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Abstract 
 
The need to reduce fossil fuel consumption has created opportunities for alternative fuels, including the migration of 
hydrogen as an unconventional alternative fuel. This alternative has more significant environmental and energy benefits 
due to the acquisition of raw materials and the integration of renewable energy sources. The research presents a review of 
historical evolution, a bibliometric analysis, and the processes used to produce and store this molecule. The POx and 
pyrolysis processes have the highest amount of research. At the same time, electrolysis is the process that has had the most 
significant growth, and research indicates that they allow greater sustainability due to the integration of renewable energies. 
Research trends indicate studies for integrating renewable energy resources and materials to improve chemical properties 
to increase capacity storage and decrease the risks due to high volatility. 
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1. Introduction 
 
Fuel demand is continuously growing [1], and fluctuations in 
hydrocarbons' prices generate financial imbalances due to 
high prices [2]. The countries must develop plans for the 
implementation of renewable energy sources (RES) [3]–[5] as 
a substitute for conventional thermal generation and power 
distribution networks; according to Nigam et al., this 
relationship often exceed exceeds 20% [6]. 
 To reduce fuels in mobility, the government applies plans 
like the use of biofuels [7], the electrification of the vehicle 
fleet [8], improve the efficiency in combustion processes [9], 
and the use of other fuels [10]–[12], like as the hydrogen. In 
electrical energy production through thermal generation, 
installing hybrid systems for combustion [13] reduces fossil 
fuels. In the case of nuclear energy, the remaining energy 
produces hydrogen [13]. This fuel can be stored and used at 
high electricity prices [13], thus obtaining a lower 
environmental impact than conventional fuels [14]. 
 Hydrogen is a candidate to be an alternative fuel used to 
generate electricity [15], [16] through fuel cells [17], [18], 
which convert chemical energy to electrical energy using an 
electrochemical process [19]. This alternative has become 
necessary due to the possibility of using renewable energy for 
its production [19]; previously, it was not viable due to its 
high energy costs [20]. 
 The growth of net installed electricity generation capacity 
(NIEGC) with renewable energy resources invites us to study 
alternatives to produce hydrogen. This research identifies the 
knowledge gaps within each area, which focused on focused 
research and innovation aimed at sustainable development of 

hydrogen technologies; these results may be the basis for 
developing strategies, strengthening, and infrastructure 
development to produce hydrogen as an alternative fuel. 
 
 
2. Methodology 
 
The research presents a bibliographic review on technological 
developments around hydrogen. It begins with a compilation 
of research that has marked technological development to 
date. According to the bibliographic production indexed in the 
Scopus database, a bibliometric analysis is carried out to 
identify the behavior of the research and the countries that 
make the most significant efforts. It presents the technologies 
used for the production of hydrogen and ends with a 
comparison of each technology. Finally, it presents the 
storage technologies and associated hazards. 
 
 
3. Results  
 
3.1 Hydrogen as fuel  
Hydrogen is a colorless gas, odorless, and harmless; it is the 
most abundant element in the universe. It is the fuel of the 
stars [21]. Hydrogen is 14.4 times even lighter than air and 
condenses at -252.77 ℃ [22], [23]. When burned, this gas 
produces much higher energies than other fuels. Unlike these, 
its harmful combustion emissions turn out to be negligible 
[23], [24]. 
 Hydrogen is called an "energy vector" [25] because it is 
not found in its pure state in nature but rather is found in 
substances such as water, biomass, which includes plants and 
animals [26]. Thus, hydrogen should not be exploited like 
coal or oil but produced through chemical compounds [23], 
[27]. 
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 Pure hydrogen can be produced from other compounds 
that contain this element [26]; each production method 
requires an energy source such as thermal energy and 
photocatalytic energy, energy for the breakdown of chemical 
bonds [28], [29]. Some natural resources, like water, biomass, 
and hydrocarbons, can produce hydrogen [30]. 
 In 1541 T. Von Hohenheim artificially produced 
hydrogen by reacting metals with strong acids, although he 
did not know this molecule [31]. Hydrogen in the gaseous 
state was recognized and described in 1766 by Henry 
Cavendish as a "flammable gas" [22]. In 1800 William 
Nicholson and Anthony Carlisle discovered electrolysis. In 
this process, water molecules are broken down into hydrogen 
and oxygen using an electrical current [32].  
 In 1839 William Grove built the first fuel cell, which 
directly transformed chemical energy into electrical energy 
[33], [34]. In 1920 Rudolf Erren used hydrogen as fuel in an 
automobile [35]; by 1958, Francis Bacon T successfully built 
the first fuel cell. The fuel is used as an energy supply method 
by the National Aeronautics and Space Administration [15], 
[36]. 
 In the 1990s, Germany and the company Solar-
Wasserstoff-Bayern built a photovoltaic solar power 
generation plant capable of producing 371 kWp; the energy 
was used to produce hydrogen electrolysis [37]. In 1999, the 
Shell company opened the first service stations to sell 
hydrogen in Munich and Hamburg [38]. In 2003, 
DaimlerChrysler Corporation, Ford Motor Company, General 
Motors Corporation (GM), and the US government made joint 
and developed technology to reduce oil consumption and 
minimize vehicles' emissions [39]. One of the proposed 
alternatives was to create electric vehicles powered by fuel 
cells [19], [39]. 
 Initiatives in countries like Belgium with 3MOTION, a 
proposal to invest in Fuel Cell Buses (FCB), and achieve the 
emission reduction [40], Australia built a wind power plant to 
produce hydrogen through electrolysis [41], Germany 
developed a train to use hydrogen using fuel cells [42];. At 
the same time, the Uruguayan government, the state oil 
company ANCAP and the National Administration of Power 
Plants and Electric Transmissions (UTE) began the pilot 
project called "Verne" to produce hydrogen and use it as gas 
fuel in vehicles [43]. USA has 80 power plants using fuel 
cells, with around 190 MW [43]; Red Lion Energy Center is 
the largest capacity with 27 MW and is located in Delaware 
[44]. These projects encourage governments to implement 
and adopt technologies that use hydrogen to reduce the 
environmental impact. 
 
3.2. Bibliometric analysis 
The methodology analyzed 15.543 documents obtained 
through the search in the Scopus database. Using the 
keywords "Hydrogen & Fuel & Type Technology" this input 
allowed us to analyze the temporal evolution of the subject 
between 2010 and 2020. Figure 1 presents a classification of 
the processes. Figure 2 shows the number of publications 
associated with the different methods. Finally, figure 3 
illustrates the percentage relation of the annual publications 
according to the process. 
 Figure 2 presents a constant growth in research production 
on hydrogen, where the years 2019 and 2020 had the highest 
growth. Figure 3 shows the percentage behavior of the 
publications, more than 50% of annual investigations are in 
Catalytic Reforming and Catalytic POx technologies. Non-
Catalytic POx investigations had a decrease in both 

percentage and quantity. On the other hand, the Electrolysis 
had an increase, mainly in Anaerobic. 
 

 
Fig. 1. Classification of hydrogen production processes. 
 
 The top five countries with the highest contribution are 
China with 4.354, the USA with 2.062, Spain with 920, the 
UK with 791, Japan with 601, and Germany with 599 
publications; this amount represents 54% of publications 
indexed in Scopus. Figure 4 presents publications from these 
five countries from 2010 to 2020 according to the 
contributions. 
 China has the highest contribution; initially, it has a 
substantial participation in the Non-Catalytic POx processes. 
Then, they increased their investigations in the Catalytic 
Reforming and Catalytic POX processes. Finally, for 2018, 
the studies in Anaerobic processes increased. However, the 
behavior of the other countries is similar. The significant 
difference is the percentage of research carried out on 
Electrolysis, mainly on Ion Exchange Membrane and 
Anaerobic technologies. 
 
3.3. Technologies for hydrogen production 
Research on hydrogen production is geared for power 
generation [45] and a substitute for fossil fuels [17], [46], 
[47]. This section presents hydrogen production and obtention 
[46], [48]; it identified the production mechanisms, chemical 
reactions, process efficiency, and by-products. 
 
3.3.1. Electrolysis 
Electrolysis is a process by which a breakdown of the water 
molecule is generated (𝐻!𝑂) by the action of electric current 
flow, generated from sources such as solar or nuclear [30] 
[49], In environmental conditions (25ºC y 1 atm), a chemical 
reaction occurs 2𝐻!𝑂 → 2𝐻! +𝑂!. If the electrolysis is 
carried out at low temperatures, there is an increase in the 
consumption of electrical energy [50] and generates greater 
inefficiency in the process [30]; for high temperatures, the 
energy consumption increases, but the efficiency is 
considered acceptable [30]. 
 Huang et al. [51] y Li et al. [52] present the use of 
electrolysis and anaerobic digestion to produce hydrogen 
through a negative pressure control chamber and food waste. 
The results show that by using only anaerobic digestion, it 
obtains 49,39 ml 𝐻!	𝑔"# in production and combining the two 
teams is obtained 𝐻!	𝑔"# [51]. Figure 4 shows the process 
assembly; Through an anion exchange membrane and a DC 
source connection, a reaction will be generated where the 
water circulates in the membrane and hydrogen and hydroxyl 
ions are formed [32]. 
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Fig. 2. Publications made during 2010-2020 according to the technology 
used. 
 

 
Fig. 3. Percentage behavior of the publications made during 2010-2020. 

 
Fig. 3. The behavior of the publications of the countries China, USA, 
Spain, UK, Japan, and Germany. 
 

 
Fig. 4. Electrolysis process. 
 
3.3.2. Fuel cells 
The fuel cell is an energy conversion system that converts 
chemical energy into electrical energy [33], [34]; they 
transform hydrogen or any energy source containing 
hydrogen [53] into electrical and thermal energy when fuel 
and oxidant are supplied [54]. Figure 5 presents the process; 
it begins with the entry of chemical energy as a fuel, 
combustion, and a hydrolysis process for hydrogen 
production are carried out; finally, this passes to the fuel cell 
to generate electrical energy [34]. 

 
Fig. 5. Fuel cell operating diagram. 
 
 They have advantages such as high electrical efficiency, 
high temperature of the heat source, high energy density, 
among others [55]. The reaction in the anode electrode is 
2𝐻! → 4𝐻$ + 4𝑒" and the cathode electrode is 𝑂! + 4𝐻$ +
4𝑒" → 2𝐻!𝑂, on both sides of the membrane are proton 
exchange, the final reaction is 2𝐻! +	𝑂! → 2𝐻!𝑂 +
𝐸𝑛𝑒𝑟𝑔𝑦, the products are water and energy as the heat and 
the electricity [56]. 
 There are a variety of types of fuel cells [54], [57]; the 
Alkaline Fuel Cell (AFC) operates at temperatures below 120 
° C and uses 35-50% concentrated potassium hydroxide 
(KOH) electrolyte [58]. The electrodes are 
platinum/palladium for the anodes and gold/platinum for the 
cathodes [59]. The fuel must be pure hydrogen; CO2 can form 
potassium carbonate due to KOH and reduce efficiency. The 
Polymer Electrolyte Fuel Cell (PEFC) operates at 
temperatures below 100 ºC to obtain good efficiency. It uses 
a hydrated perfluorinated sulfonic acid polymeric membrane 
to improve the conduction of protons [60], [61]. Platinum 
supported on carbon is commonly used as a catalyst or 
bifunctional metal electrocatilizers based on platinum and a 
metallic element such as ruthenium. They require hydrogen 
of high purity, and another fuel must go through a previous 
reforming process [60]–[62]. 
 The Phosphoric Acid Fuel Cell (PAFC) operates at 
temperatures between 150-250 ° C; the electrodes are 
platinum supported on carbon and concentrated phosphoric 
acid as electrolyte [63]; it has a tolerance to pollutants 
generated in the reforming process. 
 Molten Carbonate Fuel Cell (MCFC) operates at 
temperatures above 650 °C; it uses as electrodes nickel doped 
with chromium or aluminum for the anode, lithium nickel 
oxide for the cathode. The electrolyte is a molten salt of alkali 
carbonates (Li, Na, K) retained in a lithium aluminate matrix 
[64], [65]. It can be fed directly with a hydrocarbon without 
needing the previous step of transforming it into hydrogen 
[66]–[68]. Direct Carbon Fuel Cell (DCFC) is a variation 
[69], which uses a carbon-rich material as a fuel such as 
biomass or coal, to convert directly into electrical energy [70], 
[71].  
 The Solid Oxide Fuel Cell (SOFC) operates at 
temperatures between 900-1000°C; it uses as electrodes a 
mixture of ceramic and metal, Ni/ZrO2 at the lanthanum 
manganite doped with strontium or selenium at the cathode. 
The electrolyte is a non-porous metal oxide used by an 
excellent ionic conductor, such as zirconium oxide stabilized 
with yttrium oxide [72]. Like MCFC, they can use the waste 
heat generated in the fuel reforming process [73]. The current 
challenge is to lower the operating temperature in the range 
of 600-800ºC [74]. 
 
3.3.3. Natural gas steam reforming 
Kalamaras et al. indicate that 50% of global hydrogen demand 
occurs through steam reforming natural gas [75]. In the 
United States, 95% of production is done by this method [76]. 
This technology is the cheapest [77], uses natural gas, mainly 
methane [78]; it is an endothermic process because it exposes 
natural gas to steam with high temperatures [19]. The reactor 
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uses Palladium and Gold's membrane to obtain high purity 
hydrogen [78]. Figure 6 presents the process and reactions. 

 
 

 
Rx01: 𝐶𝐻% +𝐻!𝑂 → 𝐶𝑂 + 3𝐻! 
Rx02: 𝐶𝑂 +𝐻!𝑂 → 𝐶𝑂! +𝐻! 
Rx03: 𝐶𝐻% + 2𝐻!𝑂 → 𝐶𝑂! + 3𝐻! 

 

Fig. 6. Natural gas steam reforming process. 

 The reforming process has two reactions, one of 
reforming and the other of oxidation, finally, the hydrogen 
(𝐻!) is separated [26]. Catalysts such as nickel–boron–
alumina xerogel improve the efficiency of the reaction. [79], 
the monolithic catalyst FeCrAlloy coated with ruthenium 
(Ru) [80], among other things. 
 Methane is one of the most critical raw materials for 
hydrogen production under this method [81]. However, 
biomass is investigated as a surrogate due to its environmental 
effects and cost reduction [82]. Recently, reforming 
technology has improved the production of hydrogen to 
purified hydrogen [83]. Iulianelli and Basile propose that 
hydrogen perm-selective membrane be incorporated into a 
reactor, improving the chemical reaction and obtaining 
purified H2 in a single reactor [84]. This membrane must be 
permeable and thermally stable using palladium, palladium 

alloys, and an inorganic membrane such as niobium and 
tantalum. 
 
3.3.4. Pyrolysis 
The pyrolysis consists of the decomposition of solid organic 
material in the absence of oxygen and high temperatures [85], 
[86]; through the application of heat temperature of 500ºC is 
reached for biomass and 1.200ºC for coal [87]. Figure 7 
presents the chemical reaction; the results depend on raw 
material, temperature, pressure, and process time [88]; 
gaseous products such as hydrogen (𝐻!), carbon monoxide 
(𝐶𝑂) and carbon dioxide (𝐶𝑂!), liquids such as hydrocarbons 
and solids such as carbonaceous residues and coke are 
obtained [19]. 

 
𝐶&𝐻&	

∆
⟶	𝐻! + 𝐶𝑂! + 𝐶𝑂 +𝐻!𝑂 + 𝐶'𝐻' + 𝑇𝑎𝑟 + 𝐶𝑎𝑟𝑏𝑜𝑛 

Fig. 7. Pyrolysis process in biomass. 

 
 
 The pyrolysis requires high temperatures. Performance 
depends on reactor technology, process temperature, and the 
raw material or biomass used [89], [90]. To improve the 
technical and economic efficiency of the process, Tahmasebi 
et al. [91], Niu et al. [92], and Ye et al. [93] performed lignite 
pyrolysis with pressurized and restricted flow conditions, 

where high purity nitrogen is used as the scavenging gas. 
Lignite, due to its energy potential and current reserves [94], 
turns out to be a valuable source for the production of 
(𝐶𝑂!𝐻!), (𝐶𝑂), (𝐶𝐻%), (𝐶!𝐻(), and (𝐻!); Tahmasebi et al. 
evidenced by increasing the temperature and pressure of the 
process, increasing the concentration of hydrogen [91]. 
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 Setiabudi et al. [95] y Bizkarra et al. [96] carried out a 
double process; they start pyrolysis to biomass. The liquid or 
oil by-product applies a steam reforming process, using 
catalysts such as acetic acid, ethanol, and phenol. Yang et al. 
present the extraction of hydrogen in waste from palm oil, 
obtaining gases such as 𝐻!, 𝐶𝑂, 𝐶𝑂!, 𝐶𝐻%, and traces of 𝐶!𝐻% 
and 𝐶!𝐻( [88], its process grinds, dries, and heats the waste 
to a temperature between 500 and 900 °C in the reactor. Side 
reactions can occur within the reactor, increasing or 
decreasing other gases other than hydrogen [97]. Pyrolysis 
with the waste manages to generate 𝐻! and 𝐶𝑂 up to 70% of 
the volume of the gas produced, however, when the maximum 
temperature of 900 ° C is reached, it is possible to obtain 𝐶𝑂! 
and 𝐶𝐻% [88], [98]; Yang et al. indicated that if the resistance 
of the waste decreases the production of 𝐻! y 𝐶𝑂 and will 
decreases [88]. 
 

3.3.5. Partial Oxidation 
Partial oxidation (POX) consists of incomplete oxidation of a 
hydrocarbon [99], where carbon is oxidized, up to carbon 
monoxide (𝐶𝑂), and releases hydrogen (𝐻!). It is an 
exothermic reaction with a standard enthalpy of -36 kJ/mol, 
allowing to do without external burners [30], allowing 
reactors to be more compact, reduces energy cost to 10-15% 
and capital investment to 25-30% [100]. POX processes 
preferentially use methane [101]. 
 In the presence of catalysts, the reaction reaches 
temperatures above 800ºC [19]; if there is a high presence of 
carbon monoxide, it can generate the deposition of charcoal 
and cause the inhibition of the catalysts [19]; Nickel (𝑁𝑖) is 
used as a catalyst, and its activity and durability depend on 
the size of the Ni core [101]. Without the presence of 
catalysts, the temperature rises between 1.300 and 1.500ºC 
[102]. Figure 8 presents the POX process and reaction. 

 
2𝐶𝐻% +𝑂! → 2𝐶𝑂 + 4𝐻! 

Fig. 8. The partial oxidation process of methane. 

 
 The partial oxidation process begins with the entry and 
preheating of a hydrocarbon and oxygen, an oxidation 
reaction is carried out, and obtained a synthesis gas; this will 
be recirculated to extract steam and remove acids such as 𝐶𝑂! 
and sulfides. Finally, adsorption is carried out by the pressure 
oscillation (pressure swing adsorption) to extract the 
hydrogen. 
 There is a process derived from this methodology called 
partial catalytic oxidation. (CPOX), uses natural gas or other 
hydrocarbon and a catalyst from the conventional POX 
process. It produces synthesis gas rich in hydrogen and 

methanol, which can be used in the Fischer-Tropsch process 
to obtain valuable products [103]. 
 
3.4. Technological comparison 
Hydrogen is a possible candidate to replace fossil fuels [14], 
[15]. However, its final price limits its competitiveness due to 
the costs associated with storage and transportation [20]. 
Having an efficient production process and by-products that 
deliver added value will help improve their competitiveness; 
Table 1 presents a comparative summary of the technologies 
presented.

 
 
Table 1. Technological comparison. 

Technique Raw 
material Efficiency By-

products Cost Applications Comments 

Electrolysis 

Water. 
Acid and 
alkaline 
solutions 

50% - 70% - $2.77/Kg𝐻!. 
[104] 

Use 
unconventional 
energies (wind, 
solar) for the 
production of 
hydrogen with a 
fuel approach. 
[105][106] 

Efficiency depends 
on operating 
temperature. 
The cost depends on 
how the electrical 
energy production 
is. 

Fuel cells Metals 30% - 60% Water, 
Heat. 

€1200–2000 
[107]  

They are used as 
central or 
distributed 
generation, even 
as APU 
(Auxiliary Power 
Unit) in vehicles 
and portable 
applications. [54] 

Efficiency depends 
on operating 
temperature and 
technology. 
Versatile 
applications. 
It produces few 
vibrations in its 
operation. 
Therefore, they are 
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silent and do not 
produce NOx. 

Gas steam 
reformed 𝐶𝐻% 70% - 85% 𝐶𝑂! 

$0.75 - 
0.77/Kg𝐻!. 
[108] 

Nickel-based 
catalysts using 
alumina pellets as 
supports for the 
production of 
hydrogen through 
methane steam 
reforming. [109] 

Cost-efficient 
technology. 

 Pyrolysis Coal - 
biomass 64% - 73%  Tar, Coal, 

Water. 
$1.25 – 2.20 
/Kg𝐻!. [110] 

Reactors produce 
hydrogen from 
plastic waste 
through catalytic 
reforming. [111] 

Efficiency depends 
on operating 
temperature and 
pressure. 
Wide range of raw 
materials. 

Partial 
oxidation 
(POX) 

𝐶𝐻% 60% - 75% 𝐶𝑂! $1.48 /Kg𝐻!. 
[112] 

Efficiency 
improvement 
through Ni/Al2O3-
Sic catalyst for 
hydrogen 
production, 
through partial 
oxidation.[113], 
[114] 

The catalyst 
influences energy 
consumption. 
Compact reactors. 
It requires high 
temperatures. 

 
 Table 1 presents critical elements to have a competitive 
process, such as the required raw materials, the process's 
efficiency, by-products with commercial value, and flexibility 
in operation. Strengthening each of the elements or finding 
alternatives will improve reliability and decrease operating 
costs (OPEX). They propose having security or low 
acquisition prices of raw materials, reducing energy 
consumption, and using low-cost energy or renewable 
energies to avoid using the grid. 
 The cost of hydrogen production is affected by the raw 
material prices and the necessary infrastructure. Photovoltaic 
electrolysis is the most expensive, and its cost is more than 
$5/KgH2 compared to other energy supplies [115]. The fuel 
cell can use different fuels, such as methanol, ethanol, and 
natural gas, having these different applications. However, fuel 
cell manufacturing costs are not directly related to hydrogen 
but are related to operating costs [116]. 
 
3.5. Hydrogen Storage 
The storage factor is one of the most complex because it is a 
highly volatile element in its pure state. [117]. Compared to 
other fuels, hydrogen has low activation energy [118]; 
therefore, it does not require much energy to start combustion. 
This factor generates a benefit in the combustion processes 
and electrochemical processes [119], [120]. However, it is an 
excellent security inconvenience due to the risk of 
combustion [121]. Hydrogen has the particularity of being 
colorless and odorless [118]; this makes leak detection 
difficult, and detection equipment is required. 
 The hydrogen liquefaction process is currently used to 
decrease the occupied volume. Going from a gaseous to a 
liquid state [122]–[124], it cools down to temperatures below 
-1000°F [125], making it difficult to change its state and direct 
storage. Hydrogen has a low energy density [19], lower than 
fossil fuels requiring large storage systems slower than fossil 
fuels requiring larger storage systems [126]. The storage 
system requires a high storage pressure to avoid 
inconveniences, the use of materials that attract a large 
number of hydrogen molecules, or a shallow storage 
temperature [127]. 

 These technologies are divided into two main groups, 
which are physical storage and material-based storage. The 
second group is subdivided into two main groups of sorption, 
chemistry, and physics. [128]. Physical sorption also called 
physisorption, is when a sorbate makes contact with a solid's 
surface, known as the sorbent [129]. Chemisorption, or 
chemical sorption, is that reaction between a sorbate and a 
sorbent, whose results are variations in the chemical form of 
sorbate [130]. Figure 9 presents the classification of the 
technologies used for the storage of hydrogen. 
 One of the main challenges when evaluating hydrogen as 
an alternative fuel is its storage and transportation [131], 
[132]. Therefore, storage is one of the leading research 
objects. Furthermore, hydrogen is one of the possible 
alternative candidates to face progressive energy demand 
[133]–[135]. Therefore, hydrogen storage in materials has 
recently been studied [135]; this type of storage is carried out 
through physical and chemical adsorption and reactions 
[136]. 
 
Compressed Gas  
One standard method to store hydrogen is through gas 
compression, using gas cylinders with maximum capacities of 
20MPa [137]. Four cylinders commonly provide compressed 
air storage; Type I cylinder presents limitations in storage 
efficiency, having pressure restrictions between 20 and 30 
MPa. The type II container has an envelope fundamentally of 
fiber resin [138]. Finally, the type III and type IV containers 
are alloys of plastic fibers and embedded carbons. The main 
difference is that Type III uses metal, and Type IV uses 
polymers [139]. 
 
Liquid Gas  
Hydrogen liquefaction is an alternative, in the liquid state has 
a density of nearly 71 g/L at its boiling point of 20°K. It has a 
low boiling point. Therefore, it requires a refrigeration system 
that consumes 30% of its total energy [140], [141]. Therefore, 
it is necessary to use cryogenic pressure vessels. However, 
this technology becomes ineffective as hydrogen boils are 
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present, in addition to the high use of energy to carry out the 
hydrogen liquefaction process [142]–[144]. 
 
Cryo-compressed  
The storage of hydrogen through Cryo-compressed containers 
(𝐶𝑐𝐻!) has excellent potential for fuel cell vehicles due to its 
high density and thermal resistance [145], [146]. Cryo-
compressed storage makes use of liquefied hydrogen and 
compressed hydrogen gas storage systems [147]. This type of 
storage can minimize the loss of boiling from hydrogen 
storage. Generally, the container is made of metal wrapped in 
carbon fiber (Type III) [148]. At the same time, it conserves 
a higher energy density of the system [148]. Furthermore, this 
method allows storage at cryogenic temperatures at 
temperatures of 20K and high pressures of at least 30Mpa, all 
this at room temperature [149]. 
 
Ammonia 
Ammonia is a liquid hydrogen storage carrier [150]; this 
method mixes it with water to store hydrogen in liquid form 
at ambient temperature and pressure. It provides high 

densities and reduces the few cryogenic limitations [151], 
[152]. Furthermore, by reforming ammonia, hydrogen can be 
produced without generating harmful by-products [128]. The 
development of catalysts would allow achieving an efficient 
conversion to hydrogen from ammonia. The temperature is an 
essential factor. The ruthenium-based catalyst requires 
temperatures higher than 450°C [153]. 
 
Formic Acid 
Formic acid is a promising material for hydrogen storage 
[154], [155]. It is a light organic molecule capable of storing 
liquid hydrogen at room temperature [156]. In addition, its 
liquid state is more compact and safer than hydrogen in gas 
[157]. Using formic acid as a molecule that stores hydrogen 
requires catalysts that promote the reaction [158]. During the 
reaction, hydrogen is produced free of CO. The co-produced 
CO2 can be hydrogenated again to formic acid [159]. 
Hydrogen produced in this way is beneficial for fuel cell 
applications [155], [160]. 
 

 
 

 
Fig. 9. Storage hydrogen classification. 
 
 
Metal Hydrides  
Metal hydrides have a high hydrogen storage capacity, 
abundance and are lightweight. As a result, it is considered a 
promising alternative in medium and small-scale applications 
[135], [161], mainly in applications between 0.01 and 30 
𝑁𝑚)𝐻! [162]–[165]. This storage type uses reversible 
hydrogen reactions with metals, intermetallic compounds, 
and alloys [166]–[168]. 
 The choice of metal hydride materials needs two critical 
criteria. First, the formation and decomposition processes 

must have the capacity to be reversible. Second, the material 
used must have a high reversible hydrogen storage capacity 
under operating conditions [169]. 
 The storage can be in carbonaceous materials [170], 
metals and alloys [171], [172], borohydrides [173], and 
materials formed by boron nitride [174], [175]. The last one 
has demonstrated significant results in terms of performance. 
Finally, the kinetic adsorption and desorption of hydrogen is 
an additional property that MH materials must carry out the 
storage and compression of hydrogen [176], [177]. 
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Liquid Organic Hydrogen Carriers 
Liquid Organic Hydrogen Carriers (LOHC) are liquid with 
low melting. The hydrogenated and dehydrogenated process 
needs the presence of a catalyst [178]–[181]. The LOHC 
hydrogenation is an exothermic reaction; it produces heat 
with a temperature between 150°C to 170°C, this energy is 
used [182]. The operating pressure depends on the exothermic 
hydrogenation and endothermic dehydrogenation method. 
However, both processes can be carried out at the same 
temperature level [183], [184]. Furthermore, hydrogen LOHC 
compared to molecular hydrogen has a marked increase in 
volumetric energy density. Thus, facilitating its storage under 
environmental conditions, with minimal energy losses during 
transport [185]. 
 
Glass Microspheres 
There are several well-established methods to produce hollow 
glass microspheres (HGMs) [186], [187]. This material has 
advantages such as high efficiency, safety, lightweight, low 
density, nontoxic, low production cost [188]. Additionally, 
they are strong materials due to their small diameters and can 
contain hydrogen pressures of up to 150 MPa [189]. The 
filling process in the HGMs is initially carried out with 
hydrogen at high pressure with approximate levels of 350-700 
bars at a temperature of 300 ° C; then, a rapid cooling process 
is carried out at room temperature [190]. Finally, to achieve a 
controlled release of hydrogen, they are reheated to 200-300 
° C [191]. 
 
Carbon Material 
Hydrogen can be stored in solid form by combining different 
materials through physisorption and/or chemisorption [192]. 
It can be stored in its solid form with different carbon 
materials [193]. Carbon materials retain a high hydrogen 
storage capacity due to their large porous microstructures 
with High Specific Surface Area (SSA) and low mass density 
[194]. 
 Carbon-based storage uses activated carbon (AC), 
graphite, fullerene, and carbon nanostructures. Activated 
carbon is a form of processed carbon that includes amorphous 
carbon and graphite crystallites. Hydrogen adsorption in these 
materials is strongly dependent on SSA and pore volume 
[195]. Graphite is one of the four sp2 ordered carbon 
allotropes. Hydrogen is stored in its molecular form through 
adsorption by Van der Waals forces. From this element arise 
the porous graphite nanofibers (PGNF) that present an SSA 
of 1400 𝑚!𝐺"# and a total pore volume of 2 𝑐𝑚)𝐺"# [196], 
[197]. 
 Fullerene is carbon molecules with a rolled layer of 
graphene. They can take the form of spheres, ellipsoids, or 
tubes. They are formed when carbon vaporizes, mixes with 
inert gas, and slowly condenses [196], [198]. Nanostructures 
are classified into Carbon NanoTubes (CNT) and carbon 
nanofibers (CNF). CNT is formed when metallic catalysts are 
included in the fullerene process with multiple graphene 
sheets [199]. CNF is graphite platelets, and they are formed 
in the application of hydrocarbons using nickel catalysts and 
iron-based alloys [200]. 
 
Metal-Organic Framework 
Metal-organic frameworks (MOF), also known as porous 
coordination polymers (PCP), are porous materials built from 
metal-containing nodes and are also organic linkers [201]. 
MOFs have ultra-high porosity and huge internal surfaces, 
which extend beyond 6.000𝑚!/𝑔 [202]. Together with the 

extraordinary degree of variability for both the organic and 
inorganic components of their structures, they are attractive 
for storing gases such as hydrogen and methane [203]. 
 
3.6. Hazard and safety of hydrogen 
Hydrogen is odorless, colorless, and nontoxic [203]–[205]. Its 
density is 0.0899𝑘𝑔 𝑚)⁄ , and the boiling point is 20.39K 
[206], [207]. Hydrogen has a minimum ignition energy 
(0.017mJ) and a high heat of combustion of approximately 
142𝑘𝐽 𝑔𝐻!⁄  [208]. 
 One of the most significant risks when using hydrogen is 
its excellent permeability through different materials, leading 
to different unique methods for specific applications [153]. 
As has already been discussed in this document, hydrogen has 
good combustible and explosive properties. For this reason, it 
is essential to maintain specific safety parameters and 
continuous control when having any application related to this 
element [209]. An important aspect is to maintain good 
explosion ventilation in the work building [210]. 
 Cao et al. propose a spherical ventilation system [211], 
which considers flame propagation, effects of temperature, 
and pressure in the ventilation. It evaluates the danger from 
the explosion ventilation based on the effects of temperature 
and pressure. In addition, another significant factor has a good 
ignition and explosion suppression system in the event of 
faults [211]–[213]. 
 Another fault that can occur is filtration through 
containers or pipes due to its small molecular size [214]. 
Consequently, hydrogen sensors are essential for continuous 
monitoring and detection of leaks during transport, storage, 
and any application [215]. 
 Lee et al. present a chemochromic sensor used to detect 
hydrogen leaks at room temperature through electrostatic 
spray deposition of a solution of Pd and Wo3. The sensor 
presented has a response time of 15s, when hydrogen levels 
decrease by 1% at room temperature. In the same way, the 
sensor can be reversible, allowing it to return to normal when 
being in contact with the air again [216]. Semiconductor gas-
hydrogen sensors, based on metallic oxides, have been 
implemented to a great extent to detect hydrogen gas [217]. 
 Zhou et al. present a sensor for the detection of hydrogen 
in the gaseous state. It is highly sensitive and manufactured 
using microelectromechanical systems [218]. The sensor has 
a quartz resonator, with an operating frequency of 165MHz, 
accompanied by a 200nm palladium film. The sensor operates 
wirelessly, exciting and detecting the resonator's vibration, 
and uses non-contacting antennas. Research results show that 
the sensor has a high level of sensitivity, allowing it to detect 
leaks even with humidity in the air at room temperature. 
 Concerning security, Tolias et al. simulate the hydrogen 
release diffusion behavior and identify the minimum safety 
distances; that must implement to minimize the adverse 
effects in cases of an explosion at hydrogen stations [219]. 
 
 
4. Discussion 
 
Hydrogen requires improved production, storage, and end-use 
to improve process efficiency and sustainability and design 
economically viable business models. The cost of hydrogen 
storage systems is higher than that of petroleum fuel storage; 
the most significant challenges are increasing the efficiency, 
durability, and cost of materials and components. 
 Technologies for hydrogen storage are under 
investigation, and compressed storage is the most developed. 
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However, metal hydrides are a potential alternative due to 
their absorption and kinetic properties. 
 On the other hand, fuel cell systems are the most versatile 
technology, but they must be cost-effective. The most critical 
challenges are reducing costs and improving durability; The 
research seeks to identify and develop new materials to reduce 
costs and extend the component's useful life. 
 
 
5. Conclusion 
 
The work presented an evolution of hydrogen research as an 
alternative to fossil fuels; it described and compared the 
technologies used to produce hydrogen. Finally, it presented 
the storage technologies, the review allowed for the 
identification of challenges.  
 The production and storage of hydrogen require high 
energy consumption for the chemical thermodynamic 
processes involved due to exothermic reactions. The review 
introduced hydrogen as an alternative fuel, which has 
improved its viability due to the integration of renewable 
energy; storage could be used when there is a shortage of 
energy to meet the demand. The hydrogen's simplicity and 

nature are significant drawbacks due to its high reactivity and 
the risks associated with its volatility. It is changed to a liquid 
state in storage to reduce the risk. 
 The cost reduction in the production, storage and transport 
chain is related to the raw material and energy source used, 
renewable energies being an attractive method due to 
sustainability. Transportation remains a critical point due to 
the high risks. Hydrogen has gained acceptance for use in 
automobiles, using fuel cell technology, where storage is its 
most significant challenge due to the amount that can be 
stored. Like fossil fuels, infrastructure and investments are 
required to make commercialization viable. 
 Research suggests that the process's economic and energy 
efficiency needs to improve, integrate renewable energies, use 
raw materials with lower economic/energy value, and give 
economic value to the by-products of the processes used. The 
most significant challenges are the business models and the 
material sciences of the materials and components. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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