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Abstract 
 

To explore the solution of the dynamic stress intensity factor (SIF) of the fracture model I, static and dynamic three-point 
bending numerical tests on the notched semi-circular bend (NSCB) specimens were conducted by using Abaqus software. 
The method of dimensional analysis was used to fit the K-factor formula of the fracture model I under static loading. 
Then this expression was extended to solve for the stress intensity factor under dynamic loading. The SIF was analyzed 
with the relative crack length a/R (a is the crack length, R is the radius of the specimen) and S/R (2S is the simply 
supported distance of the specimen) under static loading conditions, and the effects of the stress pulse duration and wave 
shape on achieving dynamic force equilibrium were analyzed under dynamic loading. Results show that the static SIF 
increase with the increase of a/R and S/R, and the triangular stress pulses during 200 μs, 300 μs and 400 μs have similar 
trends with the trapezoidal stress pulses in achieving stress uniformity in the specimens. When the dynamic equilibrium 
is achieved under dynamic loading, the curve of dynamic SIF with time derived from the static K-factor formula has a 
smaller error compared with the results obtained by the dynamic finite element method. The conclusions obtained 
provide a significantly reference for the fracture analysis. 
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1. Introduction 
 
In the tunnel construction and deep mining, the rock being 
excavated be often subjected to the external impact loads [1-
3]. In addition, due to the large number of cracks, joints, 
pore spaces and other defects in the natural rock mass, the 
impacted rock mass exhibits different dynamic fracture 
characteristics [4-6]. The damaged rock mass during the 
excavation in engineering not only increases the cost of the 
later grouted rock bolting, but also causes a decrease in rock 
stability and even leads to the engineering accidents such as 
the collapse of the driving face [7, 8]. 

The large stress gradients under loading are generated at 
the crack tip in a structural body, and the strength criterion 
based on the assumption of uniform continuity is no longer 
applicable. The stress intensity factor (SIF), an important 
parameter for the material fracture in fracture mechanics, 
controls the stress and displacement fields near the crack tip 
and provides an important basis for predicting the initiation 
and development of the crack [9, 10]. Now many scholars 
have studied the dynamic fracture behavior of the medium 
containing crack defects, and the study of static SIF has been 
relatively well established, but the solution of the dynamic 
SIF under dynamic loading has rarely been reported. 

As an important parameter in fracture mechanics, the 
SIF is directly related to the extension of cracks in the 
material. In particular, the dynamic SIF is more widely used 

in the engineering practice. Therefore, it is of great 
significance to study the dynamic SIF under impact loading 
for the related research and engineering.  

 
 

2. State of the art 
 
At present, the research on the static SIF has been well 
studied. Regarding the testing method, the International 
Society for Rock Mechanics (ISRM) has proposed four 
types of specimens to test the mode I fracture toughness of 
rocks, namely chevron notched short rod (SR) specimen, 
chevron notched three-point bend round bar (CB) specimen, 
cracked chevron notched Brazilian disc (CCNBD) specimen, 
and notched semi-circular bend (NSCB) specimen [11-13]. 
In addition to the four configurations recommended by 
ISRM, a number of other configurations have been proposed 
to test the fracture toughness of rock materials in pure mode 
I, II, III or mixed modes [14, 15]. One of the NSCB 
specimen proposed by Chong and Kuruppu was adopted by 
ISRM in 2014 for static fracture toughness tests, and it has 
been widely used for fracture toughness tests due to its 
simple structure, easy to preparation and loading [16]. 
Mirsayar et al. made an NSCB specimen by using asphalt 
concrete and port-land cement concrete to obtain fracture 
toughness for different mix mold conditions and to derive a 
fracture criterion for the test bond section [17]. Fayed 
evaluated the fracture properties of NSCB specimens using 
an in-house finite element code and found that SIF of mode I 
decreases with increasing crack angle or decreasing the span 

 
JOURNAL OF 
Engineering Science and 
Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: w_sr88@163.com 
ISSN: 1791-2377 © 2021 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.146.17 



Long Cheng, Shuren Wang, Lizhen Qian and Sen Liu/Journal of Engineering Science and Technology Review 14 (6) (2021) 145 - 153 

 146 

length [18]. Tang et al. carried out the edge-cracked 
semicircular bend (SCB) tests on sand rock samples with 
different moisture contents, and they found that SIF of mode 
I decreased linearly with increasing moisture content in all 
specimens with different notch angles [19]. 

In terms of dynamic loading, based on cracked straight 
through flattened Brazilian disc (CSTFBD) subjected to split 
Hopkinson pressure bar (SHPB) impact loading, Wang et al. 
applied experimental-numerical-analytical methods to study 
the dynamic crack initiation and extensional toughness of 
types I and II of rocks [20, 21]. Based on a single cleavage 
semicircle compression specimen, Wang et al. carried out a 
dynamic fracture test study of mixed type I/II rock using 
SHPB, and they found that the crack extension rate was not 
a constant and maight stop briefly during extension [22]. 
Furthermore, Wang et al. conducted the related experiments 
also [23]. The mixed-mode I/II crack often transforms from 
this mode to the pure mode I during crack propagation, and 
several velocity decelerations often induce the crack 
deflection. Virgo et al. investigated the relationship between 
different crack propagation rates and dynamic SIFs based on 
the strain gauge method and photoelastic coating method 
respectively, and they derived the dynamic fracture 
toughness [24, 25]. Johdon et al. analyzed the continuous 
changes in crack tip velocity and strain field based on 
dynamic three-point bending loading tests using the strain 
gauge method [26]. 

Although many scholars have conducted lots of studies 
on different types of crack propagation in terms of SIFs, 
especially the solution of SIFs under static conditions, there 
is still a lack of in-depth research on the factors affecting the 
sensitivity of dynamic SIFs. In this study, by carrying out 
numerical simulations of model I fracture on NSCB 
configuration specimens, the static SIF equation was fitted 
based on the numerical simulation results and extended to 
solve the dynamic SIF under static loading conditions. The 
results showed a small error between the calculated and 
simulated results. 

The rest of this study is organized as follows. Section 3 
is determination of the equation for the static SIF K. Section 
4 gives the results of sensitivity analysis of dynamic SIFs, 
and finally, the conclusions are summarized in Section 5. 

 
 

3. Methodology  
 
3.1 Finite Element Model 
The schematic diagrams and finite element models of the 
pure type I under the static and dynamic loading of the 
NSCB specimens are shown in Figs. 1 and 2, respectively 
[27]. The parameters of NSCB specimen geometry model is 
as following: the radius R is 50 mm, the thickness B is 20 
mm, a represents the crack length, the simply supported 
distance is 2S, and the relative crack length  is 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8;  is 0.3, 0.4, 0.5, 0.6, 0.7, 
and 0.8. The radius of the incident bar and transmission bar 
is 50 mm, and the Poisson’s length l is 2050 mm.  

The elasticity modulus E of the specimens is 30 GPa,  
the Poisson’s ratio μ is 0.2, and the density ρ is 2500 . 
The elasticity modulus of the incident bar and transmission 
bar is 210 GPa, the Poisson’s ratio μ is 0.3, and its density ρ 
is 7850 .  

Due to the symmetry of the SHPB loading model, in 
order to improve the calculation efficiency, the overall 1/4 
model was established, except for the crack tip of the 
specimen where C3D6 units were used, the rest and the 

incident and transmission bars were used C3D8R units. The 
static model CPS6 units were used at the crack tip and CPS8 
units for the rest. 

 
(a)  Loading schematic diagram. 

 
(b)  Element meshing of specimen model 

Fig. 1. Finite element model under static loading. 
 

 
(a) Loading schematic diagram of SHPB  

 
(b) Element meshing for SHPB systems 

Fig. 2. Finite element model under dynamic loading. 
 
 
3.2 Equation for the stress intensity factor K 
Using the method of dimensional analysis and the equations 
in reference [13], the NSCB specimens were denoted as: 
 

                                      (1)  

 
where  is the non-dimensional stress intensity factor, only 
related to the geometric configuration of the specimen.  

For the next analysis , Eq. (1) can be transformed as: 

 
                                      (2)  

 
3.3 Some assumptions of SHPB system 
The working principle of SHPB system satisfies two basic 
assumptions [28], one is the one-dimension stress wave 
assumption, that is, the stress wave propagates in the elastic 
bar with a horizontal section of the bar and the axial stress in 
the horizontal section is uniformly distributed along the 
radius direction. The second is the stress homogenization 
assumption, that is, the stress difference between the two 
ends of the specimen is small and tends to be in stress 
equilibrium. The presence of the transverse inertia effect 
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during dynamic loading that causes the stress waves to 
spread out during propagation, resulting in the phenomenon 
of wave dispersion. When the wave dispersion is evident, it 
can homogenize the stress wave propagation and the stress 
in the specimen, which can have an impact on the accuracy 
of the test results. In the test, the pulse shaping technique is 
used to improve the loading waveform. 

Considering transverse kinetic energy, the expression for 
the axial stress in the compression bar is [29]. 
 

                                   (3) 

 
where v is the Poisson’s ratio.  is the radius of gyration of 
the section on the x-axis.  

Due to the transverse inertia, the Rayleigh approximation 
to the harmonic wave-speed can be written as: 

 
                                   (4) 

 
where r is the radius of the compression member. 

 
is the 

wavelength, and 
 
is the one-dimension stress wave speed. 

 
 
4. Results analysis and discussion 
 
4.1 Analysis of YⅠ with a/R and S/R 
The 48 models were bulit by Abaqus with =0.1-0.8 and 

=0.3-0.8 to calculate the SIF- . can be calculated 
by the Eq. (2). 

As seen from Figs. 3 and 4, when 
 
is certain, and 

change consistently, both show a good exponential growth 
with the increase of . When  is certain, and  

show a linear growth with the increase of , and the 
linear growth rate is faster when the relative crack length 

 is greater than 0.5. The closer the crack tip is to the 
loading point, the more concentrated the crack tip vertical 
crack plane tensile stress is, the crack tip stress intensity 
factor tends to increase, and the increase of has a 
certain enhancement effect on the SIF of the crack tip. 

 

 
(a) Curves variation between and  

 
(b) Curves variation between and  

Fig. 3. Curves variation of with  and .  

 
(a)  Curves variation between  and  

 
(b) The relationship between  and  

Fig. 4. Curves variation of with  and .  

 
Then, satisfies the following exponential growth Eq. 

(5): 
 

                                   (5)  

 
The  is also determined by the coefficients y, A and t. 

For different , the corresponding coefficients y, A and t 
are different, as shown in Table 1. 
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Table 1.  related to the coefficients y, A and t. 
 0.3 0.4 0.5 0.6 0.7 0.8 

y 1.077 1.835 2.515 3.178 3.852 4.552 
A 0.011 0.015 0.021 0.029 0.036 0.042 
t 0.126 0.126 0.129 0.131 0.133 0.133 

 
It can be seen from Eqs. (1) and (2), the accuracy of the 

SIF-K also depends on , and depends on the coefficients 
y, A and t. Therefore, the values of y, A and t in Table 1 are 
fitted to the equation with  respectively, and the results 
are as follows: 

 
(a)  Fitted curve for y  

 
(b) Fitted curve for A 

 
(c) Fitted curve for t 

Fig. 5. Curves variation of  with coefficients y, A and t. 
 

As seen from Fig. 5, the fitted curves for y, A and t have 
a high accuracy, and the equation can be obtained as: 

                                        (6) 

 
where a is 6.882 and b is -0.950. The correlation coefficient 
is 0.997. 

 
                  (7) 

 
where 

 
is 0.024,  is -0.132, 

 
is 0.351, and 

 
is -

0.197. The correlation coefficient is 0.999. 

 
         (8) 

 
where coefficients  is 0.182,  is -0.455,  is 1.265, 

is -1.423 and is 0.571. The correlation coefficient is 
0.998. 

As seen from Fig. 6, the curves basically cross each 
simulated value and the fitted formula has a high accuracy. 
So, the static formula is ready for application to the dynamic 
analysis. 

 
Fig. 6. Curves variation of KⅠ with a/R. 
 
4.2 Stress pulses and verification of dynamic force 
equilibrium 
The trapezoidal and triangular pulses during 200 μs, 300 μs 
and 400 μs were applied to the incident bar end part for the 
established 1/4 SHPB loading system, and the contact forces 
between the specimen and the incident bar and the 
transmission bar were extracted from the left and right sides, 
and the equilibrium of the contact forces between the left 
and right sides was compared to determine the more suitable 
stress pulse. The loading waveforms are shown in Fig. 7. 

 
(a) Trapezoidal stress pulse  
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(b) Triangular stress pulses 

Fig. 7. Trapezoidal and triangular stress with different stress pulses. 
 
The calculated results of the specimen model with 
=0.2 and =0.8 are selected and the contact forces 

extracted from the left and right sides of the specimen are 
shown in Figs. 8 and 9. 

 
(a) Trapezoidal stress pulse with t=200 μs 

 
(b) Trapezoidal stress pulse with t=300 μs 

 
(c) Trapezoidal stress pulse with t=400 μs 

Fig. 8. Contact forces on the left and right sides of the specimen 
with trapezoidal stress pulses. 

As seen from Fig. 8, when the test being loaded with 
trapezoidal stress pulses of different lengths at 200 μs, 300 
μs and 400 μs, as the stress waves propagate through the 
incident bar, specimen and transmission bar, the stress 
waves reach the left and right sides of the specimen one after 
another, and the contact forces on the left and right sides of 
the specimen are basically equilibrated and have the same 
trend, all showing a trend of first increasing and then 
decreasing with the propagation of the stress waves.  

Being loaded with 200 μs, the contact forces on the left 
and right sides of the specimen oscillate significantly greater. 
Being loaded with 300 μs, the contact force oscillation 
between the left and right sides of the specimen is in second 
largest. Being loaded with 400 μs, the contact force 
oscillation between the left and right sides of the specimen is 
smaller. When the length of the loaded stress pulse is longer, 
the propagation of the axial stress wave in the bar is less 
affected by the transverse inertia effect. At this point, the 
contact force difference between the left and right sides of 
the specimen will also become small, and the degree of 
stress homogenization will be higher, resulting in a better 
dynamic equilibrium effect during loading. 

As seen from Fig. 9, when triangular stress pulses of 
different time of 200 μs, 300 μs and 400 μs are loaded, the 
trend of contact force on the left and right sides of the 
specimen is basically the same as the trapezoidal stress 
pulses loaded, which also shows that when the length of 
stress pulses is larger, the smaller the oscillation trend of 
contact force on the left and right sides of the specimen, the 
better the dynamic loading balance effect. 

 
(a) Triangular wave stress pulses with t=200 μs 

 
(b) Triangular wave stress pulses with t=300 μs 

Ra / RS /
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(c) Triangular wave stress pulses with t=400 μs 

Fig. 9. Contact forces on the left and right sides of the specimen with 
triangular stress pulses. 
 

It can be seen from Figs. 8 and 9, as the trapezoidal 
stress pulse and triangular stress pulse being loaded, the 
NSCB specimen show that when the length of the stress 
pulse is larger, the transverse effect on the propagation of the 
stress wave is smaller. As the homogenization degree of 
stress of the specimen is in a higher stage, it is easy to 
achieve dynamic equilibrium. When trapezoidal stress pulse 
and triangular stress pulse of 400 μs are loaded, the contact 
forces on the left and right sides of the specimen match 
better, and both can achieve a better equilibrium. The 
trapezoidal stress pulse with 400 μs was chosen for further 
analysis. 

 
4.2 Trapezoidal stress pulses with different rise time 
The NSCB specimen is less affected by the transverse effect 
when the trapezoidal stress pulse is 400 μs. However, the 
rise times of the trapezoidal stress pulses vary for a given 
pulse length, and further analysis of the trapezoidal stress 
pulses with different rise times is required. This is to ensure 
that the transverse effect is minimized during dynamic 
loading. 

The trapezoidal stress pulses of different rise times in Fig. 
10 were loaded onto the end of the incidence bar to extract 
the contact forces on the left and right sides of the specimen 
and the axial stress waves at the same location on the 
incidence bar, as shown in Fig. 11. 

 
Fig. 10. Trapezoidal stress pulses with different rise time. 

 
(a) The output of axial stress wave on the incident bar 

 
(b) Contact forces with rise time of 0 μs 

 
(c) Contact forces with rise time of 50 μs 

 

 
(d) Contact forces with rise time of 100 μs 
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(e) Contact forces with rise time of 150 μs 

 
(f) Contact forces with rise time of 175 μs 

Fig. 11. Contact forces on the left and right sides of the specimen with 
different rise times and output axial stress on the incidence bar. 
 

As seen from Fig. 11(a), when the trapezoidal stress 
pulse length is fixed, contact forces on the left and right 
sides of the specimen have the same trend when loaded with 
trapezoidal stress pulses of different rise time. With the rise 
time gradually increasing, the oscillation degree of contact 
force on the left and right sides first gradually decreases and 
then increases, and the curve fit gradually increases and then 
decreases. When the rise time is 100 μs, the oscillation of 
contact force on the left and right sides of the specimen was 
smaller and the curve fit was higher. 

When loading with trapezoidal stress pulses of different 
rise times, the specimen stress homogenization gradually 
increases from high to low with the rise time increasing in a 
certain range, and the influence of the transverse effect 
gradually decreases and then increases. When the rise time is 
close to 1/4 of the trapezoidal stress pulse length, the 
influence of the transverse effect is small and the dynamic 
loading equilibrium is better. 

As seen from the output of axial stress wave on the 
incident bar in Fig. 11(b), when the trapezoidal stress pulse 
of different rise times acts, the stress waveform extracted 
from the incident bar presents oscillation and dispersion 
phenomenon in the process of propagation as the rectangular 
wave with 0 μs rise time is loaded. Combined with the 
contact force on the left and right sides of the specimen at 
this time, the contact force also presents a larger oscillation 
phenomenon, indicating that the specimen is affected by the 
transverse effect and the equilibrium effect is poor. The 
incident wave is close to rectangular wave, which is similar 
to the rectangular wave obtained from the conventional 
Hopkinson impact test without pulse shaping technology and 

special-shaped bullet impact, and also verifies the 
correctness of the numerical simulation in this paper.  

When the rise time is 50 μs as shown in Fig. 11(c), the 
oscillation and dispersion of the stress waveform extracted 
from the incident bar decreases. When the rise time is 100 μs 
as shown in Fig. 11(d), the stress waveform dispersion is 
smaller. Combined with the contact force extracted from the 
left and right sides of the specimen at this time, the contact 
force also oscillates to a weak extent, and the two curves are 
in good agreement, which indicates that when the rise time is 
100 μs, i.e. close to 1/4 of the trapezoidal stress pulse length, 
the specimen is least affected by the transverse effect and the 
equilibrium effect is better. 

Due to the harmonic wave-speed of the Rayleigh 
approximation, the propagation speed of high frequency 
waves is lower and that of low frequency waves is higher. 
For linear elastic waves, the harmonic components of 
different frequencies have different phase velocities. The 
harmonic components in the rectangular stress pulse contain 
more high-frequency waves. The propagation velocity of the 
high-frequency components is lower than that of the low-
frequency components, and the high-frequency components 
lag behind the wavefront, which result in the stress waves in 
the compression bar gradually dispersing during propagation, 
and the relative position of the wave-shape change, 
producing the phenomenon of wave dispersion. So, a 
symmetrical trapezoidal stress pulse loading with a pulse 
length of 400 μs and a rise time of 100 μs was selected for 
the NSCB specimens to ensure the accuracy of the finite 
element calculation. 

 
4.4 Calculation of dynamic stress intensity factor 
Based on the model of the SHPB loading system, the 
symmetrical trapezoidal stress pulse loading with a pulse 
length of 400 μs and a rise time of 100 μs was used to 
calculate the time-history curve of the dynamic SIF.  

The contacted forces between the left and right sides of 
the specimen were averaged to obtain the average contact 
force f. The average contact force is brought into the 
aforementioned static Eq. (1) to calculate the time-history 
curve of the dynamic SIF. The calculation results are shown 
in Fig. 12(a). The results of the rectangular stress pulse with 
a pulse length of 400 μs and a rise time of 0 μs are presented 
in Fig. 12(b). 

 

 
(a) Rise time is 100 μs 
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(b) Rise time is 0 μs 

Fig. 12. Time-history curve of dynamic stress intensity factor with 
different rise times. 

 
As seen from Figs. 12(a) and 12(b), comparing the 

loading results of a symmetrical trapezoidal pulse with a 
fixed pulse length of 400 μs and a rise time of 100 μs with 
those of a rectangular pulse with a rise time of 0 μs, the 
average contact force f obtained by both of them has a 
similar trend. Both of them increase first and then decrease 
with the propagation of the stress wave. The dynamic SIF 
reaches its peak when the average contact force f reaches the 
peak.  

When the trapezoidal pulse loaded with a rise time of 
100 μs compares with the rectangular pulse with a rise time 
of 0 μs, the former time-history curve of the dynamic SIF 
calculated by the numerical simulation is consistent with the 
static equation calculation results. The smaller the transverse 
inertia is, the smaller the stress difference between the two 
sides of the specimen is and the higher the degree of stress 
homogenization is during dynamic loading. when dynamic 
equilibrium is occurred, the static equation is used to 
calculate the dynamic SIF with a high degree of accuracy 
and a small error. 
 
 
 
 
 
 

5. Conclusions 
 
To study the dynamic SIF for fracture model I, the static and 
dynamic three-point bending numerical tests were carried 
out on NSCB specimens by using Abaqus software. The 
method of dimensional analysis was used to fit the K-factor 
formula of the fracture model I under static loading. Then 
this expression was extended to solve for the SIF under 
dynamic loading. The main conclusions are as following:  

(1) The static SIF increases with the increase of relative 
crack length  and ratio of the simple supported distance 
to the maximum diameter span , and the stress intensity 
factor grows exponentially with  and linearly with . 
The increase of has a certain enhancement effect on the 
SIF at the crack tip. 

(2) The loading trends of trapezoidal and triangular pulse 
on the realization of dynamic force equilibrium are similar. 
As the pulse length increases, the contact force oscillation on 
both sides of the specimen is reduced by the two pulses 
wave-shape, which has a weakening on the transverse inertia 
effect of dynamic loading.  

(3) For the 400 μs trapezoidal stress pulse, the specimen 
is less affected by the transverse effect when the rise time is 
close to 1/4 of the total pulse time. The equation for the 
static SIF can be extended to solve for the dynamic SIF 
when the dynamic equilibrium is reached on both sides of 
the specimen. 

This study has only carried out research in terms of 
numerical methods, and the applicability of the specific 
results needs to be verified experimentally. Only by 
combining numerical and experimental methods can the 
validity of equations obtained in this study be better verified. 
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