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Abstract 
 

The abundance of dry marginal agricultural land in Indonesia provides an alternative land resource for crop production. 
This study uses Landsat 8 and Sentinel-2A satellite imagery to map the spatial extent of such land and to interpret the 
results obtained to track changes in its use. Supervised classification is used for image processing and the production of 
land-cover maps. The classified maps produc§ed and the spatial extent of each class are compared to existing maps and 
statistical data. Regional development by local governments has led to the occupation of a greater area of dry marginal 
agricultural land, and from 2000 to 2019 about 49% of such land has been occupied and converted to productive land use. 
This change can be identified as an increase in plantation area and the conversion of non-irrigated or irrigated areas to 
pavement area. Both Landsat 8 and Sentinel-2A imagery can potentially be used to map the spatial extent of dry marginal 
agricultural land and the maps produced can be useful for updating incomplete statistical records.  
 
Keywords: mapping, dry-marginal, agricultural-land, Sentinel-2A, Landsat 8. 
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1. Introduction 
 
Marginal agricultural land (MAL) is defined as land in which 
conditions are too severe for sustained application and which 
is sensitive to land degradation. Inappropriate human 
intervention and contaminated and potentially contaminated 
sites can cause land degradation [1], [2] and such land is then 
abandoned and rarely used. However, this land type can be 
considered as an alternative resource for crops for both food 
and energy production. Use of MAL for the production of 
industrial crops to serve biomass and energy demands has 
been discussed in recent studies [3, 4].  
 The MAL found in many locations of the Indonesian 
archipelago. It comprises about 157.2 million ha or 83.13% 
of the total area of land [5]. According to the Indonesian land 
resources database, MAL in Indonesia is divided into six 
categories: (1) acid upland, (2) semiarid upland, (3) tidal 
swampland, (4) inland swamp, and (5) peatland [6]. Mulyani 
and Sarwani [5] state that 108.8 million ha of land is classified 
as acid upland, distributed mainly in Sumatra, Kalimantan 
and Papua. In contrast, semiarid uplands cover an area of 13.3 
million ha distributed across East Kalimantan, East Java, Bali, 
West Nusa Tenggara and East Nusa Tenggara.  
 Semiarid soil [7] and semiarid uplands [5] are defined as 
soil/land having specific regimes of soil moisture in specific 
dry-climate conditions. Rainfall in semiarid areas is usually 
no more than  2000 mm per year, and the dry-month period 
(defined as months receiving rainfall of less than < 100 mm 
[5]) can exceed seven months [6]. In this study, we use the 
term ‘DryMAL’ (dry marginal agricultural land) to represent 
semiarid uplands [5] and semiarid soils [7]. These three 
terminologies are largely similar in that they describe MAL 
that is relatively dry because of intrinsic or external factors.  

 EUROSTAT [8] defines land cover (LC) as 
‘corresponding to a physical description of space’ that 
‘enables various biophysical categories to be distinguished’, 
observations of which can come from sources such as ‘the 
human eye, aerial photographs, [and] satellite sensors’. 
Meanwhile, the term ‘land use’ (LU) refers to ‘areas in terms 
of their socio-economic purpose: areas used for residential, 
industrial or commercial purposes, for farming or forestry, for 
recreational or conservation purposes’. Similar definitions are 
proposed by Parece [9], and so in this paper, we use the 
definitions and abbreviations above to describe land cover 
and land use (LCLU).  
 Many efforts have been initiated to increase productivity 
and to reduce the obstacles to DryMAL use and, to this end, 
mapping to calculate the spatial extent of this land resource is 
urgently required. This study aims to evaluate the application 
of Sentinel-2A and Landsat 8 imagery for mapping the spatial 
extent of DryMAL and other land occupations, both to 
compare the classification results with existing maps and 
statistical data and to detect the change in DryMAL 
occupation between 2000 and 2019. 
 
 
2. State of the Art  
 
Satellite imagery promises solutions for many problems in the 
field of agriculture. Sentinel-2A and Landsat 8 imageries are 
available for free download, and these two global-coverage 
remote-sensing systems provide rapid, low-cost, easy-to-
apply imagery for the end-user. Both Sentinel-2A and Landsat 
8 are capable of mapping LCLU at specific times and 
locations, and thematic mapping obtained from the data 
provided by these satellites may offer up-to-date LCLU maps 
for further applications. LCLU maps interpreted from 
conventional maps or derived from satellite imageries have 
been applied to the study of LCLU changes [10], [11].  
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 Furthermore, Fonji and Taff [12] have combined current 
data (census and statistics) with satellite imagery (Landsat 
Thematic Mapper) to calculate LCLU change in north-eastern 
Latvia. Other researchers seek to explore the causal effects of 
LCLU and their implications for society and the environment 
[13], [14]. Further studies have attempted to integrate data 
using fusion techniques or to combine data with a more 
comprehensive study of LCLU phenomena [15], [16]. 
Furthermore, the use of Landsat imagery as a method for 
studying LCLU change across the globe is both widely known 
and widely published [17], [18], [19]. In parallel, the 
application of Sentinel-2A imagery for the interpretation of 
LCLU has also becoming popular in research over the last 
five years. Some examples of the use of Sentinel-2A imagery 
for identification and mapping in agricultural-related issues 
can be found in studies conducted by Bassa et al. [20], Rujoiu-
Mare et al. [21], Forkuor et al. [22], Abdi [23] and Goga et al. 
[24]. These studies show the potential applicability of 
Sentinel-2A for mapping LCLU and phenomena related to 
agriculture. 
 Both Landsat 8 and Sentinel-2A provide high-spectral-
resolution and medium-spatial-resolution imagery potentially 
applicable to LCLU mapping. The relatively similar 
properties of these two imageries are useful for researchers 
wanting to compare or combine satellite data to obtain more 
comprehensive interpretations. For example, Sertel and 
Musaoǧlu [25] compare the classification accuracy of LC and 
LU maps created from Sentinel-2 and Landsat 8 imagery, and 
Degife, Zabel and Mauser [25] examine the rate, extent and 
distribution of various LU and LC changes in Gambella 
Regional State, Ethiopia. Furthermore, Mishra and Rai [26] 
use Landsat 5 TM (Thematic Mapper) and Sentinel-2A MSI 
(Multispectral Instrument) imagery to extract land-cover 
maps. The dense time series of Landsat 8 OLI (Operational 

Land Imager) and Sentinel-2A (or 2B) MSI imagery are 
creating new opportunities to map and to characterise 
temporal dynamics in land-surface properties by combining 
the two imageries [27]. 
 Image classification is defined as the categorising of 
digital-image pixels into particular land-cover classes or 
themes. Most image-processing techniques are based on hard 
logic, utilising both spectral and temporal-spatial patterns. 
The supervised and unsupervised classification are based on 
the hard logic technique [28], [29], [30]. Supervised 
classification can be explored using many algorithms; 
however, consideration of type, the number of training areas 
and the selected band combination are critical [31]. Khorram 
et al. [28] state that the maximum likelihood classification 
algorithm is the most commonly used method. Finally, many 
methods of accuracy assessment have been discussed in the 
remote-sensing literature [32], [33], [34]. The most 
commonly used method for evaluating the accuracy of image 
classification uses the confusion matrix with the level of 
acceptance in a range from 75% to 90%. Finally, Foody [34] 
recommends the use of a minimum of 89% ± 5% interval of 
confidence of accuracy assessment for image classification 
results.  

 
 

3. Methodology 
 
3.1 Study site  
Situbondo regency (Fig.1) is located in the eastern part of East 
Java and has a total area of 1651.30 km2. The regency has a 
total population of 691,622 and a population density of 422 
per km2. Annual population growth rate calculated for 2018–
2019 is 0.46% [35].  

 

 
Fig. 1. Study site – Situbondo regency  
  Situbondo regency is relatively drier than other 
locations in East Java, with annual rainfall ranging from 500 
to 1500 mm; this is less than average annual rainfall in other 
East Java regions of from 1500 to 3500 mm. The dry season 

in this region ranges from seven to nine months a year and 
runs from April/May to November/December. The rainfall 
received per month is very limited, with more than 100 mm 
occurring only in the four months from January to April. Thin 
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layers characterise the soil in this region, with shallow soil 
and relatively low levels of organic matter. 
 In many places, gravel mixed with upper soil layers, and 
this stony soil layer is usually found in higher areas, and those 
are having slight to moderate slopes. Moreover, macrospores 
present in the soil layer accelerate runoff infiltrating and 
percolating more rapidly to the soil layer. As a result, some 
intermittent rivers flow in this region. The combination of 

shallow soil layers in stepped terrain drainage, the presence 
of macrospores and intermittent rivers continuously recharge 
groundwater resources. The groundwater is, therefore, the 
primary source of water in this region. Fig. 2 (a, b, c) shows 
examples of DryMAL photographs obtained from the region 
and discussed further in this study.  
 

 

 
( a )  

 
( b)  

 
( c)  

 
( d)  

Fig. 2. Examples of DryMAL (a, b and c) and irrigated paddy field (non-dry land) (d). Photographs were taken in the same week in October 2019.  

 DryMAL usually has low productivity that is constrained 
by internal factors, such as parent material of soil, physical 
and biological properties, and external factors such as rainfall 
and temperature [5]. Furthermore, because the weathering and 
destruction of parent material are not as intensive as in wet 
climates, the formation of soil in DryMAL is relatively 
reduced. The soil solum is relatively shallow and forms 
relatively rocky soil with many rock disclosures. The primary 
materials found in DryMAL are limestone, karst limestone, 
and sedimentary and volcanic materials. The soil pH is either 
neutral or tends to be alkaline. DryMAL generally has better 
fertility than acid upland areas, and common soils types in 
DryMAL are Alfisols, Mollisols, Entisols and Vertisols [5].  
 
3.2 Input data  
Primary input data for this study is Sentinel-2A and Landsat 
8 imagery of the location of interest downloaded from the 
USGS website [36]. The images used are selected based on 
the minimum cloud cover present (Fig.3). Therefore, for 
Landsat 8, two images for different dates are selected. Table 
1 visualises the raw image metadata related to the raw images. 
 
 
 

 
Sentinel-2A 

 
 (b) Landsat 8 
Fig. 3. Raw image input data  
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Table 1. Raw image metadata – Sentinel-2A and Landsat 8 

Satellit
e  

Date 
acquired 

(dd/mm/year
) 

Cloud cover 
(%) 

Data type/ 
collection 
category 

Orbit  

Sentinel
-2A 25/06/2019 0.0179 S2A_MSIL1

C 
Descendin

g 
 25/06/2019 0.1016 S2A_MSIL1

C 
Descendin

g 
Landsat 
8 06/11/2016 5.72 L1TP/T1 Ascending 

 01/10/2019 9.24 L1TP/T1 Ascending 
 
 
 This study is constrained by the availability of images 
clear of cloud cover. In tropical regions such as this, it is a 
challenge to obtain imagery from optical sensors with 
minimum cloud coverage, and typically the imagery captured 
in dry seasons is better than in wet seasons. Although 
imageries downloaded for this study represent the dry season, 
Sentinel images were captured at the beginning of the season 
while Landsat images were captured later on in the season. 
Visually (as shown in Fig. 3) the Sentinel-2A images show 
more greenness than the Landsat images because of the 
presence of vegetation remaining from the end of the wet 
season, and this will probably influence the classification 
process. Thematic maps known as RBI (Rupa Bumi 
Indonesia) maps were downloaded from the Indonesian 
Geospatial Agency (Badan Informasi Geospatial) and used to 
interpret the classification results [37].  
 
3.3 Tools used  
In this study, a MultiSpec© package [38], [39] was used as 
the tool for image processing, and QGIS [40] was applied for 
atmospheric correction, pan-sharpening (re-classifier image) 
and visualisation. Global Positioning System (GPS) was 
utilised to collect ground control points (GCPs). 
 
3.4  Procedure  
The image treatment process (Fig. 4) consists of three paths. 
The left path is applied to produce LCLU maps from Landsat 
8 and Sentinel-2A images. Starting with raw Landsat 8 and 
Sentinel-2A images downloaded from the website [41] the 
following steps are carried out: atmospheric correction, 
creation of image composites, field surveys for collecting 
training areas or GCPs, supervised classification, accuracy 
assessment using confusion matrix, post-processing, clipping 
of the maps with regency/district boundaries, and image 
interpretation.  
 A dark object subtraction algorithm is exploited to prepare 
atmospheric correction via the Semi-Automatic Classification 
Plugin (SCP) [41] provided on the QGIS platform, and the 

pan-sharpening method is applied in parallel with the 
atmospheric correction in the SCP. In this study, the pan-
sharpening method used is based on that described by Johnson 
et al. [42]. 
 

 
Fig. 4. Procedure 
 
 We use five composites bands of Sentinel-2A imagery 
(bands 2, 3, 4, 5 and 8). The spatial resolution of pixels is 
10m, meaning that one pixel on the image represents 10m x 
10m on the ground. Then, the Composite bands of Landsat 8 
imagery are created by a combination of six bands (Bands 2, 
3, 4, 5, 6 and 7).  The individual pixels in the Landsat provide 
spatial resolution at the ground level of 30m.  However, in 
this study, the pan-sharpening method adapted from Johnson 
et al. [42] can provide Landsat images with 15m pixel size.
 Moreover, several field surveys were conducted between 
May to November 2019 to establish GCPs to determine the 
real conditions in the field and to take photographs from the 
region of interest. About 771 GCPs were collected and used 
as training areas. Table 2 summarises the statistics for the 
GCPs used for each LCLU class.  

 
Table 2. Collected training areas (GCPs) 

Class Number TA Area  
(ha) 

Min Max Median 

Waterbody 40 553.94 1.23 54.30 20.1 
Forest/plantation 184 12,366.5 1.78 209.0 77.1 
DryMAL 165 4280.21 1.21 93.5 26.6 
Non-irrigated land 92 2169.50 1.40 46.8 23.8 
Built-up area 140 3425.64 2.38 56.7 21.9 
Irrigated paddy fields 150 3222.64 1.14 56.8 23.5 
Total 771 26,018.35    

 
 
 In this study, a Gaussian maximum likelihood algorithm 
is utilised to perform supervised classification. Khorram et al. 
[43] state that maximum likelihood classification is 

commonly exploited for image classification processes. The 
classification explores the five composites bands of Sentinel-
2A imagery, the six bands of Landsat 8 imagery and the 771 
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GCPs used as training areas. The classification procedure 
follows existing protocols as detailed by Biehl [39] and 
Landgrebe [44]. A general confusion matrix is used to assess 
the accuracy of classification processes using overall and 
kappa indices [34]. The level of accuracy targeted is 89%, 
following Foody’s recommendation [34].  
 Furthermore, post-processing treatment is applied to the 
two maps using the majority filter and clear-boundary tools. 
The image then clips with a polygon of Situbondo regency, 
and the two maps are applied for the interpretation. Two 
different district areas apply for the comparison. In the final 
step, the two maps (from Sentinel-2A and Landsat 8), the RBI 
maps and the statistical data are compared and interpreted. In 
the second path shown in Fig. 4, the clipped map from RBI is 
applied to visualise LCLU in the year 2000.  

 The second thematic map, processed from Sentinel-2A, 
and the third map, classified from Landsat-8, were then used 
to visualised LCLU in 2019. Finally, in the third path, the 
statistical data obtained from BPS Situbondo [35] is presented 
as additional information about LCLU in the region.  
 
 
4.  Results and Discussion 
 
4.1 General results  
Tables 3 and 4 present the accuracy per class obtained from 
Sentinel-2A and Landsat 8 imagery. The reference and 
reliability accuracy shows the accuracy of classification 
processes for each class [39].  

 
Table 3. Accuracy of Sentinel-2A images 

Class Reference 
accuracy 

(%) 

Paveme
nt 

areas 

Irrigated 
paddy 

Non-
irrigated 

land 

DryMAL Water-
body 

Forest-
plantation 

Total 

Pavement areas 91.04 27587 432 201 2073 1 8 30302 
Irrigated paddy 97.85 175 21941 0 234 0 74 22424 
Non-irrigated land 91.56 20 763 8843 32 0 0 9658 
DryMAL 97.80 2187 234 763 141510 0 0 144694 
Waterbody 99.76 10 1 0 0 4621 0 4632 
Forest-plantation 99.82 103 110 0 0 0 116328 116541 

Total 30082 23481 9807 143849 4622 116410 328251 
Reliability accuracy (%) 91.71 93.44 90.17 98.37 99.98 99.93  

 
Table 4. Accuracy of Landsat 8 images 

Class Reference 
accuracy 

(%) 

Pavement 
areas 

Irrigated 
paddy 

DryMAL Waterbody Forest-
plantation 

Total 

Pavement areas 94.75 43508 0 2409 0 0 45917 
Irrigated paddy 98.86 730 82271 0 0 219 83220 
DryMAL 96.22 2628 0 66941 0 0 69569 
Waterbody 99.08 3 146 100 26937 0 27186 
Forest/plant-ation 97.99 73 2847 0 0 142350 145270 

Total 46942 85264 69450 26937 142569 371162 
Reliability accuracy (%) 92.68 96.49 96.39 100 99.85 

 

 
 The two tables show that individual accuracy for each 
class is greater than the 89% threshold [34]. In general, we 
can, therefore, state that individual accuracy for each class, 
overall and kappa accuracy meet the standard classification 
processes. Sentinel-2A imagery can separate the features into 
six significant classes. In comparison, Landsat classified 
features only into five classes, the difference being in the class 
of ‘non-irrigated land’. In this region of interest, both non-
irrigated land and DryMAL refer to the same features, that is 
Land not reached by irrigation infrastructure and relatively 
dry due to intrinsic or external factors [5], [7]. The term ‘non-
irrigated land’ refers more to land-use, while the term 
‘DryMAL’ refers to land-cover.  
 Classification Sentinel-2A image produces an overall and 
kappa accuracy of 97.74% and 96.61%. In Landsat 8, the 
classification produces overall and kappa accuracy of  
97.53% and 96.68%, respectively. According to Foody [34], 
the classified maps above is satisfier. The two tables also 
indicate that both Sentinel-2A and Landsat 8 perform best for 
the classification of five classes (pavement area, irrigated-
paddy, DryMAL, waterbody and forest/plantation), meaning 
that both imageries can identify and distinguish these features. 

Fig. 5 shows the results of classification, and Table 5 presents 
the comparison of area extent in km2 and the percentage of 
the total area for each type of LCLU.  
 However, misinterpretation still exists between pavement 
areas and DryMAL, meaning that in some places both 
Landsat 8 and Sentinel-2A have difficulties in distinguishing 
between these types of LCLU. This is probably due to the 
relatively similar spectral properties of house roofs and 
DryMAL; the majority of house roofs are produced from pre-
casts of specifics soil type, and therefore appear in the 
imageries as spectrally similar to DryMAL. Otherwise, this 
misinterpretation may be caused by confusion between pixel 
size and ground-feature size. The spatial resolution of Landsat 
8 pixels is 15m x 15m and for Sentinel-2A is 10m x 10m.  In 
the field, the majority of individual building sizes, both in 
rural and urban areas, range between 5 and 30 metres. As 
result, an area composed of a mix of DryMAL and pavement, 
pixels will be classified as DryMAL or pavement depending 
on which is the majority cover.  
 The three maps can potentially be used to describe LCLU 
change from 2000 to 2019, with change being observed using 
three classes, i.e. DryMAL, forest-plantation, and non-
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irrigated areas. The original land resources from which these 
three classes are formed are similar, i.e. DryMAL. The area 
occupied by these three classes in the RBI map (Table 5) is 
80.6% of the total area (52% + 22% + 6.6%, respectively). In 
the Landsat 8 map, the areas for the same classes is 70.9% 
(32.2% + 38.7% + 0%, respectively), while in the Sentinel-
2A map, the area occupied by DryMAL, forest/plantation and 
non-irrigated land is 76.9% (26.3% + 49.5% + 1.1%, 
respectively). These percentages indicate the original extent 
in the area of DryMAL resources in the region. 

 
Fig. 5. Classified images from Sentinel-2A and Landsat 8 compared to 
the RBI map 

 
government and stakeholders that have taken place between 
2000 and 2019 has significantly changed LC and LU in this 
region. As a result, DryMAL resources have step-by-step 
been converted to more usable land occupation such as 
irrigated areas, forest/plantation and pavement areas. 
However, significant DryMAL areas (± 26.3% to ± 32.2% of 
the total area or ± 434.5 km2 to ± 531.5 km2) remain less 
usable during the prolonged dry seasons and efforts to 
increase the productivity of these DryMAL resources are 
urgently required. 
 Furthermore, pavement area has increased from 5.5% (in 
the RBI map) to 9.4% of the average total area (Table 5), 
meaning that during the last two decades (2000 to 2019) 
pavement area in the regency has almost doubled and is, 
therefore, occupying more land resources. This change has 
probably been caused by the rapid urbanisation and 
population growth of the city of Situbondo. The development 
of industrial and tourism sites along the coast has also 
increased pavement areas. The rapid conversion of 
agricultural land (both irrigated and non-irrigated) to urban or 
pavement areas has occurred in this regency, and this 
phenomenon has significantly appeared in the middle part of 
the map, around the city centre. Irrigated areas (appearing as 
blue areas in the RBI map) have also been converted to urban 
habitation or pavement areas. The result of this conversion 
appears in the Sentinel-2A and Landsat 8 maps as red 
(pavement), yellow (DryMAL) and blue (irrigated) areas.  In 
this case, the statistical data, although obtained from the 
official bureau of statistics, is less valid for describing the 
development of urban pavement areas than the Landsat or 
Sentinel. The percentage (%) of urban pavement area 
obtained from the statistical data is ambiguous because it is 
less than the percentage in RBI The regional development 
initiated by the regency. 
 

 
Table 5. Comparison of the areas from different sources 

LCLU Class RBI-map BPS  Landsat 8 Sentinel-2A 
km² % km² % km² % km² % 

Pavement area 90 5.5 89.8 5.4 154.1 9.3 157.0 9.5 
DryMAL 859 52 347.0 21.0 531.5 32.2 434.5 26.3 
Irrigated paddy 207 12.5 318.4 19.3 319.8 19.4 213.9 13.0 
Non-irrigated land  109 6.6 114.3 6.9 0 0 17.5 1.1 
Forest/plant-ation 363.3 22 763.7 46.3 638.3 38.7 818.0 49.5 
Waterbody 23 1.4 18.1 1.1 7.6 0.5 10.3 0.6 
Total 1651.3 100 1651.3 100 1651.3 100 1651.3 100 

 
  
 
4.2 Evaluation of maps for specific districts 
4.2.1 Arjasa  
Arjasa is an example of a district in which DryMAL 
dominates. It is located in the eastern part of the regency and 

covers an area of 183.7 km2. The change in DryMAL 
occupation is presented as in Table 6 and is visualised in Fig. 
6.  

 
Table 6. LCLU of Arjasa district 

LCLU class RBI-map BPS  Landsat 8 Sentinel-2A 
km2 % km2  % km2  % km2  % 

Pavement area 6.4 3.5 - - 19.8 10.8 13.6 7.4 
DryMAL 117.5 64.0 42.1 43.2 63.1 34.4 40.9 22.3 
Irrigated paddy  22.4 12.2 29.5 30.3 27.7 15.1 22.0 12.0 
Non-irrigated land 8.0 4.3 0.0 0.0 0.0 0.0 0.6 0.3 
Forest-plantation 29 15.8 25.8 26.5 72.7 39.6 106.0 57.7 
Waterbody  0.6 0.3 - - 0.4 0.2 0.7 0.4 
Total 183.7 100 97.5 100 183.7 100 183.7 100 
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 In the RBI map presented in Fig. 6, DryMAL is shown in 
yellow and covers approximately 64% (117.5 km2) of the total 
district area (Table 4) as at the year 2000. In the RBI map, 
landscape features are classified primarily by their utility 
(LU), while the Landsat 8 and Sentinel-2A distinguish 
features based on land cover (LC). The change in the land-
resource occupation can be traced by focusing on two classes 
of land, i.e., DryMAL and forest-plantation. In the RBI map, 
these two classes occupied a land area of 117.5 km2 + 29 km2 

respectively, totalling 146.5 km2 or 79.8% of the total district 
area. This information is used to represent the original land 
resources in the region at the beginning of the 2000 period.  
 

 
Fig. 6. Comparison of the classified maps of Arjasa district 
 
 Development between 2000 to 2019 has changed LCLU 
district, and both Landsat 8 and Sentinel-2A imagery can 
approximately capture these changes. The Landsat 8 map 
(Fig. 6 – middle image) measures the extent of DryMAL and 
forest-plantation as 63.1 km2 + 72.7 km2, respectively, 
totalling 135.8 km2 or 74% of the district. The change is 
captured as an increase in the irrigated area identified below 
the canal, probably as a result of conversion from forest-
plantation, non-irrigated land and pavement areas. In the 
Sentinel-2A map (final image in Fig. 6), the extent of 
DryMAL and forest-plantation is 40.9 km2 + 106 km2 
respectively, totalling 146.9 km2 or 80% of the area of the 
district (~ 79.8% in RBI map).  
 Both Landsat 8 and Sentinel-2A imageries captured 
pavement area of a relatively different extent (Table 3). Also, 
they describe the DryMAL, irrigated paddy and forest-
plantation classes differently. The images captured at 
different points in the dry season.  Sentinel-2A captured at the 
beginning of the season and Landsat 8 at the end. In 

consequence, Landsat 8 captured surface land cover that was 
drier overall than the Sentinel-2A images. The greenness of 
vegetation on the ground created by the recently ended wet-
season captured in the Sentinel-2A images was therefore 
classified more frequently into the forest-plantation class. In 
contrast, the dry conditions at the end of the dry season were 
captured and classified more frequently by Landsat 8 as 
DryMAL, pavement or irrigated areas (Fig. 6).  
 The contour gradient in Arjasa follows a south-to-north 
direction, with altitude at the southern part of the district being 
higher than the northern part. The waterbody located at the 
northern edge is close to the coastline and is dominated by 
land resources used for the industrial culturing of shrimps and 
by traditional fishers. 
 The middle zone of the district, between the yellow and 
light-blue areas, is crossed by an irrigation canal constructed 
before the year 2000. The canal separates the irrigated area to 
the north and the DryMAL area to the south. The yellow zone 
below the canal line has a higher altitude than the canal itself, 
and therefore gravity irrigation cannot operate in this area. 
The canal can irrigate only about 12% to 13% of the district 
area. This division is mapped more precisely by Landsat 8 
because it can separate more distinctly between annual 
vegetation (forest-plantation), waterbodies, pavement, 
irrigated areas and DryMAL. The non-irrigated area, in RBI-
2000, appears as a brown area on the northern part is shown 
having been converted to the pavement and irrigated paddy.  
 DryMAL area decreased significantly between 2000 and 
2019, showing that DryMAL had been converted to other 
types of useful occupation. In the lower-altitude zone (the 
northern area), DryMAL has been converted most frequently 
to built-up areas and irrigated and non-irrigated land. 
Meanwhile, in the higher-altitude zone (the southern area), 
DryMAL is occupied more for plantations (mango and 
coffee) and forested areas. During the last ten years, 
increasing numbers of mango trees have been planted to gain 
benefit from DryMAL areas. Both Landsat 8 and Sentinel-2A 
have difficulties in separating plantation and forested areas 
because the two features appear similarly as annual vegetation 
(permanent tree cover).  
 As the pixel size of Sentinel-2A is finer than Landsat 8, 
some features mapped are more fragmented, matching the 
reality that the landscape of the region is composed of a 
mixture of built-up areas, agricultural fields (both irrigated 
and non-irrigated) and annual vegetation cover. Therefore, the 
finer pixel resolution of Sentinel-2A can capture this 
fragmented landscape more precisely than Landsat 8.  
 
4.2.2 Jatibanteng  
The Jatibanteng district is located in the western part of the 
regency and covers an area of 104.8 km2. LCLU change is 
observed as the increase in land resources used for plantation 
and forest. In contrast, DryMAL area has decreased 
significantly (Table 7).  

 
Table 7. LCLU of Jatibanteng district 

 

LCLU Class RBI BPS  Landsat 8  Sentinel-2A  
km2 % km2  % km2 % km2  % 

Pavement area 3.8 3.7 No data 5.9 5.7 2.4 2.3 
DryMAL  55.9 53.3 34.9 41.7 25.2 24.1 8.7 8.3 
Irrigated paddy  3.3 3.1 6.3 7.5 7.9 7.5 0.9 0.9 
Non-irrigated land 1.4 1.4 0.6 0.7 0.0 0.0 0.0 0.0 
Forest - plantation 38.7 37.0 42.1 50.2 65.8 62.7 92.7 88.5 
Waterbody  1.7 1.6 No data 0.0 0.0 0.0 0.0 
Total 104.8 100   104.8 100 104.8 10 
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 The RBI-2000 map classified LU into five primary 
classes: irrigated paddy, urban pavement, forest-plantation 
and waterbody. The irrigated areas are located in the northern 
part of the district.  Then, DryMAL show in the middle zone 
and forest-plantation in the hilly zone. The waterbody area 
follows the river from the hilly to the flat area in the northern 
part (Fig.7).  

 
Fig. 7. Comparison of the classified maps of Jatibanteng district 
 

 In the Landsat 8, the homogenous zone of forest-
plantation in the hilly area is accurately classified as a more 
homogenous zone.  However, in the central area, the 
DryMAL shown in RBI-2000 is classified by Landsat 8 in a 
way that forms a more fragmented landscape composed of a 
mixture of DryMAL, irrigated, urban pavement and a few 
areas of annual vegetation. This is probably an accurate 
representation of nature but may also show an error generated 
by classification processes, with more DryMAL being 
classified as urban pavement and irrigated paddy. The 
Landsat 8 imagery tends to overestimate pavement and 
irrigated areas because its images were captured in September 
and October, at the end of the dry season, and ground surface 
condition in the dry season may create a similar spectral 
response to pavement areas.  
 In contrast, Sentinel-2A was captured at the end of the wet 
season (in June 2019) when the land cover was still dominated 
by vegetation. Sentinel-2A classified this land cover as being 
in the forest-plantation class. The western part of the regency 
in which Jatibanteng district is located is relatively wetter than 

the eastern part (Arjasa district). Sentinel-2A captured the end 
of the rainy season in which much vegetation had grown, and 
therefore more spectral response came from vegetation and 
was mapped accordingly. The statistical data obtained for this 
research was not satisfactory because it is difficult to obtain 
data about the extent of areas occupied by particular LCLU 
from such data.  
 This report shows that the use of satellite imagery 
provides up-to-date information on LCLU at the district level 
and that this free imagery can map changes in LCLU in 
simple, low-cost, up-to-date and accessible ways. The 
operator can handle the processing and production of 
mapping quickly and with basic knowledge of image-
processing techniques.  
 
 
5. Conclusions 
 
This study demonstrates the use of Landsat 8 and Sentinel-2A 
imagery to map the spatial extent of DryMAL occupation for 

the year 2019. Supervised classification using a maximum 
likelihood algorithm can separate and distinguish primary land 
cover (i.e., DryMAL, pavement, irrigated-paddy, 
forest/plantation and waterbody). The results also show the 
change in LCLU from 2000 to 2019, observed as the increase 
in urban pavement and forest-plantation areas. This LCLU 
change has been compensated by the decrease in DryMAL, 
irrigated paddy areas, non-irrigated areas and water bodies. 
Positively, it can be seen that regional development has 
converted DryMAL resources to more beneficial uses. 
However, the remaining DryMAL is still unusable during the 
prolonged dry seasons. Both Landsat 8 and Sentinel-2A data 
can potentially apply for DryMAL and LCLU mapping of the 
region, and the maps produced from this research are also 
appropriate for updating incomplete statistical records. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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