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Abstract 
 

Reservoir production optimization is a large-scale constrained nonlinear programming problem. The selection of solving 
algorithms still mainly relies on experience, which makes it difficult to fully adapt. Moreover, the accuracy and efficiency 
of optimization are facing bottlenecks. Different intelligent optimization algorithms have different optimization 
mechanisms. To explore the performance of each algorithm in solving the reservoir production optimization problem, a 
systematic algorithm comparison study was conducted. Four intelligent optimization algorithms, such as generalized 
pattern search (GPS), particle swarm optimization (PSO), covariance matrix adaptation evolutionary strategy (CMA-ES), 
and multilevel coordinate search (MCS), were selected, all of which cover global/local search and deterministic/random 
search strategy. A series of test cases, such as benchmark functions and well control optimization problems, were made. 
The four intelligent algorithms were applied to solve the problems, and the performance of each algorithm was compared 
and analysed. Results demonstrate that for the reservoir production optimization problem, MCS performs better than the 
three other algorithms in the early stage of optimization, and CMA-ES performs well in the middle and late stages. As the 
number of variables for reservoir production optimization problem increases, PSO and MCS with global search 
mechanisms have a higher risk of falling into a local optimal solution than CMA-ES and GPS, which use local search 
mechanisms. When the computation budget is limited, global search algorithms can converge to the vicinity of optimal 
solution faster than local search methods. Nevertheless, local search algorithms are more accurate than the global 
methods with sufficient computation budget. This study provides scientific support for the selection of algorithms for 
solving the reservoir production optimization problem. 
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1. Introduction 
 
As the global political and economic uncertainties increase 
and international oil prices continue to fluctuate, ensuring oil 
production capacity is becoming increasingly important for a 
country’s security and economic development. As the 
characteristics of the developing reservoirs become 
increasingly complex, the difficulty of development 
continues to increase. Traditional technology has been 
unable to meet needs, and the tasks of improving efficiency 
and controlling costs are arduous, making oil companies face 
huge challenges [1]. At the same time, emerging information 
technologies, which are represented by big data and artificial 
intelligence, are triggering a new round of technological and 
industrial revolutions. Accelerating the digital 
transformation and building intelligent oilfields have 
become the strategic key to breaking through the current 
development dilemma and achieving high-quality 
development for oil industries [2]. 

Designing or adjusting a reservoir development plan is a 
complex task. How to achieve automation and intelligent 
optimization decision making is one of the key issues in the 
construction of intelligent oilfields. However, many 
theoretical and technical difficulties still need to be resolved. 
Reservoir production optimization belongs to large-scale 
constrained nonlinear programming problems [3,4]. The 

decision-making process must consider the influence of well 
production history; reservoir heterogeneity; many other 
geological and development factors; and many constraints, 
such as operating strategies and technological levels. These 
kinds of problems cannot be solved theoretically and must 
use intelligent optimization algorithms to solve them 
through iteration. Many types of optimization algorithms 
have been proposed with different optimization mechanisms. 
Different algorithms have different performances when 
solving different optimization problems. To the best of our 
knowledge, the performance and compatibility of different 
optimization algorithms with different optimization 
mechanisms for oil reservoir production optimization still 
lack in-depth comparative study. Algorithm selection still 
mainly relies on experience, which makes it difficult to fully 
adapt to the problem, the optimization efficiency is not high, 
and falling into the local optimum is easy. Moreover, the 
evaluations of the effects of the candidate production plans 
are often performed through time-consuming numerical 
simulations. Hence, the oil reservoir production optimization 
still faces the double bottleneck of accuracy and efficiency 
[5,6]. 

Based on the above analysis, selecting representative 
intelligent optimization algorithms with different 
optimization mechanisms and comparing and analyzing the 
performance of each algorithm for the reservoir production 
optimization problem are necessary. This study can provide 
guidance for the selection of algorithms for such problems 
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and improve the decision-making accuracy and efficiency of 
the reservoir production optimization problem. This study 
can also enrich and improve the theories and methods of 
intelligent reservoir production optimization, improve the 
intelligent level of reservoir production management, and 
provide support for the construction of intelligent oilfields. 
 
 
2. State of the art  
 
The use of optimization methods to study oilfield 
development decision-making problems can be traced back 
to 1958 [7]. Lee et al. described the oil reservoir production 
problem as a linear programming problem and solved it then 
with the continuous development and progress of theories 
and technologies such as reservoir numerical simulation, 
optimization, artificial intelligence, and computer science. 
Intelligent production optimization theories and methods 
have attracted an increasing number of scholars all over the 
world and have achieved a series of valuable results. 

Jansen et al. [8] applied the steepest descent method to 
optimize the production schedule of the oil and water wells 
in the reservoir. This method must calculate the gradient 
through the adjoint matrix. Due to the complexity of the 
reservoir production optimization problem, the solution 
hyperplanes are often rough and discontinuous, making the 
theoretical calculation of the gradient difficult in actual 
reservoir problems. Zhang et al. [9] introduced the stochastic 
disturbance gradient approximation algorithm (SPSA) into 
the reservoir production optimization problem. SPSA guides 
the optimization by estimating the gradient from the random 
disturbance of the control variables. This algorithm can 
avoid the direct calculation of the gradient. Zhou et al. [10] 
further simplified and improved the SPSA algorithm to 
make it more robust in solving the reservoir production 
optimization problem. Chen et al. [11] proposed a closed-
loop optimization theory for reservoir production on the 
basis of the EnOpt algorithm. The above algorithms are all 
gradient-based methods, and the first-order or even multi-
order gradient information of the function are needed. In 
general, these kinds of algorithms have high optimization 
efficiency, but they easily fall into the local optimal solution. 

To avoid the problems caused by gradient calculation in 
the process of reservoir production optimization, a large 
number of derivative-free algorithms have also been 
introduced into this field. Foroud et al. [12] regarded the 
reservoir as a black box and used the generalized pattern 
search (GPS) algorithm to optimize reservoir production. 
GPS only uses the sampling information of the objective 
function value during the optimization process. Rostamian et 
al. [13] applied the genetic algorithm (GA) to study the 
multi-objective optimization design of directional well 
placements in reservoirs. Erfan et al. [14] used the GA 
algorithm to optimize the water and gas alternate injection 
process schedule for the oil reservoir. The GA algorithm 
simulates the biological genetic evolution process and 
approaches the optimal solution through repeated iterations, 
but GA can only be employed for single-objective problems. 
Allahyarzadeh et al. [15] took the multi-objective 
optimization problem of deep-water reservoir development 
as the research object and proposed the use of an improved 
GA (NSGA-II) to solve the problem, which verified its 
effectiveness. Particle swarm optimization (PSO) is similar 
to the GA and belongs to the evolutionary algorithm, but the 
algorithm principle is simpler and clearer than GA. PSO is 
also widely used in solving the reservoir production 

optimization problem. Abdorreza et al. [16] used PSO to 
optimize the development plan for CO2-assisted oil recovery 
in the reservoir, and Kawata et al. [17] successfully applied 
PSO to optimize the carbon dioxide capture problem. In 
addition to the above algorithms, Forouzanfar et al. [18] and 
Islam et al. [19] respectively explored the feasibility of 
covariance matrix adaptive evolutionary strategy (CMA-ES) 
in optimizing well control and well location for reservoir 
development. Zhao et al. [20] constructed a physical 
simplified proxy model and applied the differential evolution 
(DE) algorithm, which greatly reduced the time consumption 
of using numerical simulation to evaluate the value of the 
objective function of reservoir production optimization. 
Wang et al. [5] introduced the multilevel coordinated search 
(MCS) with outstanding performance in the theoretical 
comparison study into the field of reservoir production 
optimization and verified its performance in well placement 
optimization, well control optimization, and joint placement 
and control optimization problems. The optimization 
mechanisms of these derivative-free algorithms are often 
inspired by biological intelligence or natural physical laws 
and are called intelligent optimization algorithms [21]. This 
type of algorithm has lower optimization efficiency than 
gradient algorithms but generally does not require the 
continuity and convexity of the objective function and 
constraints. This type also has strong adaptability to 
nonlinear problems; hence, it is more suitable for complex 
reservoir production optimization problems. 

In general, various types of intelligent optimization 
algorithms have been applied to the reservoir production 
optimization problem, but the performance of intelligent 
optimization algorithms with different optimization 
mechanisms in solving the reservoir production optimization 
problem still lacks in-depth comparative analysis. In this 
study, according to whether the algorithm belongs to 
global/local search and whether it belongs to 
deterministic/random search, four representative intelligent 
optimization algorithms are selected: GPS, PSO, CMA-ES, 
and MCS. A series of optimization problem examples are 
used to compare and analyze the performance of various 
intelligent optimization algorithms, providing scientific 
support for the selection of algorithms to solve the reservoir 
production optimization problem. 

The remainder of this study is organized as follows: 
Section 3 establishes the mathematical model of the 
reservoir production optimization problem, categorizes and 
filters intelligent optimization algorithms, and proposes the 
basic principles of the selected algorithms. Section 4 
compares and analyzes the optimization performance of each 
intelligent optimization algorithm through a series of 
optimization problem examples. Section 5 summarizes the 
conclusions. 

 
 

3. Methodology  
 
3.1 Mathematical modeling 
The production schedule of oil and water wells affects the 
development yield of water flooding reservoirs significantly. 
The goal of oil reservoir production optimization is to find 
the optimal oil and water well control strategy under certain 
conditions, such as the number of oil and water wells, well 
placements, and well types, to improve the reservoir 
development and increase oil recovery. In reservoir 
development, well placement cannot be adjusted after 
drilling, but the injection/production rate of each well can be 
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adjusted at any time. Therefore, injection–production 
adjustment is more flexible and economical than well 
placement adjustment. 

The mathematical model of the optimization problem 
includes four parts: performance indicators, optimization 
variables, objective functions, and constraints. For the 
reservoir production optimization problem, the mathematical 
model is described as follows: 

(1) Performance indicators 
The performance indicators commonly used in reservoir 

production optimization include net present value and 
cumulative oil production. In this study, the saturation 
standard deviation is selected as the performance index of 
the production optimization problem. The standard deviation 
of saturation is an index to evaluate the equilibrium degree 
of water flooding. It reflects not only the economics of 
development but also the efficiency of development. This 
factor makes it have certain advantages over net present 
value and cumulative oil production as performance 
indicators [22]. 

(2) Optimization variables 
In general, oil and water wells require dynamic control, 

that is, the entire production cycle of the oil reservoir is 
divided into several control steps, and each control step 
represents a period of production time, such as half a year 
and one month. At the beginning of each control step, the 
production/injection rate of each well is reset. Therefore, in 
the reservoir production optimization problem, the 
optimization variable is the injection/production rate of each 
well at each control step. 

For a given reservoir, assuming that the reservoir 
contains m wells, the entire production cycle is divided into 
n control steps, and the optimization variables can be 
expressed as 

 
                                (1) 

 
                    (2) 

 
where  to  is the injection/production rate vector from 
well 1 to m, respectively;  to  is the 
injection/production rate of the ith well from control step 1 
to n, respectively. 

For a reservoir containing m wells and n control steps, 
the number of optimization variables for the dynamic control 
optimization problem is mn. 

(3) Objective function 
The goal of the production optimization problem is to 

determine the injection/production schedule of each well, 
making the crude oil be produced economically and 
efficiently during the water flooding development of the 
reservoir. Reflected in the saturation standard deviation, that 
is, the minimum of the saturation standard deviation in each 
injector–producer direction of the target reservoir and the 
maximum of the water flooding equilibrium degree. The 
objective function of this problem can be expressed as 

 

           (3) 

 
where SD is the saturation standard deviation; is the total 
number of injector-producer directions;  is the water 

saturation of the ith direction;  is the average water 
saturaion of all directions. 

(4) Constraints 
The constraints that must be considered in the production 

optimization problem include: 
a. The bound constraints of well production/injection 

rates 
 

           (4) 
 

where  and  are the minimum and maximum rates 

of the ith well in the jth control step, respectively;  is 
usually set to 0 in the optimization. 

b. The nonlinear constraints of well bottom hole 
pressures 

 
     (5) 

 
where  is the bottom hole pressure of the ith well in the 

jth control step;  and  are the minimum and 
maximum bottom hole pressures of the ith well in the jth 
control step, respectively. 

The number of optimization variables in the reservoir 
production optimization problem is large, and the constraints 
are complex, leading to the difficulty and complexity of 
solving the problem. 

 
3.2 Intelligent optimization algorithms 
More than 100 types of optimization algorithms have been 
proposed and studied, and their optimization mechanisms 
and applicable conditions are different. 

According to whether each iteration of the algorithm 
optimization process is determined, the optimization 
algorithm can be divided into two categories: deterministic 
and random algorithms. 

In a deterministic algorithm, the calculation rule for each 
iteration step is determined. Given the same input, the output 
result obtained by running the algorithm every time is 
exactly the same. Typical deterministic algorithms include 
Newton’s method, steepest descent method, simplex method, 
and GPS. Random algorithm involves random decision 
making in a certain step or a certain step in the operation of 
the algorithm, that is, some of the search decisions rely on 
random events. Therefore, given the same input, the random 
algorithm obtains different results each time. Typical 
random algorithms include GA and DE. 

According to the searching range of the algorithm, it can 
be divided into local and global algorithms. 

The optimization mechanism of local algorithms often 
relies on searching the solution space by neighborhood. 
Once a local algorithm falls into a local optimum, the 
algorithm ends at that point. Direct search algorithms, such 
as GPS and simplex methods, are local algorithms. Global 
algorithms focus on their ability to find the approximate 
locations of global optimal solutions in algorithm designs. 
This type introduces an escape mechanism to jump out of 
the local optimal solution and search the entire solution 
space. Typical global search algorithms include GA and 
PSO. 

On the basis of the above classification, four algorithms 
are selected for further discussion: GPS, PSO, CMA-ES, and 
MCS. The classification of the four algorithms is shown in 
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Fig. 1. The four algorithms have different optimization 
mechanisms and are representative. 

 

 
Fig. 1.  Classification of the four optimization algorithms 

 
(1) GPS 
GPS is a direct search algorithm. It estimates the 

objective function from a set of directions and finds the 
descending direction by comparing the value of the objective 
function to solve the problem. The algorithm does not need 
to calculate or approximate any derivative, and it has a wide 
range of applications in the field of nonlinear programming 
and non-smooth optimization [23]. 

The GPS algorithm determines the set of next-generation 
search points according to the current search point and 
search mode. The specific calculation formula is 

 
                                    (6) 

 
where  is the search point set of generation k+1;  is 
the optimal point of generation k;  is the search step size 
of generation k; and D is the search pattern. The search 
pattern generally uses a series of vector representations of 
orthogonal basis vectors . For an n-
dimensional vector, the search basis vector contains at most 
2n vectors and at least n+1 vectors. Both orthogonal basis 
vectors are also the two most commonly used search patterns 
in GPS, which are called the maximum basis and the 
minimum basis, respectively. Taking a two-dimensional 
problem as an example, the diagrams of the two search 
patterns are displayed in Fig. 2. 

 

               
a. Maximum basis                       b. Minimum basis 

Fig. 2.  Two patterns for GPS 
 
The search step size is updated for each generation 

according to the following formula 
 

                         (7) 

 
where  is the search step of the k+1 generation;  is 
the expansion factor;  is the reduction factor. 

(2) PSO 
PSO, similar to GA, SA, and other algorithms, belongs 

to the evolutionary algorithm. PSO starts from a series of 
randomly generated or artificially given initial solutions and 

finds the optimal solution through iterative calculations. 
Compared with GA, the rules for PSO to generate new 
individuals are simpler. PSO has high accuracy and fast 
convergence speed. At the same time, it can be implemented 
easily for parallel computing [24]. 

For an optimization problem containing D optimization 
variables, the particle swarm algorithm first generates a 
series of points in the D-dimensional search space called 
particles. The ith particle is denoted as . 
Each particle has a velocity, and the velocity of the ith 
particle is expressed as . The particle 
records the information of the best position that it flies 
through, which is noted as . The best 
position that all particles have experienced in flight is 
recorded as . In each iteration, the 
velocity and position of the ith particle in the dth dimension 
(1 ≤ d ≤ D) are calculated according to the following 
equation 

 
             (8) 

 
                                    (9) 

 
where w, , and  are weighting parameters;  and  
are stochastic vectors which are generated from the uniform 
distribution on (0, 1) during each iteration. 

(3) CMA-ES 
CMA-ES is a random search algorithm based on 

population. Unlike GA and PSO, the distribution of 
individuals in the population of CMA-ES obeys a specific 
probability distribution, and the iterative optimization 
process mainly focuses on the adjustments of the probability 
distribution [25]. 

In iterative step k, CMA-ES first samples  individuals 
to form a population according to the following formula 

 

                  (10) 

 
where  is a random vector of the multivariate 

normal distribution;  is the mean vector;  is the 
covariance matrix;  is the step factor. 

Mean vector  represents the current optimal solution; 
covariance matrix  is a symmetric positive definite 
matrix used to describe the geometric characteristics of the 
distribution; step size factor  is used to enlarge or reduce 
covariance matrix  globally to achieve rapid convergence 
and avoid premature phenomena. In the iterative process of 
CMA-ES, the above three parameters must be continuously 
updated. 

Fig. 3 illustrates an example of CMA-ES solving an 
optimization problem. The objective function is 

, and the upper and lower bound constraints 

are . The dotted line in the figure is the 
contour of the objective function. The initial point is (200, 
200), and the optimal solution is (0, 0), which is marked 
with “x” in the figure. The red and black ellipses represent 
the contours of the probability distribution density of this 
generation and the previous generation, respectively. 
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a. First generation                       b. Third generation 

 
c. Fifth generation 

Fig. 3.  An optimization case using CMA-ES 
 
(4) MCS 
MCS was proposed by Huyer and Neumaier, and its 

basic idea was inspired by the DIRECT algorithm, which 
also belongs to the derivative-free algorithm [26]. MCS 
combines global and local searches. The optimization 
process is mainly to subdivide the entire search space into 
small search spaces. For subspaces that have not been fully 
explored, global algorithms are used for optimization; for 
subspaces that are sufficiently small, local algorithms are 
used for further precise optimization. 

To further describe the MCS optimization process, an 
upper and lower bound optimization problem is defined as 
follows 

 
                        (11) 

 
where u and v are n-dimensional vectors. 

MCS divides the initial search space into a series of 
subspaces B through the preset initialization list. Each 
subspace contains three characteristic parameters: base point, 
pair point, and level s. All the subspaces are sorted 
according to level and included in the sweep list, and the 
subspace with the smallest objective function value in each 
level is marked. The marked subspace enters the next 
splitting step for further splitting. Splitting includes two 
strategies: sorting splitting and expecting splitting. Sorting 
splitting is used for subspaces that have been split enough 
times and further splitting along the direction of the least 
number of splits of the subspace. Expecting splitting is used 
for subspaces that have not been fully split. First, we 
estimate the expectation that the subspace will be split in 
various directions to obtain a better solution and then split 
along the direction of the maximum expectation. The new 
subspace generated by the split is added to the sweep list, 
which is updated. After the scan is completed, the base 
points of all subspaces that reach the maximum number of 
levels smax are put into the shopping basket according to the 
value of the objective function. The points in the shopping 
basket are judged whether they are in a new local minimum 
area, and the points with better objective function values in 

each local minimum area are selected to start the local 
search. Local search combines the ideas of coordinated 
search and sequential quadratic programming. First, a partial 
quadratic form is constructed through a series of coordinated 
searches. Second, the search direction and search step length 
are determined according to the sequential quadratic 
programming. After the search is completed, the quadratic 
form is updated. 

 
 

4. Result Analysis and Discussion 
 
Different intelligent optimization algorithms have different 
solving mechanisms and are applicable to different 
optimization problems. The comparison of the pros and cons 
of various optimization algorithms is mainly investigated 
and evaluated from three aspects: reliability, effectiveness, 
and simplicity. The focus here is on the efficiency of the 
optimization algorithm. The main computational effort when 
solving the reservoir production optimization problem is the 
calculation of the objective function value. The calculation 
budget required by commonly used numerical simulation 
methods to predict the value of the objective function under 
different production plans is much greater than that of the 
optimization algorithm itself. Therefore, when examining 
the calculation efficiency here, the attention is paid to the 
relationship between the number of calculations of the 
objective function value and the optimal value found. 
 
4.1 Benchmark test 

 
4.1.1 Problem description 
Benchmark test is widely conducted to test algorithm 
performance and comparatively analyze optimization 
algorithms. It often uses a series of standardized 
optimization problems with different characteristics and 
scales. The benchmark test set used here comes from CEC 
2005 and contains a total of 25 test functions, including five 
unimodal functions and 20 multimodal functions. Among 
the multimodal functions, seven basic, two extended, and 11 
mixed functions are included. Some functions add noise 
terms to further increase the difficulty of solving the 
problem. Due to space limitations, only a few representative 
functions are presented for the introduction. For a more 
detailed introduction of each function, refer to the report of P. 
N. Suganthan et al. [27]. 

(1) Shifted sphere function 
 

      (12) 

 
where D is the number of dimensions;  is 
the translational global optimal solution. 

This function is unimodal, which is obtained by 
translating the sphere function, and has the characteristics of 
decomposability and scalability. The upper and lower bound 
constraints are , the global optimal solution 

is , and the optimal value is . When 
D = 2, the 3D image of this function is displayed in Fig. 4. 

(2) Shifted Schwefel function with noise 
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where D is the number of dimensions;  is 
the translational global optimal solution. 

This function is unimodal, which is obtained by shifting 
the Schwefel function. The optimized variables are 
expandable but not decomposable, and noise terms are added 
to the objective function value, resulting in a rough solution 
surface. The upper and lower bound constraints are 

, the global optimal solution is , and 

the optimal value is . When D = 2, the 3D 
image of this function is shown in Fig. 5. 

 

 
Fig. 4.  3D map for the 2D-shifted sphere function 

 
(3) Shifted rotated Weierstrass function 
 

 

     (14) 
 

where D is the number of dimensions;  is 
the global optimal solution for translation; M is the linear 
transformation matrix. 

This function is multimodal, which is obtained by 
shifting and rotating the Weierstrass function. The optimized 
variable is expandable but not decomposable. Although the 
function is continuous but can only be derived from a series 
of points, the function contains multiple local optimal 
solutions. The upper and lower bound constraints are 

, the global optimal solution is , and 

the optimal value is . When D = 2, the 3D 
image of this function is illustrated in Fig. 6. 

(4) Non-continuous rotated hybrid composition function 
This function is a mixture of rotating extended Scaffer, 

Rastrigin, F8F2, Weierstrass, and Griewank functions. The 
specific function expression is complicated. Refer to the 
report of P. N. Suganthan et al. [27], which is not listed here. 
This function is multimodal, and the optimization variable is 
expandable but not decomposable. It also contains a large 
number of local optimal solutions. The characteristics of 
various functions are mixed, and the function is 
discontinuous and non-differentiable. The optimal value is 
located on the boundary of the optimization space. The 
upper and lower bound constraints , the global 

optimal solution , and the optimal value . 

When D = 2, the 3D image of this function is shown in Fig. 
7. 

 
 

Fig. 5.  3D map for the 2D-shifted Schwefel function with noise 
 

 
Fig. 6.  3D map for the 2D-shifted rotated Weierstrass function 

 
When using the optimization algorithm introduced in this 

study to optimize the above benchmark functions, consider 
the four cases of dimension D = 2, 10, 30, and 50 and set the 
maximum objective function evaluation times to500D. 

 
4.1.2 Algorithm performance comparison 
GPS, PSO, CMA-ES, and MCS are used to solve the 25 
benchmark optimization problems. Each problem is 
optimized when the number of optimization variables is 
equal to 2, 10, 30, and 50, resulting in a total of 100 
optimization problems. By analyzing the evaluation number 
of the objective function of each algorithm in each test 
problem and its corresponding optimal objective function 
value, the performance of each algorithm in solving each 
problem can be obtained. Due to a large number of problems, 
comparisons are made according to the number of 
optimization variables. In this case, each algorithm still 
contains 25 problems, and the initial and optimal values of 
each problem are different. To further facilitate the 
comparison, the results of each algorithm are normalized, 
and the optimal objective function value in the optimization 
process of each algorithm is converted to a value between 0 
and 1, where 0 represents the global optimal value of the 
problem, and 1 represents its initial value. For each 
algorithm, we use the median value of its performance in 25 
problems under different optimization variables as its 
average performance. Then, we plot the average 
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performance comparison of each algorithm under different 
optimization variables. The results are presented in Figs. 8–
11. 

 

 
Fig. 7.  3D map for the 2D non-continuous rotated hybrid composition 
function 

 
Figs. 8-11 show that the MCS algorithm obtains the 

closest solution to the global optima in the final stage of 
optimization when D = 2. CMA-ES outperforms the three 
other algorithms in the final stage of optimization when D = 
10, 30, and 50. From the perspective of the optimization 
process, MCS performs better than the three other 
algorithms in the early stage of optimization, and CMA-ES 
performs better in the middle and late stages. 

When D = 2, the four algorithms all converge to between 
0 and 0.2. The final convergence values of the four 
algorithms all decrease, ranging from 0.1 to 0.4 for problems 
D = 10. When the number of optimization variables reaches 
50, the four algorithms finally only converge to between 0.2 
and 0.6. At the same time, as the number of optimization 
variables increases, the number of objective function 
evaluations performed by optimization also increases 
significantly, from 1,000 when D = 2 to 25,000 when D = 50. 
Therefore, as the number of optimization variables increases, 
the difficulty of the problem continues to increase; the 
difficulty and calculation budget for the optimization 
algorithm to find the optimal solution also continue to 
increase. 

 
 

 
Fig. 8.  Benchmark test performance comparison of the four algorithms 
(D = 2) 

 
 

 
Fig. 9.  Benchmark test performance comparison of the four algorithms 
(D = 10) 

 
 

 
Fig. 10.  Benchmark test performance comparison of the four 
algorithms (D = 30) 

 

 
Fig. 11.  Benchmark test performance comparison of the four 
algorithms (D = 50) 

 
4.2 Well production optimization example 

 
4.2.1 Problem description 
The well control optimization example uses a single-layer 
reservoir model. The number of model grids is , 
and the size of each grid is  [28]. The oil 
reservoir contains oil and water. A five-point well pattern is 
placed, with a water injection well in the middle and 
production wells on four corners. The reservoir permeability 
is divided into four areas: two high-permeability and two 
low-permeability areas. The high-permeability areas have a 

51 51 1´ ´
10mx yD = D =
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permeability of 1000 mD, whereas the low-permeability 
areas have a permeability of 100 mD. Fig. 12 shows the 
permeability distribution and well location map of the 
reservoir model. 

 

 
Fig. 12.  Permeability distribution and well placement 

 
The well production optimization for four production 

wells is performed with a constant injection rate. Well 
production static allocation optimization and dynamic 
control optimization are considered. For the static allocation 
optimization problem (Case 1), each well maintains the same 
rate to produce until the end of development, resulting in a 
total of four optimization variables. For the dynamic control 
optimization problem (Case 2), each well performs rate 
adjustment every 90 days and has eight control steps. The 
problem has a total of 32 optimization variables. 

 
4.2.2 Algorithm performance comparison 
Figs. 13 and 14 display the convergence of the four 
algorithms (i.e., GPS, PSO, CMA-ES, and MCS) in the well 
production optimization problem. The x-axis in both figures 
is the number of evaluations of the objective function, and 
the y-axis is the optimal standard deviation of the saturation. 
GPS, PSO, CMA-ES, and MCS all use the median value of 
the upper and lower limits of each variable as the initial 
solution. Therefore, in the injection and production 
optimization, the initial solutions and values of the four 
algorithms are exactly the same. 

For the two algorithms of PSO and CMA-ES, given that 
they are random algorithms, the results obtained in each run 
are different. Both algorithms are run 10 times with the same 
initial solution to see the average performance. The median 
of the results of 10 runs is used instead of the average value 
to reflect the average effect and avoid the influence of 
extreme runs on the average effect. 

Fig. 13 shows that for the static allocation optimization 
problem, the convergence speed of the four algorithms is not 
much different. Among them, MCS converges to the optimal 
value the fastest, and then GPS and CMA-ES converge to 
the optimal value. At the end of the operation of PSO, its 
optimal value is close to the global optimal value, but a 
slight gap remains. This result is consistent with the previous 
analysis of the characteristics of the algorithm. PSO is a 
global search algorithm, and its ability to converge to an 
accurate optimal value is worse than other algorithms. 

 

 
Fig. 13.  Optimization performance for well production optimization 
using different algorithms 

 
Fig. 14 illustrates that for the dynamic control 

optimization problem, due to a large number of optimization 
variables, the correspondingly set maximum objective 
function calculation times are also large, which is 3,000. In 
the middle and early stages of algorithm operation, MCS and 
CMA-ES have the fastest convergence speed, whereas GPS 
has the slowest convergence speed. Due to the increase in 
the number of variables, the optimization speed of local 
search algorithms, such as GPS, is becoming increasingly 
worse. However, after enough objective function evaluation 
times, GPS and CMA-ES converge to the lowest saturation 
standard deviation. If the calculation amount is sufficient, 
then local algorithms are still the most accurate ones. PSO is 
similar to the performance in the static deployment problem 
and still only converges to a value near the optimal value. 

 

 
Fig. 14. Optimization performance for well control optimization using 
different algorithms 

 
Comparing the performance of the four algorithms in the 

static allocation problem and the dynamic control problem, 
as the number of optimization variables increases, the 
number of calculations of the objective function value 
required by the four algorithms for optimization increases 
significantly. MCS performs well with different numbers of 
optimized variables, whereas the performance of GPS is 
greatly affected by the increase in the number of optimized 
variables. In addition, dynamic control optimization can 
converge to a lower objective function value than static 
allocation optimization. It indicates that for a reservoir, the 
optimization effect of dynamic development is better than 
that of static development. 
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5. Conclusion 
 
To explore the performance of intelligent optimization 
algorithms with different optimization mechanisms in 
solving the reservoir production optimization problem, four 
representative intelligent optimization algorithms (i.e., GPS, 
PSO, CMA-ES, and MCS) are selected and evaluated 
through a series of optimization examples. The following 
conclusions can be drawn: 

(1) As the number of optimization variables increases, 
the difficulty of the problem continues to increase. Moreover, 
the difficulty and number of evaluations for the four 
intelligent optimization algorithms to find the optimal 
solution continue to increase. 

(2) MCS performs better than the three other algorithms 
in the early stage of optimization, and CMA-ES performs 
well in the middle and late stages. 

(3) When PSO and MCS with global search mechanisms 
are used to solve the problem of large-scale reservoir 
production optimization, compared with CMA-ES and GPS 
using local search mechanisms, a high risk of falling into a 
local optimal solution is possible. When the calculation 
budget is limited, global algorithms can converge to the 
optimal solution fast. When the calculation budget is 

sufficient, local algorithms are more accurate than global 
algorithms. 

Through comparative analysis, this study clarifies the 
performance of representative algorithms under different 
optimization mechanisms, such as global/local search and 
deterministic/random search, and provides reference and 
guidance for the efficient solution of the reservoir 
production optimization problem. However,  algorithms that 
can consistently outperform during the entire optimization 
process when solving such a problem are still lacking. 
Combining the advantages of different algorithms is 
necessary to build more efficient hybrid algorithms in the 
future. 
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