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Abstract 
 

In the future decades emphasizing the rapid-rise in energy demand, non-conventional energy will be a major source of 
energy rather than conventional sources of energy. The importance of renewable energy sources has increased due to the 
day-by-day decline in the availability of coal and petroleum products along with the occurrence of pollution by the same. 
The power generated from the different renewable energy sources (Photo Voltaic System, Wind Farm, Fuel Cell, Micro-
hydro plants) will be integrated into a single microgrid (MG) for powering a small village (isolated or non-isolated) or for 
transmitting to a Low Voltage (LV) distribution system. Imminent MG technology is the most innovative energy balancing 
technology, which had diverted to the power distribution network recently. This paper focuses on a deep review of various 
optimization techniques along with the different types of MG and economic analysis reported in the domain of MG 
component sizing. Hence an effectively sized microgrid with a well achieved Energy Management System (EMS) that is 
necessary for the specific applications can be identified. 
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1 Introduction 
 
One of the key backbones for the current economy is 
electricity, which is also a dominant share in the energy sector 
[1]. According to 2019 Energy Outlook Data, 90% of global 
electricity is consumed by buildings and industries, whereas 
only 2% is consumed by transport. Even in developing 
countries like India, many rural places have no proper chances 
of accessing electricity. The  International Energy Agency 
(IEA) released a keynote about world unelectrified rural 
villages which is 16%  [2,3]. The rising population and urban 
development have significantly increased the energy demand 
which becomes an another cause for raise in CO2 pollution in 
the year 2018 [4],[5]. Even the non-emission technologies are 
encouraged to supply the electricity to reduce CO2 emission 
and to intensify the usage of green energy.  
 The worldwide achievement in the advancement of 
Renewable Energy Technologies (RET) is a remarkable one. 
Even though there is a remarkable rise in the development of  
RET, the shortage of electricity that is needed for the day to 
day life for the rural people remains the same [6]. The World 
Energy Outlook 2019 has pointed out that energy demand will 
be increased by 1.0 % in every year from 2019 to 2040[1]. 
Around 2,378 GW of power has been raised globally in 
renewable energy power capacity in 2018 [7]. While looking 
through Renewable Energy (RE) power generation data 
published in Our World In Data - 2020, around 4,193.10 
TWh, 1269.95 TWh, 584.63 TWh, 625.81 TWh are the total 
renewable energy power which is generated worldwide 
through Hydro, Wind, Solar, and from other sources 
respectively. Whereas India’s contribution is of 139.67TWh 
from hydropower, 60.31 TWh from wind power, 30.73 TWh 
from solar and 30.46 TWh from all other sources. In 2017, 

approximately 79.7% of energy was generated through fossil 
fuel, 10.6% from renewable energy and the remaining 9.7% 
from other sources [8]. By 2040, renewable energy will be 
able to supply two-third of the energy demand worldwide. 
Solar and wind together will be able to supply 40%, and the 
remaining 25% will be of hydro and bioenergy [1]. In India, 
around 300 days can be considered as clear sky days for 
capturing maximum solar radiation.  From India’s total land 
area, Around five thousand trillion kilowatt-hours (kWh) 
solar energy can be generated [2,9]. In the year 2019, 
electricity generated from the conventional sources was about 
112.831 (BU) whereas 13.575(BU) generated from renewable 
energy.  While comparing the preceding year (2018) 5.84% 
growth was achieved in renewable energy generation [10]. RE 
sources are the best sources of energy by many advantages 
such as lifetime availability as a source, lesser maintenance, 
health benefits, etc... It also possesses some disadvantages 
such as high initial capital cost, intermittency, storage 
difficulty, and geographical, seasonal and climatic 
limitations. Storing the generated energy is one of the 
challenging tasks in the RE sector. 
 By means of Energy Storage System (ESS), it can provide 
a reliable power supply for various applications by storing the 
generated energy for later usages [11]. To enhance and 
promote RE, a better energy storage system can be adopted. 
Some genuine data shows that in 2011, around 2.2% of RE 
was able to be stored for later usage by various applications. 
In the same data, pumped storage systems account for the 
majority share [12]. For short- and long-term energy-storing: 
capacitors, hydrogen storage, pumped hydro storage, 
compressed air, superconducting magnetic storage, 
supercapacitors, batteries, flywheel, etc...   are used based on 
their application needs, whereas battery is most widely used 
for storing electric power [13–15]. The initial development in 
the domain of the battery energy storage system was placed 
forward by Lee and Chen For two Taiwan Power Company 
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System (TPCS) consumers [16]. Each and every storage 
system possesses its limits based on its properties such as 
capacity, charging and discharging limits, etc... An MG 
possesses trending features while integrating  ESS  such as, 
Peak shaving, price arbitrage, power quality improvement, 
spinning reserve, ancillary services, and load frequency 
control [17]. In  [17] the overall running cost of the Drop 
Controlled Islanded Microgrid (DCIMG) is minimized by the 
means of Battery-ESS, whereas fuel and the Battery-ESS 
costs are the objective functions. A well-mapped idea about 
various energy storage applications in the area of the 
microgrid is categorized in [18]. Optimal switching between 
charging and discharging of an ESS is also an essential task 
for achieving higher efficiency with maximum storage and 
maximum life cycle [19]. Effective sizing of battery has been 
carried out by many pieces of literature. In [20],  Particle 
Swarm Optimization (PSO) is used for optimal battery sizing 
and in [21], Genetic Algorithm (GA) is used. All-natural 
energy sources and ESS can be grouped in a closed-loop 
together with grid-connected mode or in standalone mode to 
form a microgrid. A typical microgrid network with various 
DG sources and loads can be seen in Fig. 1 below.  
 

 
Fig. 1. Microgrid System 
 
 
 A microgrid is a novel distribution network that holds the 
overall potential of Distribution Energy Resources (DER) by 
integrating different Distribution Generators (DG) such as 
solar photovoltaics system, micro-generators, micro-turbine, 
wind-generator, fuel cell, storage devices such as flywheels, 
energy capacitors and batteries in a closed-loop  [22–24], 
[25]. MG is also known as the future backbone for the 
emerging smart grid technologies[26]. The main objective of 
promoting MG is for assuring clean energy with economic 
benefits and security[27]. A microgrid is configured based on 
its functional control capabilities and can be run either in grid-
connected mode (one end of MG would be connected to the 
transmission network) or in autonomous mode. While MG is 
connected in the grid-connected mode it should not try to alter 
the frequency due to the addition of DG sources. In that case, 
the grid should be much stronger in order to regulate the 
frequency and junction voltage at the Point of Common 
Coupling (PCC) [17].  The main advantage in the MG system 
is the isolated operation of MG when a severe problem occurs 
in the grid network which is known as islanded microgrid 
[17,23]. Many challenges can occur in a microgrid during the 
conversion of DC power to AC power such as reactive power 
compensation, voltage regulation, power quality, power loss, 
etc… This issue can be mitigated by incorporating Flexible 
AC Transmission System (FACTS) devices like SVC, 
DSTATCOM, UPSC, and IPFC [28]. While praising the 

advantages of MG a few pieces of literature focus on the 
disadvantages that occur in MG and suggest how they are 
overcome. The exigent task is between switching of MG from 
on-grid to off-grid which will be affected by the protection 
components incorporated along with the system. Shutting 
down of the system can also generate fault current, whereas 
the presence of limiters can able to withstand up to maximum 
extent [29]. Effective power flow management within 
microgrid is also a challenging task while designing the 
system.  
 The Energy Management System (EMS) is a robust 
technique that needs to be considered when constructing a 
microgrid [30]. The key function of EMS is to sustain the 
power flow throughout the various components which are 
associated with a microgrid. Battery degradation and utilizing 
the maximum renewable energy resources with minimal fuel 
consumption are the main objectives of EMS [31]. In 
literature [6], the author used EMS for a hybrid microgrid 
system with PV/WT/DG/BT as sources. In [32], the author 
developed both rule-based and optimization-based EMS 
system for a Standalone Multi-Carrier Microgrid (SMCMG). 
The author used optimization algorithms for reducing 
complexity while incorporating many sources into the 
microgrid. In [33] EMS with three cases namely energy loss, 
CO2 emission, and main grid energy were considered as the 
objective functions for a  GA based optimization technique. 
In literature [34], the author optimally sized PV with BES and 
concludes that the generation of power from oil-based thermal 
power stations can be reduced and will be able to supply clean 
energy without any interruption. A fuzzy export system with 
EMS is been used for cost optimization in [35].  
 Having a well-sized microgrid will capture maximum free 
and clean energy from all the DG sources. The most 
challenging task is to optimally size the microgrid by 
considering cost-effective methods and harvesting natural 
resources to generate power. There is no point in producing 
extra power or less power than the needed energy for the load 
profile [36]. Generating extra power will lead to higher capital 
and operational cost which is not economical. Moreover, 
generating less power will not be able to satisfy the load 
profile thereby needing to seek yet another source [37]. In the 
literature [11] the author designed a PV based isolated Hybrid 
Microgrid System (HMS) and illustrated a generic sizing 
procedure using design procedure and pinch analysis. The 
author also implemented a unique methodology for sizing a 
microgrid with DG, PV, and Hybrid Storage System (HSS) 
based on the demand and availability of resources. To avoid 
complex modelling, an MG system optimization algorithm 
was used for effective and easy modelling.   
 The process which finds the best fit value for a specific 
problem by maximizing or minimizing its objective function 
is known as optimization [38]. In the recent era, optimization 
is widespread in all research areas [39]. In the past, 
optimization for microgrid had been done by using different 
software applications such as PVSYST, HOMER Pro, 
HYBRID, SOMES, HOGA, INSEL, PV-DESIGN PRO, 
RSHAP, ORIENTE, SOLSIM, RAPSIM, and HYBRIDS 
[40][41] GAMS, MINLP [42]. Even though all these software 
applications were able to optimize the microgrid to some 
extent, but it was also having some demerits[43].  To 
overcome these demerits, new computational techniques have 
been studied and applied. Many new bio-inspired 
optimization methods have been studied and tried based on 
the optimization objective in microgrid and the best method 
was chosen [6,43]. A specific optimization problem solving 
by not generalizing or not applicable to any similar problems 
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are known as heuristic algorithms. If an optimization problem 
is guided by its design it is known as metaheuristic 
optimization [44]. A particular algorithm is selected based on 
its application[45]. Some heuristic applications are the neural 
network, data mining, etc.  On the other hand, high-level 
metaheuristic optimization algorithms such as particle swarm 
intelligence, a flock of birds, colonies of ants and bees etc…, 
is been used in different applications  [46]. The objective 
function is the core function in optimization used to maximize 
or minimize a particular function in a system. Considering 
multiple objectives simultaneously in a single process is 
known as multi-objective optimization [47].  Constraints are 
nothing but the limits which are assigned to the objective 
function. The two types of constraints are soft and hard 
constraints. Soft constraints are considered to be in higher 
preference over other whereas hard constraints inevitably 
satisfy [48].  The objective function can be of either single 
objective function or with multiple objective functions to 
maximize and minimize simultaneously. In [49] the author 
considers six multi-objective minimization functions for the 
Distributed Energy Resources (DER). Incorporating all above 
mentioned microgrid features a few key areas where 
microgrid applications got established are discussed in the 
upcoming section.  
 This review article is systemized based on the following 
sections. In previous Section-0 a detailed introduction about 
optimal sizing of MG is illustrated. Section-2 will be giving a 
brief idea about different types of microgrid. Optimal sizing 
of a microgrid will be structured in section-3using different 
optimization methodologies. Cost-based analysis in the MG 
system is pointed out in Section- 4. Section-5 will give an 
outline of detailed comparison in different sizing components 
followed by challenges faced in different sizing techniques. 
In the last section 6 concludes this review paper.  
 
 
2 Types of microgrid 
 
A microgrid is a common junction, which interconnects 
different renewable energy resources along with consumers 
and other energy-storing backups. Microgrid can be isolated 
from a central grid known as islanded microgrid (off-grid) or 
it can operate with support from the utility grid (on-grid) [50]. 
The system sizing methods can be classified in many ways 
such as the simulation-based, analytical methods, iterative 
method, graphical method and based on heuristic or 
metaheuristic optimization algorithms [31]. Few commonly 
used microgrid configurations are discussed below and 
illustrated in Fig. 2.  

 
Fig. 2. Microgrid Classification 
 

2.1 Hybrid microgrid 
Hybrid-RES (HRES) is one of the trending resources which 
economically feasible energy resource for rural areas [48]. A 
Hybrid Microgrid System (HMS) is the parallel 
interconnection of many distribution resources with 
electronically balanced operation [51]. HMS can be operated 
either in a grid interconnected mode of operation or in off-
grid mode.  
 In [52], the author considered a standalone HRES with 
PV, WT and DG with BSS optimally sized the RE component 
based on the reliability. The author in [6] selected PV, WT, 
DG as the sources along with the battery bank for formulating 
a hybrid microgrid. In [31], they designed a Hybrid 
autonomous microgrid with PV/ WT/ BSS and DG with an 
effective rule-based EMS. Apart from commonly used RE 
resources for bonding a hybrid microgrid system, in [53] the 
author combined WT with BSS. The author modelled the 
sources for satisfying the daily load demand (with a lower and 
higher peak from morning and evening). In [54] author 
considered a HMG system consisting of PV/ WT/ FC with a 
hydrogen storage system based on three case studies in Iran 
and the author used PSO concludes: 
 

• The reliability of the system is dependent on cost.  
• Optimum rating of wind/ Storage system/ PV 

 
 In [51] PV/WT/BT/DG and BT are considered as sources 
for an islanded HMGS in Sundarban a place in India to 
increase the access the energy through RE.  
 
2.2 Islanded microgrid / Stand-alone Microgrid (SMG) 
Even though our world developed so far in technologies and 
infrastructures, there are 1 billion people lacking the facility 
of electrification in their households [55].  In which 14% of 
the global population is covered [56]. The key reason for the 
dearth of electricity in rural areas is because of lesser 
efficiency in transmitting power from the central grid to such 
a long distance. In such rural areas, constructing an islanded 
microgrid with available RE sources will be more appropriate. 
Recently, short and long-time power failures have occurred 
due to many natural calamities. Even in such circumstances 
islanded microgrid with distributed generator connected to 
priority loads will be more helpful [37]. Multiple energy 
sources need to be added to the microgrid for a better reliable 
power generation. There are many pieces of literature based 
on islanded microgrid for powering rural areas.  
 A stand-alone microgrid [32] consisting of six sources 
such as PV/ WT/ MT/ EES/ TES/ and Gas Boilers (GB) 
proves the significance of the Photovoltaic Thermal (PVT) 
panel in SMCMG since it is able to reduce the cost by 35.68% 
and 5% increment in the energy dump. The emission of 404 
tons of CO2 can be reduced by encouraging the same system. 
In the literature [21] includes Hydrogen Storage System 
(HSS) along with PV/ BSS, which is used to size a standalone 
microgrid. The author used EA and UC for the better technical 
and economic sized standalone microgrid. In the literature 
[37], the author considered nine microgrid system 
components such as PV, solar heating system, HSS, heating 
boilers, AC, electric, thermal, cooling and hydrogen loads. In 
[57] the author states about a relevant microgrid system which 
includes energy storage for temporary back supply along with 
PV and WT  as power generating sources. In [11] the author 
considered an off-grid microgrid system with different 
profiles such as a rural village, a telecom tower, welding shop, 
lift load and different storage systems for sizing methods. 
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Standalone microgrid  [58] for Dongfushan, a rural area in 
China, considered for optimal component sizing and better 
cost reduction. A Pumped Hydro Storage(PHS)/ BSS/ PV/ 
WT  systems was developed to form an islanded microgrid 
for a small village by [59].  
 The impression highlighted in the public eye about 
various microgrid applications as claimed by its easy concept 
and higher feasibility is a remarkable one. The following are 
the classifications of MG focusing on its applications 
published in some older studies:  
 
2.3 Industrial MG 
Widespread application of MG is also reached in industrial 
sectors. A high range of electric power can be generated from 
the industry sector through RE. In [24] the author concludes 
that, the mathematically modelled energy demand for the 
considered industry can be fully satisfied by  means of 
generated renewable energy power from the same industry. In 
[60] author concludes that remarkable amount of CO2 

emission is reduced by the means of industrial MG 
implementation.  

 
2.4 Military  
The global demand required for electrical energy in military 
applications is inevitable. During war periods, relying on the 
main grid power will not be feasible always.  The main grid 
can be destroyed by enemies and power interruption can 
occur. Also transporting fuel to the power plant is a risky task 
since it is explosive. Constructing one feasible MG with 
readily available DG sources in a closed-loop can solve these 
problems. A few papers regarding microgrid in the domain of 
military applications are discussed in [61–68].  
 
2.5 Residential  
A small microgrid system can be implemented in residential 
buildings. The microgrid can acquire power from the installed 
residential solar power, the power generated from the 
residential diesel generator and from other small residential 
power generating sources. Many kinds of literature report a 
detailed idea in the area of microgrid and residential 
application such as: 
 
¨ Effective MG using V2G (Vehicle 2 Grid) for better 

EMS[69–72],[73] 
¨  Optimal control for a residential microgrid [74] 
¨  Smart residential microgrid [75][76] 
¨  Based on household appliance [77] 
¨ Residential MG and energy storing system [78] 
¨ Residential DC microgrid [79] 
¨ Home to the grid [80].  

 
In [81] author considered a residential microgrid with PV and 
battery as the primary sources. The excess generated power 
from MG is feed forwarded to the main grid.  
 
2.6 Electric Vehicles 
In the present era, EV is widespread for both short and long-
distance travel, hence the requirement of EV charging point 
and advanced energy storing system are high. The important 
powering sources in EV are from the BSS. In the application 
related to MG and EV, both systems are mutually benefitted. 
The excess generated power from the MG can be stored in EV 
batteries without diverting to any dump load, and also it can 
be used for ancillary services, clipping the peak rise in the 
demand and valley filling [82,83]. In [84] deals about energy 

storing capability by EVs from non-residential building for 
valley filling and peak clipping. In [83], the author frames an 
advanced extension of study from literature [85,86]. Initially, 
the author in [85] optimally reduced the overall operating cost 
by incorporating EVs to an MG. From advancement from the 
previous study, author innovate much more in the literature 
[86] by optimally sizing the charging location with multiple 
binaries. At the latest, the author succeeds by integrating both 
in location finding and with level two V2G  parking facilities 
in the MG closed-loop [83]. Bidirectional charge transfer of 
EV based  system with DCMG consisting of PV and ESS in 
[87]. The author explains a methodology for the economic 
sizing of DCMG considering EV necessity based on various 
scenarios.  
 
2.7 Rural village 
Electricity distribution to rural villages had become a 
worldwide challenge. Most rural villages are located far away 
from the national grid such as in the fields, terrains, mountains 
and in the thick jungle, forests, etc… Laying transmission line 
or fuel transport towards such places will lead to high cost in 
the country economy. Developing an efficient MG in such 
locations will provide a better solution and this will be able to 
power up single-phase load to higher-rated 3-phase loads 
(based on the MG sizing) which can also support a small 
house load from 5 KW. While considering a common home 
located in Indian rural village will consume 8.9kWh [10]. In 
[2] the author designed a microgrid system with PV and valve 
controlled based storage devices for a rural village. The 
author carried out the Optimal PV and battery sizing by using 
HOMER software. A standalone MG with optimum 
component sizing for the rural area (tested in actual MG of 
Dongfushan, China)  with ESS/ PV/ WT/ DG is processed 
with GA in the literature [58]. Two unelectrified rural areas 
Dhakla and Tangier, located in Moroco have been electrified 
by using PV/WT/ DG and BT as the prime sources [88]. The 
author used Multi-objective Particle Swarm Optimization 
(MOPSO) for effective sizing of HMG to rise the reliability 
of the system and to lowering the emission reduction benefit 
cost in [89] 
 
2.8 Communication Network 
Uninterrupted availability of mobile networks is a mandatory 
requirement in everyone’s day to day life. Digital India 
Campaign (DIC-2015) conducted in 2015 forwarded the 
vision for implementing and strengthening of internet 
facilities in rural India by implementing around 1,00,000 
networking towers. Uninterrupted and unavailability of 
electric power was one of the major issues faced while 
starting the installation project. The working researchers in 
the same area stated that around 40% was receiving 
interrupted power supply whereas 22% are off-grid towers 
[90,91]. In  [92] proposed an optimal  DC microgrid by using 
NSGA-II with PV and WT for telecommunication towers for 
the supply of economical, clean and eco-friendly power. The 
author was also able to minimize Cost of Energy (COE) with 
a markable reduction of 13%, EE and a 20% rise in Loss of 
Power Supply Probability (LPSP). There are many works of 
literature stating effective work placed in rural villages 
providing clean and reliable energy at minimal cost such as in 
[93–95]. In [96] the author proposes a minimal cost-wise 
analysis for various household loads in a rural village. A Solid 
Oxide Fuel Cell (SOFC) with Gas Turbine (GT) was 
effectively sized for a rural MG which also is an advancement 
in the PQ and grid stability [97].  
 



Shalom Irence L. B and A. Immanuel Selvakumar/Journal of Engineering Science and Technology Review 14 (6) (2021) 176 - 192 

 
 

180 

 
3 Optimal sizing of Microgrid  
 
Observing, exploring and learning from nature is the best 
solution for any arduous problem. Even before mankind 
evolved on this planet, nature has overcome the exacting 
problem by the means of evolution [39]. A novel idea for 
solving the optimization problem through computer 
simulation was developed by Holland by the evolutionary 
concept [98].  
 Previous sections exposed a detailed overview of different 
types of microgrid used in microgrid applications. Different 
types of sizing optimization used in the domain of MG are 
discussed in this section such as GOA, FA, PSO, GWO, EA, 
GA, ACO, BA, ISA, SO. 
 
3.1 Grasshopper Optimization Algorithm (GOA) 
GOA is a metaheuristic nature-inspired algorithm introduced 
by Seyedali Mirjalili, a professor from Torrens University, 
Australia. Grasshoppers are usually known as the farmer’s 
enemy since they damage crops by forming a big group. Fig. 
3 exemplifies the growth cycle of the grasshopper [99] . 

 
Fig. 3. life cycle of a grasshopper [99]  
 
 Swarming is seen in both nymphs and adult stages of the 
grasshopper [38,39]. The locomotion of nymph grasshopper 
is much slower than adulthood, due to the absence of wings. 
But the nymph will take that as an advantage and will grasp 
more vegetation. The presence of wings in adult grasshopper 
will help them to swarm in a larger radius, with more speed. 
Coordinate point of any individual grasshopper in a swarm is 
determined based on three forces such as [100–102].  
 

¨ Social interaction (Si) 
¨ Gravity force (Gi)  
¨ Wind advection (Ai)  

 
The numerical simulation of GOA is based on Eq. 3.1 to Eq. 
3.5 [101] 
 
𝑋! = 𝑆! + 𝐺! + 𝐴!,     (1) 
 
𝑆! = ∑ 𝑠(𝑑!#)𝑑$%,&

#'(
#)!

	    (2) 

 
 The difference in the driving ride from the ith to the jth 
grasshopper is 𝑑!#. 𝑠 denotes the power of the grasshoppers ' 
social power.  
 

𝑠(𝑟) = 𝑓𝑒*
!
" − 𝑒*+    (3) 

 
 Strength of the mutual attraction between the grasshopper 
and duration scale is demonstrated as 𝑓 and 𝑙  respectively. 
 
𝐺𝑖 = −𝑔𝑒̂,     (4) 
 
 The upright movement in the air is demonstrated by	𝐴!. 
 
𝐴! = 𝑢𝑒̂,      (5) 
 
 Many pieces of literature explained GOA in much detail 
for different optimization problem statement [39]. [31] has 
used GOA for microgrid sizing design problems and obtained 
14% achievement in capital cost while comparing with CS 
and PSO. The author designed a microgrid with PV, W T, 
BSS and Diesel generator (DG) to satisfy ED problems 
focusing on the Deficiency of Power Supply Probability 
(DPSP) and COE for five residential houses in Yobe State in 
Nigeria, an off-grid community. The author compared GOA 
results with existing results from literature [38] and GOA can 
achieve more in convergence and local optima avoidance.  
 
3.2 Firefly Algorithm (FA) 
FA is a well know metaheuristic algorithm framed by Yang 
in 2008 [103],[104]. The basic concept behind firefly 
algorithm is based on observing its nature of movement and 
fire glowing character which is considered as the objective 
function. Since fireflies are unisex, they will be attracted to 
each other despite seeing their own sex. Highly shining fly 
will be most near to the best fit solution or else the lesser 
glowing one will move towards brighter firefly. If a brighter 
firefly is not available then the fly will travel randomly by 
searching for a brighter one in the search space. Many 
literature papers have clearly explained about the firefly 
algorithm for various optimization applications [105].  
 

 
Fig. 4. Firefly Algorithm[106] 
 
By observing Fig. 4 it will give a clear picture of FA. 
Following key points can be summarised in general for FA 
such as: 

¨ Mating partners will be attracted 
¨ Less glowing flies will attract towards brighter 

fireflies 
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¨ Random search for a brighter fly if no brighter flies 
has been seen in the search space 

 
The intensity level of light can be mathematically represent 
based on inverse square law Eq. (6) [107]  
 
1 ∝ 9 (

-#
:       (6) 

 
 The light intensity from the source can be obtained from 
the Eq. (7). Where 𝐼.	is the intensity level of light in the source 
point. 
 
𝐼 = 𝐼.	𝑒*0+

#      (7) 
 
 The brighter firefly can be found by obtaining 𝛽 value 
from Eq. (8) 
𝛽 = 𝛽.	𝑒*0+

#     (8) 
 
 The low glowing firefly will move towards the brighter 
fly by using the updating formula from Eq. (9) 
 
𝑥! ≔ 𝑥! + 𝛽.𝑒*0+$%

#
?𝑥# − 𝑥!@ + 𝛼(𝜀(	) − 0.5	)	     (9) 

 
The attractiveness in the position r=0 of the second firefly 𝑥# 
is represented as 𝛽.. Whereas 𝛼 and 𝜀(	) represents the step 
length and random movement vector ranges from 0 and 1 
respectively. The brighter fly 𝑥1 can find out from Eq. (10) 
 
𝑥1 ≔ 𝑥1 + 𝛼(𝜀(	) − 0.5	)	    (10) 

 
FA  is used by the author for optimal sizing of the battery 

which will eliminate the over deep discharging of the energy 
storing device [108]. Renewable power supply sources such 
as DG, WT, and PV incorporating with battery energy storage 
system used and compared the results with ABC, PSO and 
HAS algorithms from [109,110]  and concluded that  

 
• FA runs with a lesser operating cost of 0% LPSP 
• PSO and HAS could not meet the targeted load and 

leads to load shedding.  
• Optimum battery size is necessary to reduce battery 

costs which will also reduce overall MG system 
cost.   
 

3.3 Grey Wolf Optimisation (GWO) 
A modern metaheuristic algorithm that replicates the 
character of a grey wolf that belongs to the Canidae family is 
proposed by Seyedali Mirjalili [111] in 2014. Both male and 
female wolf can be leaders and the remaining pack will be 
following the same. Alphas in the top order who decides about 
the plan such as hunting plan, snooze and rouse time. As part 
of showing respect while gathering, the entire pack of wolfs 
will bow down their tails. The hierarchical order of the Grey 
wolf is shown in  
Table 1. Followed by alpha they have their subordinate for 
assisting them while decision making and helping in activities 
know as a beta. This subordinate can be either male or female 
and need to be responsible for behalf of alfa meanwhile 
without losing respect to alfa. All scouts (who used to make 
boundary secure), sentinels (protects and guarantee the full 
pack), elders (well experienced wolfs), hunters (one who find 
food for the pack) and caretakers (nurse the injured wolf) 

belongs to the third category called Delta. The last ordered 
wolf is known as omega [112].  

Table 1 gives a detailed idea about the Hierarchal model of 
grey wolfs [111]  
 
Table 1. Grey Wolf Hierarchal model [113]  

ALPHA 1. The Dominant Wolf 
2. Best in managing the pack 

BETA 
1. Subordinate wolves 
2. Advisor to the alpha 
3. Discipliner for the pack 

DELTA 1. Not an alpha, beta, or omega 
2. Submit to alphas and betas 

OMEGA 1. The lowest ranking wolfs 
2. Plays the role of scapegoat 

 
 The cyclic behaviour of GWO is mathematically 
illustrated by three variables such as 𝐴	FFF⃗ , 𝐶	FFF⃗ , 𝐷	FFF⃗ .[114,115].  
 
𝐷2FFFF⃗ = |𝐶(FFF⃗ . 𝑋3FFFF⃗ − 𝑋⃗(t)|    (11) 
 
𝐷4FFFF⃗ = |𝐶5FFFF⃗ . 𝑋4FFFF⃗ − 𝑋⃗(t)|    (12) 
 
𝐷6FFFF⃗ = |𝐶7FFFF⃗ . 𝑋6FFFF⃗ − 𝑋⃗(t)|    (13) 
 
 ‘t’ represents the iteration number. Below Table 2 
represents the positions vectors of different wolves and their 
mathamarical representation. The 𝐷2FFFF⃗  , 𝐷4FFFF⃗ , 𝐷6FFFF⃗  vectors can be 
obtained from Eq. (11),(12),(13) respectively.  
 
Table 2. Mathematical equations for different type of 
wolves in GWO [116] 

Vector Wolf Type Mathematical 
Equation Eq. No 

𝑋⃗(t) Grey Wolf 𝑋⃗(t)=8&
99999⃗ ;8#99999⃗ ;8'99999⃗

7
 Eq. (3.14) 

𝑋(FFFF⃗  Alpha 𝑋(FFFF⃗ = 𝑋2FFFF⃗ − 𝐴(FFFF⃗ . 𝐷2FFFF⃗  Eq. (3.15) 
𝑋5FFFF⃗  Beta 𝑋5FFFF⃗ = 𝑋4FFFF⃗ − 𝐴5FFFF⃗ . 𝐷4FFFF⃗  Eq. (3.16) 
𝑋7FFFF⃗  Delta 𝑋7FFFF⃗ = 𝑋6FFFF⃗ − 𝐴7FFFF⃗ . 𝐷6FFFF⃗  Eq. (3.17) 
 
GWO has widespread in many optimizations and also 

introduced in new designs with certain modifications in [118] 
and [119]. The author [117] used GWO for optimal sizing 
BES system which operates at the least cost. The following 
system was designed with following RE components along 
with following minimum and maximum power such as MT 6- 
30 (KW), FC 3-30 (KW), PV 0-25 (KW), WT 0-15 (KW), Li-
ion battery-Ve 30to30 (KW) energy storage system and utility 
with -Ve 30to30 (KW). The obtained GWO is considered 
with three different cases for minimum MG operating cost 
and then compared with previous research results published 
by [118] using GA, PSO, BA, IBA, TS, DE, BBO and TLBO.  

 
3.4 Particle Swarm Optimization (PSO) 
PSO is the most commonly used metaheuristic optimization 
technique formulated by Kennedy and Eberhart [119,120]. It 
can be said as a flock of birds searching for food in a vector 
space. The global optimum position of the bird can be 
concluded by observing the personal best and the global best 
simultaneously. The optimal solution will be the global best 
position of the swarm[32,121]. PSO can be summed up in the 
following Eq. (14) & (15). 
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𝑣#<;( = 𝑣#< + 𝛼𝑅(. N𝑔∗ − 𝑥#<O + 𝛽𝑅5. N𝑥#∗ − 𝑥#<O	  (14) 
 
 R1&R2 are two Random Vectors which lies between 0 
and 1. The particle will try to converge towards global best 
(𝑔∗)	than from personal best 𝑥#∗ 𝑖𝑓	𝛼 > 𝛽. Whereas α & β are 
learning vector constants and the Initial velocity is assumed 
as 0. The new position is determined by the below equation 
(15). 
 
𝑥#<;( = 𝑥#< + 𝑉#<;(      (15) 
 
 A clear view of Fig. 5 below gives a detailed overview of 
PSO.  
 

 

 
Fig. 5. Particle swarm optimization pictorial representation 

 
To be general PSO optimizes the objective function based 

on the following three steps:  
 

• Fitness evaluation of the particle 
• Updating global fitness and positioning 
• Particle velocity updating (Exploration, learning 

factor, momentum weight) [110][122] 
 
 Battery sizing for ED problems in a grid-tied MG is 
solved by using PSO in [20]. In [123] the author has used a 
new particle swarm optimization (NPSO) algorithm for 
solving economic dispatch (ED) problems. Multi-objective 
Adaptive Modified Particle Swarm Optimization 
(MOAMPSO) is used by [124] for minimizing emission and 
system running cost. For solving multiple operation 
management problems author [122] introduces a fuzzy Self 
Adaptive PSO  (FSAPSO). FASPSO optimization is stopped 
either in maximum iteration level or by on minimal error else 
if the entire population will be replaced by a new set of 
population and the cycle is repeated till achieving the Global 
best (G-best) from the last iteration. The proposed FASPSO 
is used to optimize power generation cost, unit starting and 
shutting down cost, and pollution reduction. The author used 
a new algorithm known as natural selection particle swarm 
optimization (NS-PSO) in [125] consisting of PV/WT/BT in 
a hybrid power system. By including comprehensive 
observation, the overall system execution can be improved. In 
[126]used PSO for optimal capacity sizing for an MG with 
PV, TE, CCHO, ESS, and other auxiliary systems. In the 
literature [32] the author developed a new enhanced 

evolutionary PSO (E-PSO) for defining the EMS problem, 
and for finding TAC and LPSP for an SMC-microgrid. The 
author concludes that he obtained better TAC while 
comparing it with other algorithms. In [127], PSO is used in 
a standalone unit that contains the PV and WT units for 
minimizing the cost by considering full demand for a period 
of 20 years. The author compared the results with GA and 
observed 73.7 seconds advanced in PSO computational time. 
In [128] the author used PSO for reducing the annual cost and 
to promote majority usage in energy from renewable energy 
sources such as PV/WT (Battery is used for storing excess 
energy) which is operated in standalone hybrid mode. In [129] 
the author considered PSO for optimal power flow problem 
within 2 MG systems with 10MW and 2MW respectively. In 
[59] the author used PSO for sizing an islanded microgrid 
with PV/WT/ BSS and pumped hydro as the main source. A 
smart microgrid with  PV and battery as a primary source is 
optimally sized by using PSO in [81]. In the literature [130] 
PSO is used for minimizing the cost and to determine the 
LPSP of a PV and WT based microgrid system. PSO is used 
by the author in [51] for effective sizing of an islanded HMGS 
with effective cost management and with better system 
reliability. 

 
3.5 Multi-Objective Particle Swarm Optimization 

(MOPSO) 
Multi-Objective optimization is simply the ability to consider 
many objective functions simultaneously. MOPSO can 
mathematically represent based on Eq. (16) & Eq. (17). [131–
133] 
 
Minimize:		F(X) = f((X), f5(X)……… f>(X)   (16) 
 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜 ∶ 	𝑅!?@AB+ ≤ 𝑥! ≤ 𝑅!

CDDB+                            (17) 
 
Where 	i = 1,2, ……… , d. 𝐺 represents the total number of 
objectives and total number of variables is represented by d. 
The [𝑅!?@AB+ , 𝑅!

CDDB+]	 are the ith vector boundary variables.  
 Here in MOPSO both inequality constraints and equality 
constraints are obtained[134]. In [134] author used MOPSO 
to develop an optimal cost management system for reducing 
operating cost and emission that occurred due to pollution in 
a microgrid with WT, PV, BS system. The author compared 
the optimized result obtained from MOPSO with NSGA -II 
and it achieved better performance in MOPSO by optimal 
operational cost and emission due to pollution.  
 
Table 3. Better efficiency obtained by MOPSO in three 
cases from [134] 

Scenario Operation Cost 
€ct 

Emission 
(Kg) 

Time 
(Sec) 

Case 1 27.8 7.8 25.2 
Case 2 0.2 38.9 23.3 
Case 3 3.8 4.7 30.1 

 
 

Table 3 shows the improvement obtained from MOPSO in 
operation cost, emission and simulation time [134]. An HMS 
consisting of PV/WT/BT/DG  described in [135] used 
MOPSO for selecting optimal HMG combination. Real-time 
EMS for an islanded MG is explained in [136] by using 
MOPSO. In [137] Based on a modified PSO energy storage 
system is designed in a distribution system. In  [88]  author 
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used MOPSO to increase the reliability and minimize the 
NPC for a microgrid with PV/WT/DG and BT as sources. 
 
3.6 Multi-Objective self-adaptive differential evolution 

algorithm (MOSaDE) 
In 1995, the differential evolution algorithm (DEA) was 
developed by Price and Storn while solving the Chebyshev 
polynomial fitting problem. DEA follows three stages named 
as mutation, crossover and selection. SaDE is based on 
considering the previous best fit individuals obtained 
[138][6].    

In the literature [6], MOSaDE for optimizing an HMS in 
Yanbu, a city located in Saudi Arabia, was studied. This HMS 
was comprised of PV/WT/DG along with battery storage. 
MOSaDE is used to analyse LPSP, COE, and the Renewable 
Factor (RF) where LPSP and COE are the objective functions 
for optimization. The Author compared HMS with multi-
objective function by splitting into three case studies based on 
different houses as data set and compared with valuable 
results obtained in [110] and selected the optimal HMS 
system.  

 
3.7 Evolution Algorithm (EA) 
Evolutionary algorithms are based on the learning process in 
natural evolution[139,140]. Steps followed by EA can be 
easily understood by observing the below Fig. 6  [141] . 

 

 
Fig. 6. Stages in an Evolutionary Algorithm (EA) 
 
 Different populations of DE algorithm are solved by using 
Eq. (18)[6,142,143] 
 
𝑋!# = 𝑙# + 𝑟𝑎𝑛𝑑() ∙ (𝑈# − 𝑙#)   (18) 
 
Below  

Table 4 represents the different parameters used in EA 
 
Table 4. Parameters in in EA 

𝑋!# Dimension of j in the individual i 
𝑙# Minimum limit 

𝑟𝑎𝑛𝑑() Random value [0,1] 
𝑈# Maximum limit 

 
In [144] author used a two-step process with an adaptive 

nesting evolutionary algorithm for optimally size MG with 

the best operation schedule. Three variable steps of the 
iteration are performed. The iteration stops randomly while 
achieving the best individual triggering the first step of EA. 
In IInd step of EA stops, after reaching to its saturation. In [21] 
optimal sizing of standalone MG by using EA and MILP for 
scheduling is developed. The author achieved in EMS and 
decision anticipating which is compared with classical rule-
based strategy. In [41] the author used EA based multi 
objective optimization for a hybrid PV/ WT/DG/BT which 
reduced the NPC and CO2 Emission . 

 
3.8 Genetic Algorithm (GA) 
From the outset, the complex optimization problem evolved 
in many applications was able to solve by using GA [145]. 
The basic idea followed by GA is by the mimic process of a 
gene such as selection, recombination, and mutation which 
inspired Darwin’s theory. In GA optimization problem 
develop some random solution variable (individuals) as the 
initial process. All individual variables are considered to be 
as gene and a set of variables resembles a chromosome.  The 
entire solution obtained is known as the population of the GA 
and the best chromosome is nominated for the next population 
[39]. Below Fig. 7 represents the flow diagram for GA.  

 

 
Fig. 7. Genetic Algorithm [141] 

 
In the reference [21] used GA for succeeding in a cost-

effective PV, BSS, electrolyser and FC elements considered 
as a leader program for a tabulated time period. The author 
compared the results with traditional rule-based approaches 
with an advanced EMS which have a tolerable capacity and 
able to anticipate the results. GA is considered as the apt 
algorithm for optimizing the energy management system by 
considering its easiness for solving large variables [33]. In a 
hybrid Mg system with PV / FC/ BES author  [146]  used GA 
to obtain power and the outlay of the MG. GA is used by the 
author [58] for a standalone MG system for optimal 
component sizing of PV/WT/ DG with BSS, and minimizing 
the LCC and pollution.   

Few literatures have used non-dominated sorting genetic 
algorithm (NSGA -II) for attaining better performance in MG. 
In [147] used NSGA-II for cost reduction and reducing the 
overall emissions. There are other few pieces of literature 
which has used NSGA-II [148] in the same domain. The 
author in [149] used multi objective self-adaptive GA and 
triangular model for optimize and promote the maximum use 
of RE and also to increase the reliability of Combined Heat 
and Power (CHP) microgrid.  

 
3.9 Ant Colony Optimization (ACO) 
In 1990 Marco Dorigo along with his offsider proposed a 
novel optimisation technique by observing colonies made by 
ants[150,151]. A particular path will be used by ants while 
collecting food which is marked by the means of pheromone 
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which will help them to follows the same path while returning 
back[152] to the colony. The path which is having higher 
pheromone scent will be used by many ants and weaker scent 
path will be avoided [153,154]. The accumulation of 
pheromones correlated for each possible route is modified for 
a better result based on below Eq.(19) [155,156].  

 
𝑇!#(𝑡) = 𝑃𝑇!#(𝑡 − 1) + ∆E$%    (19) 

 
T Iteration No. / Generation Cycle 

𝑇!#(𝑡) Revised concentration 
𝑇!#(𝑡 − 1) Concentration of previous iteration 
∆E$% Change in pheromone concentration 

P Pheromone evaporation rate (0-1) 
 

 After achieving a better understanding in Ant colony 
optimization [157] ACO is used for optimal design for HES 
in [43]. In [158] the author used ACO for implementing a 
power management controller for  an alternative energy 
distribution generation system to optimise the economical 
emission and total operating cost. A stand-alone hybrid 
system is optimally sized by using ACO in [159]. The author 
needs to consider more classic data’s which will able to 
increase the accuracy. However, with the selected data, the 
author is able to reduce the yearly system costs with higher 
reliability. In [160], ACO is used for optimising the total 
system cost of WT/ PV/BT based off-grid system. In [161], 
the author considered three different places in Egypt such as 
Kharga, Saint Katheina, Qussair for modelling a hybrid 
microgrid system with solar , wind , battery, fuel cell and 
other distribution generation sources. The author used ACO 
for bring down the cost of electricity and to reduce the CO2 
emission. The obtained results are compared with PSO, GA 
and HOMER for validating ACO as the best for the particular 
data set.  

 
3.10 Bat Algorithm (BA) 
Yet another well-known population and iterative based 
optimization algorithm offered by Yang 2010 is known as  
Bat Algorithm (BA) [162]. The unique ability in bats helps 
them to identify its prey/food and echolocation detects the 
distance [163]. The variations in their loudness (wavelength) 
determines their target. 𝑥., 𝑣., 𝑓!	is generated as inceptive 
population of BA. New population is obtained from Eq. (20) 
and Eq. (21) [164].  
 
𝑓! = 𝑓F!G + (𝑓F3H − 𝑓F!G)𝛽    (20) 
 
𝑣!< = 𝑣!<*( + (𝑥!<*( − 𝑥∗)𝑓!     (21) 
 
𝑥!< = 𝑥!<*( + 𝑣!<      (22) 
 
 Through local search procedure, the best solution from 
each iteration is streamlined.  
 
𝐴!<*( = 𝛼𝐴!

(<)      (23) 
 
𝑟!
(<) = 𝑟!

(.)[1 − exp	(−𝛾 ∈)    (24)  
 
𝛼 and 𝛾 are the constants in Eq. (23) and Eq. (24). The 
obtained new population is examined and the best solution is 
taken. The new population acquired is judged based on the 
objective functions and a best solution is decided. Fig. 8 
provides the pictorial description of BA.  

As considering around all optimal design algorithms will 
be pulled down with its own demerits. In BA, chances for 
getting held up in local optima are more. 

 

 
Fig. 8. Bat Algorithm [165] 
 
 In order to overcome this drawback, a slight modification 
is enhanced by [118] named as an improved version of BA 
(IBA). Placing of FCL in optimally sized location is also a 
difficult task so the author used BA and CS for the same in 
[29].   
 
3.11 Based on Optimizing Tools  
Hybrid Optimization Model for Electric Renewables 
(HOMER) was intended by United States – National 
Renewable Energy Laboratory (US-NREEL).  By using 
HOMER, a typical physic model of a power system for total 
cost analysis such as installation cost, operational cost, life 
cycle cost, for a period of life spam can be analysing [166]. 
The input data can be provided and the model possesses PV 
and WT data. [40,167]. The author used HOMER for 
selecting a combination with the lesser discharge of CO2 
along with the less budget [168]. Five different combinations 
such as PV/DG, DG alone, WT/DG, PV/WT, and PV/WT/DG 
are the different respective cases. The author concluded that 
Case four was not having emission (0% emission) whereas 
the fifth case was with less emission along with the lesser 
cost.  

In [169] author considered a campus MG system with 
PV/WT/ES installed in Aligarh Muslim University (AMU) 
designed using HOMER.  A case study with 3.4MWh/day 
which is considered as mandatory load and a deferrable load 
of 3.3MWh/day is considered in [167]. The system 
successfully to attained 0.092$/kWh Levelized Cost (LC) 
which also minimizes 38.3% CO2 emission along with 6.18% 
annual cost.  

 
 

4 Cost analysis in microgrid sizing 
 
While designing a system, cost analysis is an important 
criterion. There are many works of literature that analysed and 
sized the microgrid which in an economically feasible 
manner.  Utilization cost, the lifespan of the system, the return 
of investment, maintenance of system, system replacement 
cost, investment cost, degradation cost and additional fuel 
supply are some of the key terms considered by different 
authors while analysing the cost for microgrid sizing. In the 
domain of microgrid COE (unit electricity cost), Life Cycle 
Cost (LCC), TNPC (all cost needed for the system such as 
present cost, operating cost along with the maintenance cost) 
are the most considered cost analysis [110].  
In the literature [32], the author has considered Total Annual 
Cost (TAC) as his main objective function for analysing 
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optimally size techno-economical energy and cost-efficient 
SMCMG.  

The MG system supplied with 44% from  PV, 14% from 
WT, 26%, from BSS and 16% from DG was able to cut short 
0.365$/ KWh in COE while compared with CS and PSO [31].  

In [37], different utilization components have been 
accessed for proper minimizing of operational cost. In [53] 
the  operational cost has been analysed with a linear model for 
all dispatch costs. The system comprises a WT and BSS. In 
order to overcome the slow start-up of the system, it requires 
start-up, shutdown along with the setup cost. Variable cost 
will be linearly increased according to the production amount, 
whereas in the fast start generator only linearly variable cost 
is considered which has high expensive unit production cost.  

In literature [117], the author able to  minimize the overall 
cost needed to be spared in MG. the author considered the 
system with three different cases and concluded that an 
effectively sized MG with Effective BES will reduce the 
overall cost. The result obtained from GWO was then 
compared with a different optimization method which was 
used in [118]. The author [48] presented a detailed cost 
analysis about the considered three phases of his study. The 
excess generated energy is supplied to the utility grid by two-
time scales for a day which varies from 22.00 hrs to 18.00hrs 
and 18.00hrs and 22.00 hrs with respective tariffs (One-two). 
For the first time, $0.054 per kWh and scale $0.14 per kWh 
is charged for drawn grid current and Rs.0.030 per kWh and 
0.068 per kWh is charged for grid injection. [2] optimized the 

cost for PV and BT system by different stages and concluded 
DSS is best with a reduction of 8.26%. The reduced 
percentage of 48.3% of battery size pockets the overall $2000 
savings. In [170] based on iterative simulation the author 
optimally sized PV/WT/BT/DG with lesser cost and higher 
demand availability for a building load located in Sohar, a 
place in Oman. [118] quotes avoiding storing device will 
reduce 40% of daily applicable charges. GA is used by the 
author [146] for maximizing the net present worth of the 
entire system. A notable reduction of 0.010 $/kWh is able to 
achieve in the hybrid electricity market while comparing with 
the pool market. In [20] MM-EMS is considered for the best 
operation of MG with lesser cost by using LP(linear 
Programming) and MILP considering three different action 
plans. NSGA-II is proposed for NPC minimization and 
escalate basic savings in energy[171]. 27% of O&M cost and 
30% of emission cost was able to be reduced by considering 
TE based MG [126].   

 
5 Comparison 
 
In previous sections a detailed idea about various microgrid 
configurations and different types of microgrid has been 
explained. An effective sized microgrid will be much reliable 
to the society. Many pieces of literature used different 
optimization algorithms in the domain of microgrid sizing. By 
analysing below 

 

Table 5  it’s much easier to understand about different optimal 
sizing algorithms used in the domain of microgrid sizing. 
Different optimization algorithms are used for solving 
objective functions such as  

§ Cost Minimization 

§ Emission Minimization 
§ Reliable Power Supply 
§ Operational Loss Minimization  
§ Reliable Component Sizing 
§ Energy Consumption  
§ System Stability 

 
Table 5. Detailed comparison based on different optimization algorithm with different sets of components and different types 
of MG 

Sl. No Algorithm / 
Tool used 

DG – SOURCE 
Type of MG Objective 

Function 

Results 
Compared 

With 
Inference Ref 

PV WT BT DG MT TES GB HSS FC 

1.  PSO P P      P P HMG 

Reliable power 
supply in all 

weather 
conditions 

 
• Cost directly 

depended on 
reliability.  

[54] 

2.  ABC P      P   

Hybrid stand 
alone and 

grid 
connected 

Energy and 
annual cost 

Minimization  
HOMER 

• Reliable and 
affordable electricity 
to the rural village 
from the locally 
available RE 
Resources.  

[172] 

3.  BA P P P       Grid-Tied 
MG 

Total Cost 
Minimization  GA, PSO 

• From three cases it’s 
understandable that 
the system has 
convergence speed, 
robustness,  

• cost reduction due to 
optimal battery size,  

• MG without BES will 
drop down 40% of the 
daily charge  

[118] 

4.  EA P P P       HMG Cost 
Optimisation 

Non 
nesting 2-

step 
algorithm 

• Best result is obtained 
in the IInd iteration of 
20.04% 
improvement.  

[144] 

5.  EA P  P     P  Standalone 
MG 

Cost 
optimisation 

Rule based 
strategy  

• Optimal sizing of 
standalone MG 

• Component sizing 
and total cost is 
dependent on 
operation strategy, 
initial condition and 
time resolution.  

[21] 

6.  MOEA P P P P    P  
Isolated 
Hybrid 

Microgrid 

NPC, CO2, 
Unmet Load  

• Simultaneous 
reduction in pollution 
and cost of the system  

[41] 

7.  E-PSO P P P  P P P   SMCMG 

Optimal Cost 
less emission 
and optimal 

sizing 

DE, PSO, 
GA, HAS 

• Better solution with 
fast convergence 

• Less variance 
• Better energy 

efficiency, 

[32] 
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economical and 
reliable. 

• 404 tons of CO2 can 
be reduced 

8.  FA P P  P      Isolated 
Microgrid 

Cost 
Minimisation 

ABC, 
HAS, PSO 

• BESS optimally 
discharges when 
insufficient power 
delivered from RES 
which reduces BT 
operating cost. 

• FA with 0% operating 
cost in LPSP  

[108] 

9.  FASA P  P       SAPV SAPV sizing PSO, EP, 
GA 

• FASA optimize much 
faster while 
comparing with ISA 

• FA is 1.9309 times 
faster than PSO, EP, 
GA 

[105] 

10.  GA P  P       
Grid 

connected 
Microgrid 

Energy loss, 
energy cost, 
CO2 emission 

 

• Overall energy losses 
occurred in microgrid 
is reduced 

• Minimized the CO2 
emission and 
imported energy cost  

[33] 

11.  GA P  P      P 
Hybrid 

electricity 
market 

Net present 
worth (NPW) 

Pool 
market 
Grid 

• 0.010$/kWh achieved 
in Hybrid electricity 
market  

• Totally NPW 
decreased  

[146] 

12.  GA P P P P      Stand-alone 
MG 

LCC 
minimization, 
maximization 

of RE injection 
and Reducing 
emission due 
to pollution  

 

• Satisfied the 
Objective function. 

• Improve the 
production of energy 
from renewable 
energy sources 

[58] 

13.  GOA P P P P      
Hybrid 

Autonomous 
MG 

DPSP, COE PSO, CS 

• 14% and 19.3% 
reduction in overall 
system initial 
investment  

• Zero DPSP & 
minimized COE 

• Effective RE component 
Sizing 

[31] 

14.  GWO P P P  P    P Hybrid MG Total cost 
minimization  

GA, TS, 
PSO, DE, 

BBO, 
TLBo.  
GWO 

• Better performance 
and convergence 
speed.  

[117] 

15.  Homer P P P       Campus MG 
Energy 

consumption, 
COE 

 

• 75%of increase in 
COE and 35% energy 
consumption in the 
last 5 years. 

• PV+B mode is 64.2% 
higher with respect to 
the existing system 
and G+PV is 57.2% 
lower with respect to 
existing.  

• Mitigate CO2, SO2, 
NOX as 636*106 Kg, 
1.578*104 Kg, 
7.7*103 Kg 
respectively  

[169] 

16.  MOAMPSO   P  P    P Hybrid 
power source 

Optimal 
Operation with 
minimum Cost 
and Emission  

GA & PSO 

• Analysing the 
environment, the best 
power dispatch plan 
can be selected.  

[124] 

17.  MOPSO P P      P P HMG 

Annual Cost 
Minimisation 

and  
EMS 

Single 
Objective 
algorithms  

• Keep down the 
annual total cost and 
reliability indices 

• Effective energy 
management system  

[173] 

18.  MOPSO P P       P Hybrid Stand 
alone 

Annualized 
cost, 

Expected loss 
of load and 

energy  

SOA 

• Cost directly 
dependent on 
reliability 

• Effective sizing for 
avoiding losses  

[174] 

19.  MOPSO P P P P     P HMG 
Operating 

Cost, pollution 
emission cost 

NSGA-II 

• Infinite power 
exchange between 
LV and MV is the 
best case from three 
cases 

• Operating cost and 
pollution are 
minimized 

[134] 

20.  MOPSO P P P P      HMG COE and LPSP  
• RE sources promoted 

more rural 
electrification in Iran 

[135] 

21. ` MOPSO P P P P      HMG NPC & ERBC  

• Electrified 
unelectrified two 
rural areas in 
Morocco with 
minimized NPC and 
Emission Reduction 
and Beneficial Cost 
(ERBC) 

[88] 

22.  MOSaDE P P  P      HMG EMS, LPSP, 
COE, RF  

• Optimal capacity 
sizing of the sources 

• Price reduction in RE 
prices 

[6] 
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23.  NA P P P P      BISS 

Minimizing 
cost and 

maximum 
availability  

HOMER 

• Cost minimization 
and demand 
maximization.  

• Better performance 
while comparing with 
Homer 

[170] 

24.  NSPSP P P P       
Hybrid 
Power 
System 

  

• Minimized energy 
wastage, voltage 
fluctuations, cost  

• Improved reliability 
of the system.  

[125] 

25.  PSO P P P       Standalone 
Hybrid 

Cost 
Minimisation 
RE promoting 

 

• Effective EMS is 
designed  

• Reduced the annual 
cost 

• Promoted the usage 
of RE sources 

[128] 

26.  PSO P P P       
Standalone 
generation 

unit 

Cost 
minimization GA 

• Better convergence, 
speed, and accuracy 
while comparing with 
GA.  

[127] 

27.  PSO P P P P      Islanded 
HMGS 

Effective cost 
and 

System 
reliability 

 

• Promoting RE in 
Sundarban/ India is 
economical to 
increase the energy 
access through RE 

[51] 

28.  

Triangular 
aggregation 

and levy- 
harmony 

P P P       Islanded MG 

Economy, RE 
technology, 
Pollution, 
Reliability 

Standard 
harmony 
algorithm 

• Developed triangular 
aggregation model 
and improved Leavy 
harmonics model 

• Three objectives can 
be placed in three 
axes of the triangle.  

• Data lose can be 
avoided 

[57] 

29.  MHBMO P P       P Standalone 
MG 

Minimize 
electrical 

power loss,  
 

Standard 
test system 

• Used fuzzy decision 
maker for selecting 
non dominant optimal 
solution.  

• Results compared 
with two standard test 
system 

[175] 

30.  ACO P P P     P  Standalone 
MG 

Cost 
minimisation, 

Max 
reliability 

 

• More standard data’s 
to be consider for 
more accuracy 

• Ant count should be 
calculated 

• Minimal annual cost 
and more reliability in 
the present system 
data 

[159] 

31.  ACO P P P P     P HMG 
Islanded 

Cost 
minimisation 

GA, PSO, 
HOMER 

• System developed in 
three different 
locations of Egypt  

• Energy cost is 
minimized 

• Reduced CO2 
emission 

[161] 

 
 Based on the need different DG sources are used to form 
a microgrid. Below 
Fig. 9 shows the detailed graphical representation of 
different DG sources used in various microgrid applications.  
 

 
Fig. 9. Different DG sources used in Different MG application 
 
 It is clear that almost all combinations of PV/WT/BT are 
used. Around 10% used different diesel generating system for 
the backup supply of power.   

For drafting this detailed review paper, different papers 
from peer-reviewed journals are selected. Below Fig. 10 gives 

an idea about, total number of papers collected from the year 
1995 to 2020 to formulate this review paper 
 

 
Fig. 10. Papers from the year 1993 to 2020 
 
6 Conclusion 
 
The initiation needed to encourage and promote renewable 
energy sources are becoming a mandatory task due to high 
rise in energy demand and reduction in the supply of non-
renewable resources. This review paper offers a thorough 
examination of the optimal scale of the microgrid based on 
different applications. The value of productive magnification 
of MG can be inferred with greater economic significance. It 
is obvious that specific optimization algorithms are the best 
for various optimization problems, depending on the 
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application needs or the role played by the algorithm. It is 
another difficult task to identify the best optimization method 
for a particular objective. Pictorial representation of mostly 
used optimization algorithm is given in this review paper for 
a better analysing the concept of optimization. A comparative 
study is done based on different algorithms and different DG 
sourced used for forming MG is been analysed. Year-wise 
literature collection will give a better idea about the 
advancement and increasing trend that occurred in the field of 
MG.  

 In order to encounter the global depletion in 
nonconventional sources of energy, this review paper will 
help to promote RE sources and to form an optimally sized 
microgrid.  
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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