 6 time steps at tight variable ramp rates in case of LRA and 
GRC-LRA are given in Tab.9. 
 From Tab.9 economic loss calculations are done which 
are given in Tab.10. It is clear that the economic loss in GRC-
LRAV at variable tight ramp rates mentioned in Tab.A2 is 
3882.804$/MWh and economic loss due to ramp and attack 
separately is 2942.423$/MWh as shown in Tab.10 and Fig.5. 
So, economic loss in GRC-LRA is 940.3808$/MWh greater 
than the summation individual loss by ramp and LRA. 
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Table 9. Operational cost and load shedding due to LRA and GRC-LRA at Variable ramp rates in Low Load Variation 

Attack 
Resources, R 

Operational Cost, $/MWh Load Shedding, MW 

Variable Slack Ramp Variable Tight Ramp Variable Slack 
Ramp Variable Tight Ramp 

LRA GRC-
LRA LRA GRC-LRA LRA GRC-

LRA LRA GRC-
LRA 

[0;0;0;0;0;0] 33638.52 33638.52 33658.52 33652.00 0 0 0 0 
[0;0;20;0;0;20] 36567.46 36705.64 36567.46 37521.32 26.3420 30.0018 26.3420 40.5374 

 
 
Table 10. Economic loss due to Ramp, LRA and GRC-LRA at Variable Ramp Rates in Low Load Variation 

Ramp Limits Economic Loss, $/MWh 
Name Ramp LRA Ramp and LRA GRC-LRA 

Variable Slack Ramp 0 2928.938 2928.938 3067.124 
Variable Tight Ramp 13.485 2928.938 2942.423 3882.804 

 

 
Fig. 5. Comparison of Economic loss w.r.t. Ramp, LRA, ∑𝑅𝑎𝑚𝑝, 𝐿𝑅𝐴 
and GRC-LRA at variable ramp rates of low load variation 
 
 
4.2.2 Scenario-1: High Load Variation with	𝑻=24 
Similar to fixed ramp rates for the high load variation, the 
generation dispatches at 05= instant are	𝑃&

(L)= [110 0 0 0 0]. 
 
4.2.2.1 Slack Variable Ramp Rates 
In this article, most damaging GRC-LRAV is obtained at the 
variable ramp rates in all time instances. Variable ramp rates 
are simulated in random within the ±10 tolerance of fixed 
ramp rates i.e., slack fixed ramp rates (𝑅_𝑢& = 𝑅_𝑑& = [150 
25 15 25 10]) are considered and the slack variable ramp rates 
are generated such that [135 22.5 13.5 2.5 9] ≤

𝑅G&(𝑜𝑟)	𝑅_𝑑& ≤ [165 27.5 16.5 27.5 11]. The considered 
variable slack ramp rates at high load variation of 24 instances 
are presented in Tab.A3.  
 Total operational cost and load shedding of low load 
variation in 24 time steps at slack variable ramp rates in case 
of LRA and GRC-LRA are given in Tab.11. 
 From Tab.11 economic loss calculations are done which 
are given in Tab.12. It is clear that the economic loss in GRC-
LRAV at variable slack ramp rates represented in Tab.A3 is 
5485.389$/MWh and economic loss due to ramp and attack 
separately is 4317.856$/MWh as shown in Tab.12 and Fig.5. 
So, economic loss in GRC-LRA is 1167.533$/MWh greater 
than the summation individual loss by ramp and LRA. 
 
4.2.2.2 Tight Variable Ramp Rates 
Tight variable ramp rates are also simulated in random within 
the ±10 tolerance of fixed tight ramp rates (𝑅_𝑢& = 𝑅_𝑑& = 
[60 10 6 10 4]) are considered and the tight variable ramp rates 
are generated such that [54 9 5.4 9 3.6] ≤ 𝑅G&(𝑜𝑟)	𝑅_𝑑& ≤ 
[66 11 6.6 11 4.4]. The considered variable tight ramp rates at 
low load variation are presented in Tab.A4. 
 Total operational cost and load shedding of low load 
variation in 24 time steps at tight variable ramp rates in case 
of LRA and GRC-LRA are given in Tab.11. 

 
 

Table 11. Operational cost and load shedding due to LRA and GRC-LRA at Variable ramp rates in High Load Variation 

Attack 
Resources, R 

Operational Cost, $/MWh Load Shedding, MW 

Variable Slack Ramp Variable Tight Ramp Variable Slack 
Ramp Variable Tight Ramp 

LRA GRC-
LRA LRA GRC-LRA LRA GRC-

LRA LRA GRC-
LRA 

[0;0;0;0;0;0;0;0;
0;0;0;0;0;0;0;0;0;
0;0;0;0;0;0;0;0] 

91604.8 91604.8 91604.8 91832.43 0 0 0 0 

[0;0;0;0;20;20;0;
0;0;0;0;0;0;0;0;0;
20;20;0;0;0;0;0;0

] 

95922.65 97090.18 95922.65 100354.5 24.088 34.5210 24.088 64.5967 

 

 From Tab.11 economic loss calculations are done which 
are given in Tab.12. It is clear that the economic loss in GRC-
LRAV at variable tight ramp rates given in Table.A4 is 
8749.746$/MWh and economic loss due to ramp and attack 
separately is 4545.491$/MWh as shown in Tab.12 and Fig.6. 
So, economic loss in GRC-LRA is 4204.255$/MWh greater 

than the summation individual loss by ramp and LRA as 
shown in Fig.6. 
 GRC-LRA’s BPP is solved by using both KKT conditions 
based single level MILPP method and Benders 
decomposition method. Comparison of two solving methods 
is done in terms of operational cost, load shedding, economic 
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loss and computational time at tight variable ramp rates as 
given in Tab.13. The difference between single level MILLP 
and Benders decomposition in terms of economic loss, load 
shedding is almost zero and the computational time for single 
level MILPP is more compared to Benders decomposition 
(less variable number in Benders decomposition) as shown in 
Tab.13. 
 

 
Fig. 6. Comparison of Economic loss w.r.t. Ramp, LRA, ∑𝑅𝑎𝑚𝑝, 𝐿𝑅𝐴 
and GRC-LRA at variable ramp rates of high load variation 
 
 

 
Table 12. Economic loss due to Ramp, LRA and GRC-LRA at Variable Ramp Rates in High Load Variation 

Ramp Limits Economic Loss, $/MWh 
Name Ramp LRA Ramp and LRA GRC-LRA 

Variable Slack 
Ramp 0 4317.856 4317.856 5485.389 

Variable Tight 
Ramp 227.6344 4317.856 4545.491 8749.746 

 
 

Table 13. Comparison of Single-level MILPP and Benders decomposition methods in solving GRC-LRA at tight ramp rates of 
high load variation 

In GRC-LRA Single level MILPP Benders decomposition Difference 
Operational cost, $/MWh 100354.542010487 100354.542010454 0 

Load Shedding, MW 64.5967751310903 64.596775131090300 0 
Economic loss, $/MWh 8749.74640800931 8749.74640800925 0 
Computational Time, s 2000.831727 333.507929 – 

 
4.3 Optimal Attack-Defense Strategy by Probabilistic 
Defense against GRC-LRA 
An optimal attack-defense against GRC-LRAV is applied by 
finding optimal critical measuring units, then by framing 
possible attack strategies and further by playing static zero-
sum game. In this article, an optimal attack-defense strategy 
is represented for high load variation of the test system at tight 
variable ramp rates. 
 
4.3.1 Critical Measuring Units for Optimal Attack-
Defense Strategy 
Let the attack resources of the test system operating at high 
load variation with 𝑇 = 24 and subjected to tight variable 
ramp rates as shown in Tab.A4. The economic loss due to 
GRC-LRAV in that case is 8749.746$/MWh. Based on the 
algorithm given in Section-3.3, the critical measuring units 
are derived based on the rank of the measuring unit after 
defending only that specific unit, are shown in Tab.14. 
Now select the units 𝑃.- , 𝑃.. , 𝑃./ and 𝑃.0 (ranks of 1 to 4) and 
if defense is applied to all those four units at once, then the 

resultant economic loss ≅0. Hence these units can be 
considered as critical measuring units.  
 
4.3.2 Probabilities of Optimal Attack-Defense Strategy of 
GRC-LRA 
As mentioned in section-3.3, among four critical units, let the 
attacker has access to three units and the remaining non-
critical units (maximum attack resources of 20). Let the 
defender has access to one critical unit among four.  
 Then the maximum number of possible attack strategies 
be 4M1 = 4 and maximum number of possible defense 
strategies is 4M1 = 4 [26]. The possible attack and defense 
strategies with their corresponding economic loss is shown in 
Tab.15. 
 The probabilities of optimal attack-defense strategy 
against GRC-LRAV (at Nash equilibrium) are given in 
Tab.16. 

 
Table 14. Rank of measuring unit after defending each unit 

Measuri
ng Unit 𝑃.2 𝑃.3 𝑃.1 𝑃.4 𝑃.. 𝑃.- 𝑃.0 𝑃.5 𝑃./ 𝑃.26 𝑃.22 

Econom
ic Loss 
After 

Defense 

1195.1
04 

1195.1
04 

1195.1
04 

1195.1
04 

788.47
27 

500.00
59 

897.44
89 

997.51
69 

869.19
98 

1088.7
53 

1195.1
04 

Rank 7 7 7 7 2 1 4 5 3 6 7 
Measuri
ng Unit 𝑃32 𝑃33 𝑃31 𝑃34 𝑃3. 𝑃3- 𝑃30 𝑃35 𝑃3/ 𝑃326 𝑃322 
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Econom
ic Loss 
After 

Defense 

8749.7
46 

7353.7
15 

6757.7
32 

7454.8
55 

8001.2
95 

7284.6
31 

6677.0
91 

6684.9
05 7290.3 6699.1

24 
7427.4

36 

Rank 20 15 11 17 18 12 8 9 13 10 16 
Measuri
ng Unit 𝑃323 𝑃321 𝑃324 𝑃32. 𝑃32- 𝑃320 𝑃325 𝑃32/ 𝑃336   

Econom
ic Loss 
After 

Defense 

8749.7
46 

8749.7
46 

8749.7
46 

8749.7
46 

8749.7
46 

8044.6
41 

7348.2
06 

6757.7
32 

8749.7
46   

Rank 20 20 20 20 20 19 14 11 20   
 

Table 15. Utility table, economic loss, $/MWh of all possible attack and defense strategies 
Strategies 𝑫𝟏 = 𝑷𝑫𝟓 𝑫𝟐 = 𝑷𝑫𝟔 𝑫𝟑 = 𝑷𝑫𝟕 𝑫𝟒 = 𝑷𝑫𝟗 

𝑨𝟏 = 𝑷𝑫𝟓 , 𝑷𝑫𝟔 , 𝑷𝑫𝟗 435.1796 562.2581 897.4489 227.6344 
𝑨𝟐 = 𝑷𝑫𝟓 , 𝑷𝑫𝟕 , 𝑷𝑫𝟗 461.3374 500.0059 562.2581 250.1581 
𝑨𝟑 = 𝑷𝑫𝟓 , 𝑷𝑫𝟔 , 𝑷𝑫𝟕 227.6344 250.1581 227.6344 869.1998 
𝑨𝟒 = 𝑷𝑫𝟔 , 𝑷𝑫𝟕 , 𝑷𝑫𝟗 788.4727 461.3374 435.1796 227.6344 

 
 
Table 16. Probabilities of optimal attack-defense strategy (Nash equilibrium) at variable tight ramp rates of high loading 
variation 

Attack Probabilities,	𝑷𝑨_𝑺𝒂 Defense Probabilities,	𝑷𝑫_𝑺𝒅 

𝑷𝑨𝟏 0.4667 𝑷𝑫𝟏 0.1532 

𝑷𝑨𝟐 0 𝑷𝑫𝟐 0.5363 

𝑷𝑨𝟑 0.3293 𝑷𝑫𝟑 0 

𝑷𝑨𝟒 0.2040 𝑷𝑫𝟒 0.3105 

�𝑃BA"

(*B

)*+

= 0.4667 + 0 + 0.3293 + 0.2040 

⟹�𝑃B_U"

(*B

)*+

= 1 

�𝑃.A"

(*)

)*+

= 0.1532 + 0.5363 + 0 + 0.3105 

⟹�𝑃._U"

(*)

)*+

= 1 

 
 
5. Conclusions 
 
Cyber attacks in power systems are noteworthy as they can 
make system’s economy, security and reliability vulnerable. 
Disruptive agents (attackers) can intrude into the system with 
complete or incomplete network information and inject 
undetectable false data into the system to mislead state 
estimation. Such kind of undetectable false data attacks are 
called FDIAs. LRAs are practical FDIAs that target bus 
power injections and line power flows to create unnecessary 
load shedding and line outages also that lead to considerable 
economic loss. To find the most damaging LRAV, a BPP is 
framed with attacker in upper level and basic SCOPF 
(operator) in the lower level. In this article generator ramp 
constraints are induced into basic SCOPF, to find the impact 
of ramp constraints on economic loss when an attack is 
triggered. The effect of ramp rates can directly effect a 
generator (when attacked) and create loss [23, 24]. The 
advantageous issue in this work is even if loads/lines are 
attacked in place of a generator, fixed/variable ramp rates can 
lead to more economic loss than basic LRA. 
 Mathematical model of GRC-LRA is framed on 
incorporating ramp constraints to basic LRA modelling. 
GRC-LRA’s impact on operational cost/economic loss of the 
system is found by using two solvers. One is BPP is converted 
to KKT conditions based single-level MILPP method and the 

other is solving BPP directly by Benders decomposition 
method. GRC-LRA’s effect is studied on the modified IEEE-
14 bus test system. To illustrate the impact of ramp constraints 
in a better way, load is considered in two modes in which one 
of them is low load variation with 6 time instances and the 
other is high load variation with 24 time instances. In each 
mode of operation, again fixed and variable ramp rates are 
considered, whereas in further in each fixed and variable ramp 
rates are considered as slack (not-tight) or tight. Economic 
loss in two loading modes at fixed slack, fixed tight, variable 
slack and variable tight ramp rates are elucidated in Tab.5 and 
Fig.3, Tab.8 and Fig.4, Tab.10 and Fig.5 and, Tab.12 and 
Fig.6 respectively. From the aforementioned tables it is clear 
that the economic loss in GRC-LRA case is more than the sum 
of economic loss in ramp and LRA individually. From this 
study it can be concluded that generator ramp constraints must 
be considered while analyzing LRAs against power grid 
dynamically. For providing optimal defense, optimal critical 
measuring units are selected based on the ranking on 
measuring units shown in Tab.14. Probabilities of optimal 
attack-defense strategies are obtained by playing static zero-
sum game on the utility table given in Tab.15. The optimal 
probabilities are given in Tab.16. Hence, this research gives 
the in-sight of the impacts of optimal attacking and defending 
strategies at fixed and variable ramp rates induced into LRA 
on SCOPF in power systems. 
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Tab.A1 and Tab.A2 represent the slack and tight variable 
ramp rates at low load variation ∀	𝑡 = {1,2, … ,6} 
respectively. However, Tab.A3 and Tab.A4 represent the 

slack and tight variable ramp rates at high load variations 
∀	𝑡 = {1,2, … ,24} respectively. 

 
 
Table A1. Slack Variable Ramp Rates at Low Load Variation of 𝑇 = 6 

 𝑷𝒈𝟏 𝑷𝒈𝟐 𝑷𝒈𝟑 𝑷𝒈𝟔 𝑷𝒈𝟖 
𝒕 = 𝟏 159 26.5 15.9 26.5 10.6 
𝒕 = 𝟐 162 27 16.2 27 10.8 
𝒕 = 𝟑 139.5 23.25 13.95 23.25 9.3 
𝒕 = 𝟒 162 27 16.2 27 10.8 
𝒕 = 𝟓 154.5 25.75 15.45 25.75 10.3 
𝒕 = 𝟔 138 23 13.8 23 9.2 

 
Table A2. Tight Variable Ramp Rates at Low Load Variation of 𝑇 = 6 

 𝑷𝒈𝟏 𝑷𝒈𝟐 𝑷𝒈𝟑 𝑷𝒈𝟔 𝑷𝒈𝟖 
𝒕 = 𝟏 30 5 3 5 2 
𝒕 = 𝟐 29.7 4.95 2.97 4.95 1.98 
𝒕 = 𝟑 30.9 5.15 3.09 5.15 2.06 
𝒕 = 𝟒 31.2 5.2 3.12 5.2 2.08 
𝒕 = 𝟓 31.5 5.25 3.15 5.25 2.1 
𝒕 = 𝟔 28.8 4.8 2.88 4.8 1.92 

 
 

Table A3. Slack Variable Ramp Rates at High Load Variation of 𝑇 = 24 
 𝑷𝒈𝟏 𝑷𝒈𝟐 𝑷𝒈𝟑 𝑷𝒈𝟔 𝑷𝒈𝟖 

𝒕 = 𝟏 156 26 15.6 26 10.4 
𝒕 = 𝟐 157.5 26.25 15.75 26.25 10.5 
𝒕 = 𝟑 157.5 26.25 15.75 26.25 10.5 
𝒕 = 𝟒 147 24.5 14.7 24.5 9.8 
𝒕 = 𝟓 154.5 25.75 15.45 25.75 10.3 
𝒕 = 𝟔 139.5 23.25 13.95 23.25 9.3 
𝒕 = 𝟕 156 26 15.6 26 10.4 
𝒕 = 𝟖 136.5 22.75 13.65 22.75 9.1 
𝒕 = 𝟗 144 24 14.4 24 9.6 
𝒕 = 𝟏𝟎 136.5 22.75 13.65 22.75 9.1 
𝒕 = 𝟏𝟏 138 23 13.8 23 9.2 
𝒕 = 𝟏𝟐 159 26.5 15.9 26.5 10.6 
𝒕 = 𝟏𝟑 156 26 15.6 26 10.4 
𝒕 = 𝟏𝟒 144 24 14.4 24 9.6 
𝒕 = 𝟏𝟓 163.5 27.25 16.35 27.25 10.9 
𝒕 = 𝟏𝟔 136.5 22.75 13.65 22.75 9.1 
𝒕 = 𝟏𝟕 148.5 24.75 14.85 24.75 9.9 
𝒕 = 𝟏𝟖 147 24.5 14.7 24.5 9.8 
𝒕 = 𝟏𝟗 157.5 26.25 15.75 26.25 10.5 
𝒕 = 𝟐𝟎 159 26.5 15.9 26.5 10.6 
𝒕 = 𝟐𝟏 141 23.5 14.1 23.5 9.4 
𝒕 = 𝟐𝟐 150 25 15 25 10 
𝒕 = 𝟐𝟑 148.5 24.75 14.85 24.75 9.9 
𝒕 = 𝟐𝟒 154.5 25.75 15.45 25.75 10.3 

 
Table A4. Tight Variable Ramp Rates at High Load Variation of 𝑇 = 24 

 𝑷𝒈𝟏 𝑷𝒈𝟐 𝑷𝒈𝟑 𝑷𝒈𝟔 𝑷𝒈𝟖 
𝒕 = 𝟏 56.4 9.4 5.64 9.4 3.76 
𝒕 = 𝟐 58.2 9.7 5.82 9.7 3.88 
𝒕 = 𝟑 64.8 10.8 6.48 10.8 4.32 
𝒕 = 𝟒 58.8 9.8 5.88 9.8 3.92 
𝒕 = 𝟓 60.6 10.1 6.06 10.1 4.04 
𝒕 = 𝟔 65.4 10.9 6.54 10.9 4.36 
𝒕 = 𝟕 63.6 10.6 6.36 10.6 4.24 
𝒕 = 𝟖 61.2 10.2 6.12 10.2 4.08 
𝒕 = 𝟗 61.8 10.3 6.18 10.3 4.12 
𝒕 = 𝟏𝟎 59.4 9.9 5.94 9.9 3.96 
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𝒕 = 𝟏𝟏 57 9.5 5.7 9.5 3.8 
𝒕 = 𝟏𝟐 55.8 9.3 5.58 9.3 3.72 
𝒕 = 𝟏𝟑 60.6 10.1 6.06 10.1 4.04 
𝒕 = 𝟏𝟒 59.4 9.9 5.94 9.9 3.96 
𝒕 = 𝟏𝟓 65.4 10.9 6.54 10.9 4.36 
𝒕 = 𝟏𝟔 63.6 10.6 6.36 10.6 4.24 
𝒕 = 𝟏𝟕 57 9.5 5.7 9.5 3.8 
𝒕 = 𝟏𝟖 64.8 10.8 6.48 10.8 4.32 
𝒕 = 𝟏𝟗 55.2 9.2 5.52 9.2 3.68 
𝒕 = 𝟐𝟎 55.8 9.3 5.58 9.3 3.72 
𝒕 = 𝟐𝟏 63.6 10.6 6.36 10.6 4.24 
𝒕 = 𝟐𝟐 58.8 9.8 5.88 9.8 3.92 
𝒕 = 𝟐𝟑 63.6 10.6 6.36 10.6 4.24 
𝒕 = 𝟐𝟒 61.8 10.3 6.18 10.3 4.12 

 
Nomenclature 

Abbreviations 
PMU Phasor Measurement Unit 
RTU Remote Terminal Unit 
DoS attacks Denial of Service attacks 
SCADA Supervisory Control and Data Acquisition 
FDIA False Data Injection Attack 
FDIAV False Data Injection Attack Vector 
SCED Security Constrained Economic Dispatch 
SCOPF Security Constrained Optimal Power Flow 
LRA Load Redistribution Attack 
LRAV Load Redistribution Attack Vector 
GRC-LRA Generator Ramp Constraints induced Load Redistribution Attack 
GRC-LRAV Generator Ramp Constraints induced Load Redistribution Attack Vector 
BPP Bi-level Programming Problem 
MILPP Mixed Integer Linear Programming Problem 
KKT conditions Karush-Kuhn-Tucker conditions 
Symbols 
𝑃&"   Power Dispatch of 𝑖5= generator 
𝐿,$   Load Shedding/Curtailment of 𝑘5= load 
∆𝑃.$   Load attack on 𝑘5= load 
∆𝑃3&   Line attack on 𝑙5= generator 
𝑹  Vector of attack resources 
𝜃.$   ¥1	𝑖𝑓	∆𝑃.$ ≠ 0

𝑒𝑙𝑠𝑒	0	
  

𝜃.1$   ¥1	𝑖𝑓	∆𝑃.$ > 0
𝑒𝑙𝑠𝑒	0	

  

𝜃.2$   ¥1	𝑖𝑓	∆𝑃.$ < 0
𝑒𝑙𝑠𝑒	0	

  

𝜃3&   ¥1	𝑖𝑓	∆𝑃3& ≠ 0
𝑒𝑙𝑠𝑒	0	

  

𝜃31&   ¥1	𝑖𝑓	∆𝑃3& > 0
𝑒𝑙𝑠𝑒	0	

  

𝜃32&   ¥1	𝑖𝑓	∆𝑃3& < 0
𝑒𝑙𝑠𝑒	0	

  

𝑃.$   Load demand of 𝑘5= load 
𝑃3&   Power flow on 𝑙5= line 
𝑅_𝑢&" , 𝑅_𝑑&"  Up and down ramp rates of	𝑖5= generator 
𝑺𝑭,𝑲𝑫  Shift Factor and Bus-generator incidence matrices 
𝑀, 𝜀  Sufficiently large and sufficiently small positive numbers 
𝜏  Attack deviation bound on load bus 
𝛢4 , 𝛢4  Lagrange multipliers for upper and lower bounds of	𝑙5= transmission line 
𝛣) , 𝛣)  Lagrange multipliers for upper and lower bounds of	𝑖5= generator 
𝛤- , 𝛤-  Lagrange multipliers for upper and lower bounds of	𝑘5= load 
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𝑟𝑢)5, 𝑟𝑑)5  Lagrange multipliers for ramp up and ramp down of	𝑖5= generator 
𝜔V,4 , 𝜔V,4 , 
𝜔W,) , 𝜔W,) , 
𝜔X,- , 𝜔X,- , 
𝜔FG"+ , 𝜔FH"+  

Binary variables that represent complementary slackness conditions of 𝑙5= transmission 
line, 𝑖5= generator, 𝑘5= load and ramping of 𝑖5= generator 

𝐴9, 𝐷< 𝑚 attack and 𝑛 defense  
strategies 

𝑃B, , 𝑃.D Probabilities of 𝑚5= attack and 𝑛5= defense strategies 
 
 


