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Abstract 
 
This paper uses the multi agent system (MAS) as the bioinformatics-inspired technique for guiding a team of autonomous 
underwater vehicles (AUVs) toward desired destination. This problem mimics the team behaviour towards achieving a 
common target. Here, each AUV estimates the position of the neighbour AUVs while moving towards the destination. An 
individual AUV is designated as an agent connected by a communication network and assumes full communication. The 
proposed multi-AUV system constitutes of a leader AUV and three follower AUVs. A distributed path consensus (DPC) 
is proposed that determine the distance constraint to ensure the neighbouring agent AUVs must maintain a predefined 
distance between each other while moving towards the respective destinations. Due to the proposed distance constraint, 
AUVs stays at a safe distance from each other and also from the static obstacles while maintaining underwater 
communication using interactive switching topology. The performance of the optimized path is obtained using MATLAB 
simulation. From the obtained results, it is observed that the proposed control algorithm provides effective co-operative 
motion control of multiple AUVs along the desired paths and avoid obstacles successively. The proposed method solves 
coordination problem among multiple AUVs and increase the coverage of underwater missions like oceanographic surveys. 
 
Keywords: Autonomous underwater vehicle (AUV), Distance constraint, Distributed path consensus (DPC), Multi-agent system (MAS), 
Path planning, Position estimation. 
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1.  Introduction 
 
The underwater world is vast and to cover a finite area 
requires involvement of multiple AUVs as a team [1]. The 
path planning of multiple AUVs using MAS is inspired by 
team behaviour of humans working towards achieving a 
common goal within defined time span [2]. The MAS 
maintains relative positions and orientations deployed as a 
team while approaching the destination [3]. Control involving 
path planning needs complicated controller design to 
maintain inter-vehicular communication to avoid collision 
among themselves and with other obstacles [4] [5]. The 
dynamic underwater environment [6] and unavailability of 
GPS signals [7] make path planning control task quite 
challenging. Thus, designing fewer complex controllers for 
path planning control is recently gaining research interest[8], 
[9]. Most of the methods for path planning control of multiple 
AUVs advocate leader-follower structure [3-9] where 
follower vehicles trace the trajectory of a leader AUV. The 
leader AUV decides the direction of advancement of the 
formation, while follower AUVs maintain the required angle 
of orientation and position with respect to the path of the 
leader [10]. 
 Different consensus algorithms used for the networked 
multi-agent system (MAS) has been discussed in [11]. The 
MAS can be considered as solution to coordination problem 
for multi AUV formation [12]. Szymak et al. [13] developed 
a control system architecture for MAS consisting AUVs 
employed in underwater survey. Yang et al. [14] suggested to 

employ Jacobi transform and geometrical 
reduction techniques to separately design shape, motion and 
AUV orientation controllers. Xue et al. [15] designed an 
artificial potential field (APF) based controller for the 
distributed formation control problem of MAS with varying 
communication topology. Hu et al. [16] proposed an energy 
efficient information exchange triggered by impulse signal 
between AUVs in a multi-AUV formation topology. A 
formation controller and a consensus law for MAS based on 
position estimation has been also discussed in literature [13], 
[17], [15]. A decentralized formation controller for time 
varying formation topology along with collision avoidance 
has been proposed in [18]. Liu et al. [19] designed a formation 
controller using a reference topology and mapping decision 
for a MAS comprising of identical agents. A  distributed 
consensus observer to estimate the state of a leader for a 
leader-follower formation topology is discussed in [20].  
 The efficient path planning of MAS is to determine the 
path of each agent between user defined start and goal point 
[21]. An efficient path planning  method using Flow 
Annotation Replanning (FAR) [22] for MAS on grid map  
proposed by Wang et al.  FAR is verified to be scalable, fast, 
and memory efficient but does not guaranteed completeness. 
Thus, they proposed a multi-agent path planning (MAPP) [23] 
algorithm for undirected graphs that ensures completeness 
with computational efficiency. Bhattacharya et al. [24], [25] 
developed a distributed path consensus (DPC) algorithm and 
used it for the path planning and task assignment of MAS. 
Gaber et al. [26] proposed a PP method by integrating global 
assignment problem, checkpoint priority action database 
algorithm and APF method. The decentralized multi-agent 
Rapidly-exploring Random Tree (DMA-RRT) algorithm has 
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been proposed by Desaraju et al. [27] to obtain minimum cost 
path for MAS. Yu et al. [28] solved MAPP problem by 
reducing it to network flow problem. He suggested 
application of network flow algorithms and liner 
programming to solve the MAPP. Deng et al. [29] proposed a 
grid-based multi objective optimal programming (GMOOP) 
path planning method for interacting agents with limited 
communication ability to execute multi objective tasks. A 
push and rotate algorithm has also been proposed in [30] to 
solve MAPP problem. Rossi et.al [31] categorized collective 
behavioral algorithms of MAS according to their fundamental 
mathematical structure. A hybrid path planning algorithm for 
multi-AUVs system has been discussed in [32], where each 
AUV can be considered as an individual agent. Ma et al. in 
[33] discussed various issues related MAPP problem in real 
world scenario. One of the issues to be addressed for MAS is 
randomly switching communication topology of different 
agents.  
 This research is concerned with path planning of 
coordinated multiple AUVs using switching topology based 
on the concept of bio-inspired MAS. The bio-inspired MAS 
is used to handle position of the various AUVs in the 
underwater environment relative to each other, by considering 
their position. Here each agent represented by an AUV 
connected by a communication graph network. The proposed 
multi-AUV system constitutes of a leader AUV and three 
follower AUVs. All the AUVs are assumed to be identical. 
The position estimation method is proposed for estimating the 
position of neighbour AUV and to plan a path from starting 
point to desired destination. The distributed path consensus 
(DPC) is proposed for path optimization by implementing a 
distance constraint that ensures a predefined distance between 
the neighbouring AUVs while moving towards the respective 
destinations. Due to the distance constraint AUVs stays at a 
safe distance from each other while maintaining 
communication among the agents. Path optimization is 
performed for each AUV separately to find a minimum cost 
route between desired start and destination point.  
 This research contributions can be listed as follows: 

• MAS controller is designed based on the position 
estimation to obtain a desired shape while 
approaching towards the destination imposing the 
distance constraints using DPC algorithm. 

• Avoids inter vehicle collision as well as obstacles 
while prevailing communication and provides 
optimized path. 

• Verification of the performances in terms of 
tracking error in X and Y directions.  

 
 
2. Problem formulation  
 
This research intended to solve a path planning problem [31] 
using bio-inspired MAS where each agent reach their desired 
destinations using position estimation technique. The MAS 
represent a system of identical AUVs deployed for the 
mission. The AUVs travel from different starting point to 
different predefined destinations while maintaining a 
coordinated shape.  A MAS controller is designed to obtain 
the stable shape and to plan paths for agents to reach their 
destination using position estimation technique. The agents 
switch from one state to other state with progress in time till 
the desired shape is obtained. The DPC algorithm is proposed 
to implement a distance constraint that maintains a safe 
distance among neighbouring AUVs and helps in avoiding 
collision among them. The path cost is optimized by using 

distance constraint for each position of AUV along the path. 
Once the desired coordinated shape is obtained, the same is 
maintained by the agent AUVs while approaching their 
destinations as shown in Figure 1. 
 

 
Fig. 1. Schematic presentation of flocking of four AUVs 
 
 
 The DPC algorithm is applied to path of each agent 
separately to obtain an optimum position to maintain the 
coordinated shape. At the optimized position the agent AUVs 
are at a safe distance from the neighbor AUVs without loss of 
communication among them. It intends to find K paths for K 
agent-AUVs with optimized path cost defined as P"! for 
	(1 < k < 𝐾) through the defined directed graph 	𝒢! such that 
 
+P"", … , 	P"#. = 	 argmin

$%!….,$%"		
∑ cℰ8P"!9!+	"…#                                            (1) 

 
 The equation (1) is subjected to the distance constraint 
given by  
 
ɗ ;P"!(t), P",(t)= ≤ 	π!,(t)	∀	(1 ≤ t ≤ τ), (1 ≤ k ≤ K), 1 ≤
l ≤ K, k ≠ l                  (2) 
 
 The environment is modelled as a 2D grid map assuming 
that all the AUVs are at the same depth. The environment is 
free of obstacles, Thus, AUVs have to avoid collision among 
them only. 
 
 
3. Communication consensus 
 
A directed graph	𝒢! = (N, ℰ, A), while k = {1,2, … . , K} with 
N set of nodes and ℰ ⊆	(N × N) set of edges can be used to 
represent an interaction topology of K agent AUVs connected 
through a communication network. Here, A represents a 
vector of non negative values such that A = [a!,] ∈ 	R|ℰ|×|ℰ| 
and  |ℰ| is the cardinality of	ℰ. The positive	a!,	suggest that 
k/0 and l/0	AUVs are immediate neighbours with a 
communication edge otherwise the a!, = 0.  The degree of the 
k/0 node is given by 	d! = ∑ a!,,∈##  . The ∆ is the degree 
matrix of 	𝒢! , which is a (K × K) diagonal matrix of 	d!. The 
positive semi-definite Laplacian matrix of 	𝒢! is defined 
by	L = ∆ − A = [ℓ!,]	, where ℓ!, is  
 

ℓ!, = Y
∑ a!,,∈## 	∀	k = l
−a!,	∀	k ≠ l

                                                               (3) 

 
 The		𝒢! is formed by ‘i’ subspaces where 1 < i < 𝐾. 
Target driven path planning of any k/0 agent AUVk in a MAS 
can be described as finding a path with minimum path cost 
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through	𝒢!. A time index can be added as an additional 
variable to 	𝒢! such that 	𝒢/! =	 	𝒢! × {0, 1,2, … τ} to obtain 
time paramertized path [25]. Each node represents a state 
{s, t} given by position coordinates of an agent AUV {x, y} 
such that	s ∈ 	N(	𝒢/!)	at a time instant	t. An agent AUV can 
only move from one state s to a next free state s] along the edge 
represented by	{s, t} 	→ {s], t + 1} ∈ 	ℰ(	𝒢/!), such that 	s̀ ∈
	ℰ(	𝒢!) or s → s] ∈ 	ℰ(	𝒢!). This condition guarantees only 
forward movement of AUVs with time. Each edge associated 
with a positive cost factor	cℰ(s, s]). The cost is represented by 
the Euclidian distances between the neighbouring cell centres. 
Each path from start to destination point assumed to be 
accomplished in τ – time-steps. Thus, the path of k/0  AUV 
(AUVk) can be given as	P! = {start!, s", …… , target!}. The 
path cost of path P!	can be defined as 
 
cℰ(P!) = 	∑ cℰ(s23", s2)2+"….4        (4) 
 
 The maximum Euclidian distance between a pair of 
neighbour AUVs has been considered without breaking 
communication between them as a constraint 	π!, for all		k ≠
l.  The distance between k/0 and 	l/0 AUVs is defined as 
ɗ(s, s]) is a positive scalar quantity for any pair of states such 
that	s ∈ 	N(	𝒢!), s] ∈ 	N(	𝒢,) for	k ≠ l. Hence, π!,(t) can be 
defined as a vector consisting of τ positive distance 
values	ɗ(. , . ) between  k/0 and 	l/0 AUVs at time instant	t. 
 The coordination among AUVs results in rendezvous in 
space [11] consensus problem, where K agent AUVs  reach a 
consensus with an interactive switching topology through 
position estimation. The AUV system dynamics can be 
approximated as a second order liner system as follows: 
 

Y
η̇! = V!
	V!	̇ = 	Ʈ!

                                                       (5) 

 
 where, V! ∈ R!, η! ∈ R!, Ʈ! ∈ R! . In real world problem 
it is difficult to find exact position 	η! of the	k/0 agent AUV. 
So the following assumptions are made as per  [34]: 
 
i. Each k/0 agent AUV estimate the relative position of the 

neighboring l/0  AUV as it is unable get the exact position. 
Thus, the relative position of 	l/0 AUV to k/0 AUV can be 
calculated as 
 
η,! = η, − η!	∀	∀	(1 ≤ k ≤ K), 1 ≤ l ≤ K, k ≠ l            (6) 
 

ii. Each AUV is able to measure its own actual velocity and 
can also obtain its neighbor velocity information through 
communication network. 

iii. The k/0 agent AUV can estimate position of itself as 
	η]!	for	k = 1,… , K and also able to obtain the position 
estimation of its neighbour AUV within its 
communication range defined by the distance 
constraint	π25(t). 

iv.  The environment is free of static obstacle. Thus, the 
AUVs themselves are act as dynamic obstacle and avoid 
collision among themselves by position estimation.  

 
 Now the desired position of an agent AUV in the 
interactive graph 	𝒢! can be defined as  η!6 where k =
{1,2, … . , K}. 
 
Lemma 1: For any number 	σ =
γµ − β ± m(γի− β)7 + 	4µ

2
o  , where σ, µ ∈ ∁.  

If	β ≥ 0, Re(µ) < 0	, Im	(µ) > 0	and	ζ(µ) =

u
2
|µ|	cos vtan3" 89	(;)

3=>(;)
w	o 	then		Re(σ) < 0	. Here, Re(. )  and 

Im	(. ) are the real and imaginary parts of a number 
respectively. For such condition 
 
 γ > 	ζ(µ)              (7) 
 
Lemma 2: For the system given by equation (5) we can use a 
control law Ʈ!, as given in [34], such that 
 
Ʈ! =	∑ a!,#

,+" (t)[(η! − η,) 	+ γ	(V! − V,)]	         (8) 
 
 The MAS of AUVs obtains consensus asymptotically if 

and only if ∂ =	 y
0#×# I#
−L#(t) γL#(t)

z   has two eigen values 

equal to ‘0’ and restwith negative real parts. Here, η!(t) →
∑ դ!η!(0)
#
!+" +	∑ դ!V!(0)

#
!+"  and V!(t) → ∑ դ!V!(0)

#
!+"  

for larger value of t, where 	դ =	 {դ", … ,դ!|
? ≥ 0, I#?դ =

1, L#?դ = 0. 
 
Lemma 3: Assuming that directed graph 	𝒢!  has a spanning 
tree and Laplacian matrix given by L , η! = {η", η7, … , η#} ∈
		R#  of the linear system given in equation (5)  exponentially 
converges to a finite vector η!@ = {ηA@, … , ηA@} 	∈ 	R#	 [34]. 
 The formation controller for Multi-AUV system designed 
to achieves following objectives: 
 

i.To design an estimation law for an k/0  agent-AUV that 
satisfy 

 
lim
/→@

η]!(t) = 	η!(t) + η!@}          (9) 
 
where η!@ ∈ 	R#  is a constant vector by using η!, and  
η],	∀	l ∈ K!. As per equation (9) the estimated position η]! 
instead of converging to η! converges to η! + η!@}.  

ii.To formulate an optimal control law for a  set of desired 
positions of AUV  η!6, k ∈ 		N	 as per estimator 
designed such that all the agent AUV reach their 
respective desired positions with a constant error given 
by,  

iii. 

~
lim
/→@

η]!(t) = 	η!6(t) + η!@}

lim
/→@

V!(t) = 	0	
		for	k ∈ 	 {1, 2, … , K	}      (10) 

 
where η!@ ∈ 	R#  is a constant vector. The energy cost is 
defined by the quadratic performance index [34] as 
follows: 
 

𝕁 = "
7
	∑ +∫ [e!(t)?Q	e!(t) +	Ʈ!?	F	Ʈ!]	dt

@
C .#

!+"          (11) 
 
 Here,	e!	(t) = 	η!6(t) − η]!(t) gives the error in output, 
Q and F are assumed to be positive definite matrix of 
required dimensions. As per equation (10) the estimated 
position η]! instead of converging to desired position η!6 
converges to	η!6 + η!@	}  , because of the constant error	e!	(t). 
iv.To propose a consensus law as per estimator designed for 

a  set of agent AUVs, so as to make them converge to a 
consistent value of position and velocity, such that 
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!
lim
/→@

η!(t) = 	 lim/→@ η,(t)

lim
/→@

V!(t) 	= 		 lim/→@ 	V,(t) = constant		∀	k	, l ∈ 	 {1, 2, … , K	}(12) 

  
 The final velocities of all the agents as per equation (11) 
converge to a constant value determined by the initial 
velocities of all the agent AUVs. 
 In this research, the available data is obtained only 
through communication network. The relative position of 
k/0	and l/0 neighbor AUVs	(η!,), the estimated positions of a 
pair of neighbour AUV (η]!, η] ,) and the velocity 
measurement		V! are calculated based on received 
information. 

 
 

4. Controller design  
 
4.1.  Proposed position Estimator 
For agent AUVs with dynamics given in equation (5) a 
distributed estimation law   [34] can be designed as follows: 
 
η]!	̇ = 	V! +	𝕚C ∑ a!,(η],! − η,!)#

,+" =	η!̇ +	𝕚C ∑ a!,[(η] , −#
,+"

η]!) − (η, − η!)]        (13) 
 
 Where, 𝕚C is a positive real number, the estimation of 
relative position of lth and kth AUV is η],!. The required 
velocity v! is calculated. The information about relative 
position	(η,!)	and estimation of position of lth AUV		(η] ,) can 
be obtained through communication network. If η�! =	η! −
	η]! , then equation (13) can be rewritten as follows: 
 
η� !̇ =	 𝕚C	∑ a!,(η� , − η�!)#

,+"      (14) 
 
 Thus, we can estimate the error dynamics of the overall 
MAS as Kronicher product of  Laplacian matrix  L and 
identity matrix  I (L⨂ I) such that; 
 
η�̇ = −𝕚C	(L⨂ I)η�                                                                (15) 
 
where,  η� = 	 {η�", … . , η�#}.  
 
Lemma 4:  Assuming that directed graph 	𝒢!  has a spanning 
tree , the estimation of error dynamics η]! can globally 
exponentially converges  to 	η� − η�!	@ , where η�!	@ =
{ηA@, … , ηA@}	 is a finite vector η!@ = {ηA@, … , ηA@}	 [34]. 
 
4.2.  Derivation of control input based on consensus law 
As per the above assumption and position estimator design, 
we can define the feedback control law for MAS of AUVs as: 
 
Ʈ! =	∑ a!,#

,+" [(η]! − η!6) − (η], − η,6) 	+ γ	(V! − V,)]  (16) 
 
 Using equation (12), the desired formation of MAS may 
be obtained if, η]! → η!6 and η] , → η,6 for all k, l ∈
	{1, 2, … , K	} as ‖η]! − η!6‖ − ‖η] , − η,6‖ → 0		and		‖V! −
V,‖ → 0. 
 When converging to desired position the agent AUVs 
should not collide with each other. Thus, distance constraint 
should be incorporate with the formation controller. 
Implementation of the distance constraint needs controller 
design with extra control terms. The potential function is 
design as per the position estimator as follows: 
 

𝕍!,(η]!, η],) = ;min �0, ‖EF#3EF$‖
%3ℜ%

‖EF#3EF$‖%3𝕣%
�=

7
                                      (17) 

 

 Here ℜ and 𝕣 defines the detection radius of the AUV and 
the safe distance to avoid inter-vehicle collision respectively. 
If the inter vehicle distance between agent AUVs are less then 
ℜ, then 𝕍!,(η]!, η] ,) is positive and will be included in 
additional control input. By finding the partial derivative of 
equation (17) with respect to η]! we can get 
 
I𝕍#$

&

IEF#
=	 ~

	K	Lℜ%3𝕣%ML‖EF#3EF$‖%3ℜ%M
(‖EF#3EF$‖%3𝕣%)'

0		, for	ℜ > 		 ‖η]! − η],‖
	(η]! − η],)?, for	𝕣 ≤ 		 ‖η]! −

η],‖ ≤ ℜ�           (18) 

 
 Now the control law for formation control with collision 
avoidance based on position estimation can be defined using 
equation (16) and equation (18) as follows: 
 
Ʈ!N =	−∑ a!,#

,+" {8(η]! − η!6) − (η] , − η,6)9 	+ γ	(V! −

V,)| − ∑
I𝕍#$(EF#,EF$)&

IEF#
#
,+"             (19) 

 
Theorem 1-   As per equation (8) and equation (19) the MAS 
given in equation (5) obtained the obtained the desirer 
formation if the directed graph 	𝒢!  has a spanning tree, if 
 
γ > γ	�	           (20) 
 
where 		γ ≜ 0  if all the (K-1) nonzero Eigen value of		−LO , 
given by	µ!	∀	k ∈ {1, . . , K} are negative and 
γ	�9NP 	;#,∀	!∈{",..,#}ζ(	µ!). Therefore , for t → ∞, we have 
η!(t) → η!6 + η�A@ + t	 ∑ դ!V!(0)

#
!+"  and V!(t) →

∑ դ!V!(0)
#
!+"  where դ =	 {դ", … ,դ!|

? ≥ 0, I#?դ =
1, L#?դ = 1, η�!@ = {η�A@, … , η�A@}	and η!6 =
	{η"6, η76, … , η#6} are constants [34]. 
 
Theorem 2- If the controller is designed as per the equation 
(19) for the system described in equation (5)  and γ satisfies 
equation (20), then multi-AUV system obtain its desired 
formation without inter-vehicular collision [34]. For the proof 
of theorem 1 and 2, we suggest readers to refer [34]. 
 
4.3. Distributed path consesus (DPC) algorithm 
In this research work, the DPC algorithm is used for planning 
a safe path for the AUVs to reach the desired destination by 
applying distance constrant in a 2D underwater environment. 
Path planning is incorporated for each agent separately using 
DPC to find K optimal safe paths for K agent-AUVs defined 
as 𝑃�T for 	(1 < 𝑘 < 𝐾) through the defined directed graph 	𝒢T 
as defined in equation (1) subjected to constraints defined in 
equation (2). For every iteration 𝑖𝑡𝑒𝑟, the DPC algorithm 
searches a subset of graph 𝒢UVW to find a path with optimized 
path cost for an agent AUV [24]. The path cost is the 
summation of distance travelled by AUV and the penalty 
imposed due to violation of distance constrained. The penalty 
for violation increases with each iteration by slowly 
increasing the weights associated with the cross points. The 
cross points are the points on the planned path where two 
paths may collide with each other. Thus, the path cost of 
generated paths that goes through the cross points increase 
due to the violation of distance constrained. Hence, these 
paths are avoided while planning optimized path. The penalty 
function		λ!,8P"!, P",, π!,9, k ≠ l used for violation of constraint 
is given by 
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λ!,8P"!, P",, π!,9 = 	∑ 𝓌!,� 8P"!(t), P",(t), π!,(t)	9/+",7,…4	    (21) 
 
 If 𝓌!,	 is the dynamic weight associated with the edge 
s → s] ∈ 	ℰ(	𝒢!)	 such that 𝓌!, = 𝓌,!		then 𝓌!,� 	can be 
defined as 
 
	𝓌!,(s, s], π!,	) 	= max(0, ɗ(s, s]) − π!,)  (22) 
 
 As π!, is a constant for our research problem, it can be 
dropped. Hence, λ!,8P"!, P",, π!,9	is represented as λ8P"!, P",9	 . 
The association of 𝓌!, with π!, is to convert the hard distance 
constraint defined in equation (2) to a soft distance constraint 
[24].  The path cost is computed by calculating the Euclidian 
distance between the AUVs by using position estimation. 
Then, DPC algorithm is used iteratively on each agent AUV 
to optimize the cost. For k/0 agent AUV, the weight of penalty 
increases by a small amount	℧!,2  within each iteration.   The 
value of 	℧!,2  is calculated as  
 
℧!,2 =	Y

≥ 0, ∀k ≠ l
0, otherwise      (23) 

  
 Thus, a minimum cost path is computed for k/0 AUV can 
be given as	P! = {start!, s", …… , target!} in		𝒢/! . The cost 
associated with the transition {s, t} 	→ {s], t + 1} ∈
	ℰ(	𝒢/!)	has been modified using 

 
cℰ(s, s;) + 2	 ∑ 𝓌!,

2/>XY"	,+"….#,∀!Z, λ!, @s;, PB,
2/>X(t), π!,(t)	D (24) 

 
 For, each iteration 𝑖𝑡𝑒𝑟 and i/0  AUV path can be 
calculated as 
 
P"(
)*+,

= 	argmin
-.!		

+	cℰ-P"(. 	+ 0
𝓌1(

)*+234	λ1( 3P"1
)*+2 , P"(	5 +

	 0 𝓌5(
)*+234	λ5( 3P"(	, 	P"5

)*+25
56	4…8,5:(

16	4…8,1:(

6

																							

						 

= argmin
$%;		

�	cℰ8P"29 	+

2	∑ 𝓌!2
[\]^Y"	,+"….#,∀!Z2 λ!2 ;P"!

[\]^ , P"2	=�                    (25) 
 
 

5. Result Analysis 
 
The proposed path planner for MAS of multiple AUVs has 
been tested by simulation performed using MATLAB. This 
simulation shows a leader AUV and three follower AUVs. 
The follower AUVs are represented as AUV1, AUV2 and 
AUV3. The simulation parameters for the AUV are taken 
from the experimental values as in [35], [36]. 
 

 
(a)                                                                                 (b) 

Fig. 2. Path planning of Bio-inspired AUVs in circular path avoiding inter vehicle collision (a) 3D space (b) 2D plane 

 
Fig. 3. Tracking error in X-direction 
 

 
Fig. 4. Tracking error in Y-direction 
 

Table 1. Variation of tracking error in X and Y direction 
Time (sec) 0 10 20 30 40 50 

Tracking error (m) X Y X Y X Y X Y X Y X Y 
Leader AUV 21 7 15 11 -4 8 -3 -4 -2 0.1 1.3 1.5 
Follower 1 20 28 6 27 -16 7 -1 -9 -2.5 -1.5 1 3 
Follower 2 -19 27.7 -22 23 -19 -4 4 -10 -2 -3 -0.6 3.5 
Follower 3 -20 15 -18 7.5 -10 -12.5 7 -6 -0.8 -3.5 -2 2.5 
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 From the Figure 2 (a) to Figure 2(b) show the positions 
obtained by all the AUVs at different 3D and 2D domain 
respectively. Figure 2 show that all the follower AUVs follow 
the desired path by the leader AUV avoiding collision among 
themselves. Figure 3 and Figure 4 show the tracking error 
variations from 0 to 350 second in X direction and in Y 

direction respectively. From the Table 1, it is observed that as 
the follower AUV start to follow the desired path of the leader 
AUV in X and Y direction in the time period 0 to 50 sec. After 
30 sec, it can also be observed that follower AUVs do not 
track the leader AUV but try to follow the path of the leader 
AUV. 

 
(a)                                                                    (b) 

Fig. 5. Path planning of Bio-inspired AUVs in circular path and avoiding solid obstacles as well as inter vehicle communication in (a) 3D space (b) 2D 
plane 
 
 
From Figure 5, it is observed that there is no chance of 
collision among AUVs or AUV with obstacles arisen during 
path planning. 

 

 
Table 2. Comparisons of flocking approach times and distances among AUVs for both the methods 

Control 
strategy for 

different cases 

Inter vehicular avoidance Inter vehicular avoidance as well as static 
obstacle avoidance 

Path 
planning 
approach 
time (sec) 

Distance between AUVs (m) Path 
planning 
approach 
time (sec) 

Distance between  
AUVs (m) 

Minimum Maximum Minimum Maximum 

One leader and 
three followers  

 
2.4 

 
1.584 

 
1.611 

 
1.2 

 
1.939 

 
1.978 

 
 From Table 2, it is also observed that the inter vehicular 
avoidance and static obstacle avoidance have been 
implemented successfully during path planning. 
 
 
6. Conclusion 
 
In this paper, bio- inspired multi-agent system (MAS) is 
employed to address personal path planning problem to 
navigate a team of AUVs towards their destination. During 
path planning of a group of AUVs, the time taken to reach the 
desired trajectory as well as to keep the collision avoidance of 
AUVs are important factors. Each AUV is designated as agent 
connected by a communication network and assumes full 
communication. The agent-AUVs are identical and estimate 
the relative position of their neighbour AUVs while moving 
towards their respective destinations. The proposed multi-

AUV system constitutes of a leader AUV and three follower 
AUVs. The proposed MAS implement DPC algorithm to 
maintain coordination, safe distance among agent-AUVs and 
obstacle avoidance by imposing distance constraint. The 
agents switch from one state to another with progress in time 
till they reach the desired path by following the Leader AUV. 
The simulation results are verified that the proposed method 
is successful in coordinated path planning of multi- AUV 
system. The proposed bio-inspired multi-AUV system can be 
used to discover unknown under sea terrains, for the 
surveillance of sea-bed and to access difficult areas in 
underwater environment. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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