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Abstract 
 

To simplify and solve the problem of the foundation beam, a half-space elastic foundation beam was selected, and the 
elastic foundation beam was systematically explored based on Boussinesq solution and the principle of minimum 
complementary energy. The step-by-step loading method was adopted to derive the settlement formula of the foundation 
beam. The superposition principle was used and the flexibility influence matrix was introduced to obtain the deformation 
energy of the foundation beam under the action of external force, and the complementary energy functional of foundation 
beam was established. Combined with the engineering example, the force and settlement of the foundation beam under 
the concentrated load and uniform load were calculated respectively, and the distribution characteristic of the ground 
reaction was analysed. Results show that the linear homogeneous differential equations with ground reaction as the basic 
unknown quantity are established and the method for solving the ground reaction is given. The comparison analysis 
proves that the new method is accurate and feasible. The new algorithm using the principle of minimum complementary 
energy can provide a reference for solving the similar engineering problems. 
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1. Introduction 
 
Foundation beams are basic structures in construction and 
are widely used in various civil and industrial buildings, 
such as highway construction, strip foundations in railway 
track design, grid beam foundations, and other building 
structures [1]. Since most engineering structures can be 
simplified into the calculation of elastic foundation beams, 
such as high-speed railway, underground pipelines, roof and 
floor of the roadway, and other engineering problems [2-4]. 
Although the calculation of elastic foundation beams is a 
classic research field, with the progress of the technology, 
new foundation models and calculation methods are 
emerging one after another [5-8]. 

At present, the classic theory of elastic foundation beam 
is widely used in construction fields, such as roads, railways 
and buildings [9-10]. As the scale of modern architectural 
design continues to increase, the weight of the building itself 
continues to increase, and the cost of the building foundation 
also continues to increase, which makes it becoming an 
important problem to design a foundation that meets the 
needs of the project within an economically reasonable 
range. To solve the ground reaction is equivalent to the 
contact problem. The difficulty in solving such problems is 
the calculation and solution of the interaction between the 
ground and the foundation beam. Therefore, the key is to 
choose a suitable foundation model and solution method. 
The studies on elastic foundation beam models mainly 
include Winkler foundation beam model [11], two-parameter 

foundation beam model [12], and half-space elastic 
foundation beam model [13]. 

The principle of minimum potential energy is based on 
displacement as the basic unknown quantity. The potential 
energy functional is established to solve the settlement, 
while the ground reaction is calculated from the 
displacement. However, it is rarely reported to solve the 
foundation beam based on the principle of minimum 
complementary energy. The reason is that the premise of 
using the stress variation method is to set the known stress 
not only to satisfy the stress boundary condition, but also to 
satisfy the equilibrium equation, which is difficult to achieve 
for general problems. But it is satisfactory for the half-space 
elastic foundation beam, and this method can directly solve 
the ground reaction, avoiding the error of the reaction 
obtained by the second calculation of the displacement. 

Although an ideal foundation calculation model has been 
established, while with the development of large-scale 
construction projects, the interaction of ground and 
foundation beams, slabs and other foundations requires more 
in-depth theoretical studies. How to solve the internal force 
and displacement of the foundation beam more accurately 
and conveniently has become the key problem. 
 
 
2. State of the art 
 
Because the Winkler model requires few parameters, it has 
been widely used in the world. Many researchers have 
studied the Winkler foundation beam combined with the 
related engineering practice. Yu and Wang established a 
calculation model between the side walls of the tunnel based 
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on the Winkler foundation beam model, they analyzed the 
distribution of deflection, bending moment and shear force 
of the side wall [14]. Ge and Xu established a numerical 
method to identify the void area between the foundation 
beam and the ground based on the Winkler foundation beam 
model [15]. According to the principle of the Winkler elastic 
foundation beam, the Winkler foundation model has some 
defects: The impact of shear deformation and the continuity 
of the ground are not considered, and the settlement of the 
foundation only occurs within the range of its base, which is 
obviously inconsistent with the reality. In addition, 
according to the Winkler’s assumption, the coefficient K of 
the ground is a constant. But K has more influencing factors 
and it is not easy to determine [16-18]. 

For the elastic half-space foundation model, it considers 
the diffusion of stress and deformation and the interaction 
between adjacent loads, which is more in line with the 
engineering. Wang studied the analytical solutions of free 
beams on the elastic half-space ground under arbitrary 
lateral loads, including the beam deflection, bending 
moment and the contact reaction between the foundation 
beam and the ground [19]. Based on the Boussinesq’s 
solution of a half-space elastic ground, Mi studied the local 
elastic solution of the displacement and stress on the surface 
loaded with nanomaterials under the load considering the 
effect of friction [20]. Kontomaris and Malamou solved the 
contact force between the rigid ball and the elastic body 
based on the elastic half-space model, and they analysed the 
deformation law and applicability of the theory under 
different radii of the ball [21]. Baraldi and Tullini proposed a 
simple and effective numerical model of bilateral frictionless 
contact between the flexible and rigid foundations in a three-
dimension elastic half-space. They studied the laterally 
isotropic foundations parallel to the isotropic plane of the 
half-space boundary and obtained the settlement, the 
relationship between the inverse forces [22]. Tang et al. 
introduced the new parameters based on the half-space 
elastic model to give answers to satisfy various transverse 
anisotropic elastic models, and they specifically analysed the 
influencing factors of the transverse anisotropy [23-25]. The 
above mentioned researches all use the half-space elastic 
foundation model. But they all have the common 
shortcoming that the calculation model based on 
Boussinesq’s solution is difficult to be solved directly by 
mathematical methods. Therefore, the difficulty in solving 
the half-space elastic foundation beam lies in the 
mathematical solution. 

Among the methods for solving the elastic foundation 
beams, the principle of minimum potential energy based on 
the principle of energy variation has been widely used. 
Based on the principle of minimum potential energy and the 
analytical solution of the Winkler foundation beams, Li et al. 
constructed the Euler beam and Timoshenko beam elements 
[26-27]. Similarly, Guo et al. used the variational principle 
to solve the analytical solution of the bi-parameter elastic 
foundation beam considering the axial force [28]. Wang et al. 
analysed the deflection curve of half-space elastic 
foundation beams and compared them with other numerical 
methods to analyse the advantages and disadvantages of the 
approximate solution [29-31].  

In this study, the elastic half-space foundation beam was 
taken as the research object, and the superposition principle 
was used to deduce the displacement reduction formula of 
the elastic half-space foundation under the load transfer 
action of the upper beam, and the complementary energy 
functional of the foundation beam was established. Based on 

the minimum complementary energy principle, the 
homogeneous linear equations with ground reaction as the 
basic unknown quantity were obtained. Finally, combining 
with a specific example, the solution was given and 
compared with other theoretical solutions to prove the 
correctness and applicability of the new method. The results 
can provide the theoretical basis and technical support for 
the similar practice. 

The rest of this study is organized as follows. Section 3 
describes the research methods. Section 4 gives the results 
and discussion, and finally, the conclusions are summarized 
in Section 5. 
 
 
3. Methodology 

 
The strain energy generated in the deformation process of 
the foundation under the action of the force was calculated, 
and then the expression of the complementary energy of the 
foundation was derived. Based on the deformation generated 
when the beam was bent, the expression of the 
complementary energy of the foundation beam was derived 
homogeneously. Finally, based on the energy principle, the 
complementary energy functional of the foundation beam 
was established. 
 
3.1 Theoretical analysis of foundation beam 
The foundation beam is analysed theoretically to study the 
applicability of the minimum complementary energy 
principle. As shown in Fig. 1, the equilibrium differential 
equation of the classical beam on elastic foundation is as Eq. 
(1).  

      (1) 

where, w is the deflection of the beam, Eb is the elastic 
modulus of the beam, I is the moment of inertia, q(x) is the 
external load on the foundation beam, and p(x) is the ground 
reaction. 

 
Fig. 1. Mechanical mode of the foundation beam. 

Based on the Boussinesq’s solution of the half-space 
elastic foundation model, the balance governing equation of 
the half-space elastic foundation beam is derived: 
 

          (2) 

 
where, Ef is the elastic modulus of ground, μf is the 
Poisson’s ratio of ground. In Eq. (2), p(x) is the unknown 
function which satisfies the equilibrium condition: 
 

                          
   (3) 

 
Since it is difficult to solve the Eq. (2) mathematically in 

combination with the static boundary conditions. For the 
foundation beam, the external load on the foundation beam 
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and the ground reaction are shown in Fig. 1, which satisfies 
the force balance condition, that is, satisfies the known force 
boundary condition. The deduction of the complementary 
energy from the balance equation of the foundation beam is 
based on the equivalent relationship between the deflection 
equation and the bending moment equation, which shows 
that each cross-section in the foundation beam satisfies the 
balance differential equation. For the ground, based on the 
Boussinesq’s solution to solve the deformation of the half-
space elastic ground under the action of force, which shows 
that any point in the ground satisfies the balance differential 
equation and the boundary conditions of force and 
displacement. The settlement and force at infinity of the 
ground tend to be zero when the weight of the ground is not 
taken into account, the principle of minimum 
complementary energy is suitable for the solution of the 
foundation beam. 
 
3.2 Settlement analysis of half-space elastic ground 
To establish the complementary energy functional of the 
foundation beam based on the Boussinesq’s solution, the 
settlement formula of the foundation beam under the 
transferred load was deduced, and the complementary 
energy formula of the half-space elastic ground under the 
load was further obtained. 

As shown in Fig. 2, the contact part of the beam and 
ground is divided into n numbers of equal size elements 
along the length direction by using the method similar to the 
finite element. Let each cell be 2a in length and 2b in width. 
For the beam with rectangular section, the change of the load 
on the groud in the beam width is ignored. Referring to the 
groud reaction shown in Fig. 1, the distributed force on the 
foundation is recorded as p(x). When the element size is 
small enough, the uniform force on each element can be 
regarded as a set of concentrated forces. As seen from Fig. 2, 
the uniform force of 4abp can be equivalent to the 
concentrated force of . So the complementary energy 
functional of the foundation beam is deduced, the formula 
for the settlement of the loaded element is deduced.  

 
Fig. 2. Schematic diagram of the equivalent concentrated forces on the 
foundation beam. 
 

As shown in Fig. 3(a), taking any unit in Fig. 2 as the 
research object and set N as the center of the element. The 
whole rectangular region is divided into four equal sized 
regions. The ABCN is composed by two parts: Φ1 and Φ2. 
The displacement at point N under the action of load in 
ABCN region is calculated, and then the displacement 
expression at the center point of the rectangular element can 
be obtained by superposition of four regions. 

   

(a) Settlement of element center     (b) Loading area outside element  
Fig. 3. Settlement calculation diagram of the element. 

 
The deformation region of the element is represented by 

Ω. Taking a micro element in the Ω area, the load on the 
micro element is pdxdy and the load on the micro element 
can be regarded as the concentrated load. Based on the 
settlement formula under the concentrated load on the half-
space elastic ground model, the vertical displacement at the 
center point N of the element under the concentrated load 
can be calculated as Eq. (4). 
 

                       
(4) 

 
where, E0 and μ0 is the elastic modulus and the Poisson’s 
ratio of the ground, respectively. 

Setting N point as the point in the polar coordinate 
system, and X-axis is the polar axis of the polar coordinate 
system, the combination of Φ1 and Φ2 into Ω1 is regarded as 
a region. The rectangular cell ABCN is shown in Fig. 3(a), 
∠BNA=α, NA=CB=a, BA=CN=b, so the interval range of 
Φ1 and Φ2 is as following: 
 

              (5) 

 
The whole rectangular element is divided into four parts: 

Ω1, Ω2, Ω3, and Ω4. Since Ω1 = Φ1 + Φ2. So Eq. (4) can be 
calculated as follow: 

 

     
(6) 

 
Based on the polar coordinate, Eq. (6) can be solved as 

Eq. (7). 
 

            (7) 

 
Setting cotα=a/b=m, then Eq. (7) can be simplified as 

following: 
 

      (8) 

 
Substituting Eq. (8) into Eq.(4), then Eq. (9) is: 

 

       
(9) 

 
According to the theory of elasticity, the settlement at 

the center point N of the element is the total settlement of the 
four parts at N, then Eq. (10) is: 
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(10) 

 
The calculation of the settlement caused by the load 

outside the element area is shown in Fig. 3(b). Similarly, 
taking a micro-element in ABCD, and regarding the force on 
the micro-element as a concentrated force too. So the 
settlement of the force on the element ABCD to the point O 
is the superposition of two parts. The settlement at O can 
also be expressed by as Eq. (11). 

 
             (11) 

 
where, d is the distance between the center point O of the 
element for settlement calculation and the nearest boundary 
D of the loaded element. 

The specific derivation process is omitted and the 
solution in the polar coordinate is calculated as Eq. (12). 

 

                  

(12) 

 
where, ψ2(t) and ψ3(t) in Eq. (12) are expressed as following: 
  

 
3.3 Complementary energy analysis of ground settlement 
When the foundation beam is under the loading, it is 
assumed that the ground and the foundation beam are in 
complete contact during the deformation process, and only 
the settlement in the vertical direction of the ground is 
considered regardless of the interlayer friction. According to 
the equivalent principle in elasticity, the deformation energy 
is independent of the order of the force applied by the elastic 
body, and depends on the external force and the final 
deformation of the elastic body. For the deformation energy 
of the ground, it is assumed that the concentrated loads are 
loaded on the ground in order from left to right. Assuming 
the work done by the concentrated load on the ground is 

as Eq. (13). 
 

    (13) 

 
where, wij is the settlement at the center of the element i 
caused by the force on the element j, as shown in Fig. 4. 

According to the superposition principle of elasticity, the 
sum of the work done by each concentrated load is the work 
of all concentrated load. Because the relationship of the 
force-displacement is linear, the complementary energy and 
the strain energy are equal. The complementary energy of 
the ground is the work done by all concentrated loads, and 
which can be expressed by U1 as Eq. (14). 

 

            
(14)

 

 
Fig. 4. Schematic diagram of wij. 

 
For each element, there is a linear relationship between 

the concentrated load and . If the size of each cell is the 
same, the scale factor kii is equal as Eq. (15).   

                   
(15) 

 
Since there is a similar linear relationship between 

the and ,the relationship coefficient is recorded as kij: 

 
              (16) 

 
Setting cij=1/kij, and cij is the flexibility influence 

coefficient of j element to i element, combined with Eqs. 
(15) and (16), the complementary energy of the ground can 
be calculated as Eq. (17).  

 

                   

(17) 

 
The vertical settlement wii of the element can be 

calculated based on the Boussinesq’s solution in polar 
coordinate as Eq. (18). 

 
   (18) 

 
As shown in Fig. 4, the settlement wij caused by the 

equivalent concentrated force at the center point xi of 
other elements can be calculated as Eq. (19).  

 

   
(19) 

 
where, s is the distance between the center of the i element 
and the left boundary of j element. 

 

 

By introducing the flexibility influence matrix, Eq. (13) 
is written in the matrix form as Eq. (20). 
 

            (20) 
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The ratio of settlement at the center point of element i to 

that at the center point of element j is denoted by qij, which 
has the following characteristics: 

                    (21)
  

 

            (22) 

 
where, qij is related to the relative position of the element 
and not related to the load size.  

According to the half-space elastic ground model, qij is 
symmetry: qij=qji. From Eqs. (18), (19), and (20), qij can be 
obtained.  

According to the relative position of the element, and 
after calculation and verification, the general equation of the 
influence coefficient qij can be calculated as Eq. (23). 
 

                       
(23) 

 
By introducing the influence coefficient of flexibility and 

combining Eqs. (6) and (12), wij can be rewritten as Eq. (24). 
 

                   (24) 

 
Eq. (20) is rewritten as Eq. (25). 

 

             (25) 

 
Since the scale factor kii of the equal size element is 

equal, it is expressed by k in Eq. (25). 
The complementary energy expression of the ground is 

obtained as Eq. (26). 
 

                               
(26) 

 
3.4 Complementary energy analysis of foundation beam 
Assuming that the deflection curve of the foundation beam 
and the settlement of the ground are equal everywhere, 
ignoring the friction between the foundation beam and the 
ground. It is known that the length of the foundation beam is 
l, the uniformly distributed load q(x) and the concentrated 
load Qi (i=1, 2, ···, n) act on the foundation beam, the 
deflection curve of the foundation beam is w(x), and the 
complementary energy (the deformation energy of the beam) 
of the foundation beam is U2. It can be calculated as Eq. (27).  
 

                           
(27) 

 

According to the relationship between the second 
derivative of deflection equation and moment equation as Eq. 
(28): 
 

                                   (28) 

So Eq. (27) is rewritten as Eq. (29). 
 

                         (29) 

 
where, M(x) can be expressed according to the force of the 
foundation beam as shown in Fig. 1. The bending-moment 
equation M(x) can be calculated as Eq. (30). 
 

                  (30) 

 
The total complementary energy of the foundation beam 

system includes the deformation energy of the ground and 
the foundation beam. The complementary energy functional 
V can be calculated as Eq. (31). 
 

      
(31) 

 
As shown in Eq. (31), the complementary energy 

functional is a function of . Based on the principle of 
minimum complementary energy, the ground reaction of the 
system can be calculated as Eq. (32). 

 
                 (32) 

 
According to the precondition of half-space elastic 

foundation beam, the known deformation compatibility 
condition should be satisfied, and the deflection of each 
point on the beam is equal to the settlement of the 
corresponding part of the ground. In addition, the ground 
reaction must satisfy the equilibrium condition as Eq. (33). 
 

               (33) 

 
4. Results and discussion 
 
As shown in Fig. 5, supposing a foundation beam is in 
complete smooth contact with the ground, the elastic 
modulus and the bending stiffness of the foundation beam is 
Eb = 2 GN/m2 and EbIb = 145.8 MN·m2 respectively, the 
length and width of which are l = 6 m and 2b = 0.7 m 
respectively. The elastic modulus and Poisson’s ratio of the 
ground is Ef = 6.5 MPa and μf = 0.25, respectively. Assuming 
working condition 1: The central part of the foundation 
beam is subjected to a concentrated force Q = 80 kN; 
Working condition 2: There is uniform load q(x)=20 kN/m 
on the foundation beam. 
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Fig. 5. The forces of the foundation beam. 

 
According to the above mentioned method, the contact 

part between the foundation beam and ground is divided into 
10 equal large elements along the length in Fig. 5. Assuming 
the concentrated force on each element is 
is , the equation is established by Eq. (32), 
and the equivalent concentrated load on each element is 
obtained. The solution process is to write a self-development 
calculation program for calculation. Tables 1 and 2 show the 
solution results of the foundation beam under the 
concentrated and uniform loads, respectively. 

 
Table 1. The concentrated load on the element. 

Equivalent  
concentrated force 

     

Result (kN) 9.02 7.32 7.58 7.91 8.18 
Equivalent  

concentrated force 
     

Result (kN) 8.18 7.91 7.58 7.32 9.02 
 
Table 2. The uniform load on the element. 

Equivalent  
concentrated force 

     

Result (kN) 15.81 11.57 11.07 10.82 10.73 
Equivalent  

concentrated force 
     

Result (kN) 10.73 10.82 11.07 11.57 15.81 
 
The concentrated force in Table 1 is equivalent to the 

average force on each element as follow: =4abp. Then, 
the distribution curve of the ground reaction is obtained by 
fitting with the least square method. As shown in Fig. 6, 
there is a large ground reaction at the end of the foundation 
beam. In the deformation process of the half-space elastic 
ground and foundation beam, when the bending stiffness of 
the foundation beam is relatively large, although the soil 
around the end of the beam is not subject to the load, it has 
the effect of supporting constraint on the end of the beam, 
and the end of the beam is strongly supported, resulting in 
the stress concentration phenomenon of sharp increase of the 
contact force. 

 
(a) The concentrated load 

 
 (b) The uniform load 

Fig. 6. The fitting curve of the ground reaction. 
 

Based on the results of the obtained ground reaction, 
combined with Eqs. (18) and (19) to solve the settlement of 
the elastic foundation beam under the load, it is conducive to 
the least square method to fit the curve. The results are 
shown in Fig. 7. 

In addition, based on the comparative analysis of the 
calculation examples [30], the method proposed in literature 
[30] is based on the generalized variational principle to solve 
the elastic foundation beam. The main calculation 
parameters are as follow: the elastic modulus of the beam is 
Eb= 2.1 GN/m2. The length, the width and the height of the 
foundation beam is l = 6 m, 2b = 0.7 m, and h = 0.4 m, 
respectively. The elastic modulus and Poisson’s ratio of the 
ground is Ef = 1.5 MPa and μf=0.3, respectively. The solution 
is carried out under the action of the concentrated force Q = 
45 kN in the middle of the foundation beam and uniformly 
distributed load q(x)=15 kN/m, respectively. 

 
(a) The concentrated load 

 
(b) The uniform load  

Fig. 7. The fitting curve of the settlement. 
 

As shown in Fig. 8, the results of the two methods are 
very similar, which verifies accuracy of the new method. 

ip ( )1,2,i n= !

1p 2p 3p 4p 5p

6p 7p 8p 9p 10p

1p 2p 3p 4p 5p

6p 7p 8p 9p 10p

ip
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However, after the detailed comparative analysis, the 
complicated formula derivation is carried out in the literature 
[30]. The method in this study is more intuitive to solve the 
ground reaction directly. In addition, the new solution is 
simpler, and the derivation process of the formula is 
simplified. The calculation is greatly reduced and it can be 
solved by the programming of the mathematical software. 

 
(a) The concentrated load 

 
(b) The uniform load  

Fig. 8. Comparative analysis of the ground reaction. 
 
5. Conclusions 
 

To simplify and solve the problem of the foundation beam, 
based on the principle of minimum complementary energy, 
the interaction of the half-space elastic foundation beam 
system under the concentrated and uniform load was 
analysed. The main conclusions are as following: 

 (1) The polar coordinate solution of the settlement of the 
half-space elastic ground is derived. The expressions of the 
deformation energy of the half-space elastic ground and 
foundation beam are derived by step-by-step loading. The 
complementary energy functional of the half-space elastic 
foundation beam system is established.  

(2) Not only the homogeneous equations are established, 
but also the analytical solution and settlement of the 
foundation beam system under the uniform and concentrated 
loads are solved respectively. The stress concentration at the 
end of the foundation beam under the action of load is 
explained reasonably. 

(3) The feasibility and accuracy of the new method are 
verified. Meanwhile, the disadvantages of other methods and 
the complicated calculation process are avoided. The new 
method can be used in the calculation of the similar 
engineering, which calculation process is simple and the 
accuracy is high. 

Although the free foundation beam at both ends is 
studied, but for some practical problems, there are 
constraints at the end of the beam, so the simply supported 
foundation beam or fixed foundation beam must also be 
further studied. The settlement formula of any point in the 
element should be more accurate deduced. 
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