
 

 

 
Journal of Engineering Science and Technology Review 15 (SI) (2022)  49 - 62 

Special Issue in honor of Prof. T. Tanaka 
 

Review Article 
 

A Brief Review of Thermal Mechanism of Failure in Power Cable Insulation 
 

CC Reddy* 
 

 Senior Member, IEEE, Purnabhishek Muppala, Sathyamoorthy Dhayalan 
 

Received 1 February 2022; Accepted 10 March 2022 
 
 
Abstract 
 
It is being increasingly recognized that the mechanism of failure in power cables is of thermal in nature. Several authors 
since Whitehead and O’Dwyer had worked on this topic, however considering recent advances, this paper presents a brief 
review of mechanisms of breakdown in power cables, both under steady state and transient conditions while mainly 
focusing on the thermal mechanism. This helps both in formation of concrete theory for the phenomenon that is statistical 
in nature and also predict the breakdown in insulation with just its material properties. 
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1. Introduction 
 

HE failure of HVDC cable insulation (especially polymeric 
insulation) can be traced down to electro-thermal instability. 
The electric field distribution inside the insulation matrix is 
dependent on its conductivity, which in turn is a strong non-
linear function of electric field and temperature at that point. 
The temperature rise in the insulation is primarily due to the 
Ohmic losses in the conductor and the leakage current in the 
insulation, the latter which is compoundingly dependent on 
field and temperature. Thermal instability occurs primarily 
due to this non-linearity. 
 Electrical conduction and breakdown in dielectrics has 
been a subject of discussion for a long time. The earliest 
works in this area were of Semenoff, Fröhlich, Von Hippel et 
al [1-4] who had investigated conduction in dielectrics under 
low and high fields by considering the effects of electrodes, 
their material and surface characteristics. Based on these 
studies, the processes leading to purely electrical breakdown 
were proposed by Whitehead, Austen, Pelzer, Inge and 
Walther [5-8]. These works focused on dielectrics with a 
predefined molecular structure.  
 Later on, Whitehead and O’Dwyer [9, 10] realized the 
importance of mechanisms of conduction and its connection 
to thermal effects in breakdown. They have proposed the 
models for computing approximate breakdown fields in 
commercial polymers for planar and cylindrical geometries 
under fixed and ambient boundary temperatures. 
 Since then, several experimental observations indicated 
the exponential dependence of conductivity on electric field 
and temperature, yet obtaining a closed form function for 
conductivity that is applicable to all dielectrics, at all fields 
and temperatures was found to be difficult and often 
untenable. Several models were proposed by different authors 
[11-15], however they were limited to certain class of 
dielectrics, and field and temperature ranges. 
 For a long time thereafter, the research was only confined 

to material experiments and it wasn’t until early 1970’s with 
the advent of high voltage power cable transmission that the 
interest on this topic was revived. Experiments had shown a 
reduction in DC breakdown strength of polyethylene and oil 
impregnated cables with increase in ambient and conductor 
temperature difference [16]. 
 The works of Whitehead, O’Dwyer [9, 10] and Fallou [17] 
have neglected the electric stress dependence of conductivity, 
perhaps for the sake of simplicity. The temperature 
dependence they used were also different from Boltzmann 
dependence. Later on, Eoll [18, 19] and Jeroense [20] realized 
the significance of electric field dependence and have 
proposed analytical expressions for electric stress with 
reasonable accuracy, with certain approximations in the 
conductivity equation. However, a proper closed form 
mathematical model for electric stress distribution, 
temperature and breakdown fields that is valid for all 
conditions was first proposed by the author [21]. A 
connection between breakdown and thermal instability was 
established, and the mechanism of thermal failure was 
codified. 
 The thermal instability in dielectrics involves two 
components, intrinsic (internal) and interactive instability. 
The interactive instability is dependent on external thermal 
resistance, whereas intrinsic instability is solely due to the 
nonlinear conductivity of the material.  
 The concept of intrinsic instability (specific to DC cables) 
was first postulated by Eoll [18, 19]. While Fallou [17] and 
Jeroense [20] have also worked on certain aspects of thermal 
breakdown, the concept of intrinsic thermal breakdown was 
not recognized by them, either due to inadequate 
incorporation of leakage current losses or due to electric field 
dependence on conductivity being ignored. It was the author 
who dealt with this elaborately in his subsequent work [22] 
and developed the concept of intrinsic thermal maximum 
voltage (IMTV). Based on this, the maximum power handling 
capacity of a HVDC cable was formulated for the first time 
[23]. 
 From these results, several models, both mathematical and 
numerical, for electric field, space charge, temperature 
distribution and breakdown in sundry dielectrics and 
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dielectric configurations [24-27] including composite 
dielectrics such as cable joints [28] came into picture. 
 Existing literature is scarcer when it comes to the transient 
thermal behavior of HVDC cables. While some finite element 
models (FEM) are reported [29-32] they are however wrought 
with limitations such as neglecting leakage current losses in 
insulation or not considering nonlinear conductivity or not 
considering electric field dependence etc., that are shown to 
cause convergence difficulties in their models near 
breakdown. The same is the case with circuit models [33-35], 
where thermal capacitances are not considered, or leakage 
current losses were lumped or neglected altogether. It wasn’t 
until the author [36], a circuit model that can simulate 
complete thermal and electrical behavior of the cable under 
transient conditions, including thermal runaway, was 
proposed. 
 This review paper will briefly introduce conductivity 
models before beginning from Whitehead and O’Dwyer’s 
thermal breakdown models in plane parallel geometry (steady 
state) and then expounds on thermal breakdown in DC cables 
(steady state). The circuit model for dc cable which simulates 
complete transient behavior of DC cable is also explored. 
 
 
2. Models for Electrical Conductivity 
 
As mentioned in the previous section, a theoretical model for 
the conductivity that is applicable to all kinds of solid 
dielectrics for all fields and temperature ranges is not yet 
available. There are only semi-empirical models that are 
applicable for limited dielectrics and field and temperature 
ranges. 
 The first model was proposed by Austen and Whitehead 
[5, 6, 9] which is of the following form. 
 
𝜎 = 𝐴𝑒

!"
# %!

$% &'#⁄ "!!$% &'#⁄

#$%"!!$% &'#⁄ &
&                     (1) 

 
 This above equation can be compacted to Blythe’s form 
[12] 

𝜎 = 𝐴𝑒
"'
( '

𝑠𝑖𝑛ℎ , 𝑎𝐸2𝑘𝑇2
(1 − 𝑒")* #+(⁄ )7																																																		(2) 

 
 The disadvantage of this model is that, the stress related 
enhancement in the conductivity is only marginal. 
 Later, two different models were proposed for polymeric 
materials, one by Boggs [13, 14] and another by Klein [15]. 
The Boggs’ equation is shown below. 
 

𝜎 = 𝐴′𝑒
"'
( :

𝑠𝑖𝑛ℎ(𝐵|𝐸|)
|𝐸| =																																																								(3) 

 
 Klein’s equation is shown below. 
 

𝜎 = 𝐴𝑒
"'
( 𝑒)|*|																																																																													(4) 

 
 Boggs’ equation is slightly more accurate; however, it 
often runs into convergence problems when used in numerical 
models and the fact remains that A’ does not represent 
conductivity. Hence Klein’s equation is more commonly 
used. 
 
 

3. Maximum Thermal Voltage of a Dielectric Thick 
Slab – Steady State 
 
The geometry of a general dielectric thick slab is shown in the 
Fig. 1. In a plane-parallel geometry whose boundary planes are 
perfectly conducting, the heat source is only due to the leakage 
current flowing through the insulation. In other words, the heat is 
uniformly distributed along x-y plane. The voltages are also 
uniformly distributed along x-y plane. Hence this simplifies to 
one-dimensional problem. 
 The backbone of any field problem is continuity equation. 
Under steady state, the net charge accumulation in an 
infinitesimal volume is zero, which yields the current continuity 
equation. 
 
𝛻. 𝑱	 = 	0 ⇒ 𝑱	 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡																																																						(5) 
 

 
Fig. 1. Infinite dielectric thick slab 
 
 
In one dimension, it reduces to, 
 

𝐽	 = 𝜎	
𝑑𝛷
𝑑𝑧 																																																																																				(6) 

 
 Similarly, there is no net heat accumulation inside the 
material under steady state, which gives thermal continuity 
equation. 
 
(𝐻𝑒𝑎𝑡	𝑓𝑙𝑜𝑤) +	(𝐻𝑒𝑎𝑡	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑏𝑦	𝑠𝑜𝑢𝑟𝑐𝑒) = 	0							(7) 
 
−𝛻. 𝒒	 +	(	𝑱. 𝑬	) 	= 	0 ⇒ 𝑘.𝛻#𝑇	 +	(	𝑱. 𝑬	) = 0																	(8) 
 
 In one dimension, it reduces to, 
 

𝑘.
𝜕#𝑇
𝜕𝑧# + 𝐽

𝑑𝛷
𝑑𝑧 = 0																																																																						(9) 

 
 Here 𝐽 is the current density, 𝑄	heat flow and 𝛷 potential 
distribution. Equations (6) and (9) are solved simultaneously 
with their corresponding boundary conditions to obtain field (𝐸) 
and temperature (𝑇) distributions.  
 
 Now the thick slab dielectric can have three different 
types of boundary conditions. 
• Constant temperature (Dirichlet) boundaries 
• Thermally sealed (one-end) boundary. 
• External heat injection. 
 
 The first two conditions are already discussed in [9, 10] 

∞

∞
∞

∞

x
y

z

0

z1

V

∞

∞
∞

∞

x
y

z

0

z1

V



CC Reddy/Journal of Engineering Science and Technology Review 15 (SI) (2022) 49 - 62 

 51 

by Whitehead and O’Dwyer, and will be briefly touched 
upon. The third condition however is more practically 
relevant, since heat is injected into dielectric due to ohmic 
losses from current carrying conductors.  
 
A. Constant temperature boundaries (Whitehead and 
O’Dwyer) 
As shown in the Fig. 2, in constant boundary temperature 
conditions, heat flows in both directions, normal to the 
notional mid-plane. Hence it is reasonable to assume that the 
hotspot occurs at midpoint. 
The potential at the mid plane is 𝑉/2. This leads to a boundary 
condition. 

𝑘.
𝑑𝑇(𝑧)
𝑑𝑧 |/01) = 𝑘.

𝑑𝑇(𝑧)
𝑑𝑧 |/0/*! =

1
2𝑉𝐽																														(10) 

 

 
Fig. 2. Heat flow pattern when both boundaries are exposed. 

 
 

 Solving equations (6), (9) and (10) and integrating until 
critical temperature(𝑇2) yields maximum thermal 
voltage(𝑉3%). 
 

𝑉3%# = a
8𝑘.
𝜎 𝑑𝑇

(+

($
																																																																				(11) 

 
B. Thermally sealed boundary (Whitehead and O’Dwyer) 
As shown in the Fig. 3, if one end of dielectric is thermally 
sealed, the heat flow is restricted to single direction. The 
hotspot will be at sealed boundary. 
 
 Hence the boundary conditions change to: 

𝑘.
𝑑𝑇(𝑧)
𝑑𝑧 |/01) = 𝑉𝐽																																																																	(12) 

 
 And  
 

𝑘.
𝑑𝑇(𝑧)
𝑑𝑧 |/0/*! = 0																																																																				(13) 

 
 Again solving equations (6), (9), (12) and (13), and 
integrating until critical temperature(𝑇2) in the similar 
manner, yields maximum thermal voltage(𝑉3#). 
 

𝑉3## = a
2𝑘.
𝜎 𝑑𝑇																																																																					(14)

(+

($
 

 
 We can immediately observe that the maximum thermal 
voltage is exactly halved when compared to previous case, 
provided all other parameters remain the same. 
 

 
Fig. 3. Heat flow pattern when one boundary is sealed. 
 
 
C. External Heat Injection (Author’s Emendation) 
Practical cables rarely follow Dirichlet temperatures. Heat is 
always injected externally into the insulation due to ohmic 
losses of the conductor. Such case is diametrically different 
from previous two. 

 
Fig. 4. Heat flow pattern with external heat injection. 
 
 
 The temperature is maximum at the point of injection. If 
𝑄 is the heat injected per unit surface area, then the boundary 
conditions would be: 
 

𝑘.
𝑑𝑇(𝑧)
𝑑𝑧 |/0/*! = 𝑄																																																																			(15) 
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𝑘.
𝑑𝑇(𝑧)
𝑑𝑧 |/01) = 𝑄 + 𝑉𝐽																																																									(16) 

 
 Proceeding as in previous sections, and integrating until 
critical temperature	(𝑇2) yields maximum thermal 
voltage	(𝑉34), which is more generalized expression, that 
also includes boundary heat injection. This will be discussed 
in further detail in subsequent sections. 
 

𝑉34# = a
2𝑘.
𝜎 𝑑𝑇 − 2𝑄a

1
𝜎

/*

1
	𝑑𝑧																																								(17)

(+

($
 

 
 
4. Electric Field and Maximum Thermal Voltage of a 
DC Cable – Steady State 
 
A power cable conforms to the cylindrical geometry as shown 
in Fig. 5. Unlike thick slab case, the conductor is always at 
the higher potential than sheath, unless otherwise mentioned. 
Hence, the heat flow pattern is always from conductor to 
sheath 
 
 

  
Fig. 5. 3D view and cross section of cable. 
 
 
 If 𝐼5 is the load current, 𝐼 is the leakage current per unit 
length and 𝑅2 is the conductor resistance per unit length, then 
the thermal boundary conditions are obtained by invoking 
Fourier laws at boundaries. 
 

2𝜋𝑟%𝑘.
𝑑𝑇(𝑟)
𝑑𝑟 |606*) = −𝐼5#𝑅7 																																																	(18) 

 
 And 
 

2𝜋𝑟#𝑘.
𝑑𝑇(𝑟)
𝑑𝑟 |606&! = −𝐼5#𝑅7 − 𝑉𝐼																																					(19) 

 
 And of course, the Dirichlet boundary condition at the 
soil. 
 
𝑇(𝑟4) = 𝑇)																																																																																	(20) 
 
 The thermal continuity equation for cable is obtained in 
cylindrical coordinates as 
 
1
𝑟
𝑑
𝑑𝑟 %𝑟𝑘.

𝑑𝑇(𝑟)
𝑑𝑟 & + 𝜎 :

𝑑𝛷(𝑟)
𝑑𝑟 =

#

= 0																																	(21) 

 
 And similarly, the current continuity equation becomes 
 

𝐼 = 2𝜋𝑟𝜎
𝑑𝛷(𝑟)
𝑑𝑟 																																																																						(22) 

 

 Solving as in previous sections until critical 
temperature(𝑇2) yields maximum thermal voltage(𝑉32) 
 

𝑉32# = a
2𝑘.
𝜎 𝑑𝑇 −

𝐼5#𝑅7
𝜋 a

1
𝑟𝜎

6&

6*
	𝑑𝑟																																			(23)

(+

($
 

 

⇒ 𝑉32# = 𝑉3## −
𝐼5#𝑅7
𝜋 a

1
𝑟𝜎

6&

6*
	𝑑𝑟																																											(24) 

 
 We can observe the similarity between the expressions of 
maximum thermal voltage for thick slab with external heat 
and cable with load current. For a given voltage, instability or 
failure would occur when load current is increased beyond 
certain limits. Hence thermal instability in DC cables is 
decided by both voltages and load currents.  
 If 𝑅. is the bulk resistance per unit length of the cable, then 
equation (24) can be compacted to  
 
𝑉32# = 𝑉3## − 2𝐼5#𝑅7𝑅.2																																																												(25) 
 
 Here 𝑅.2 is the bulk resistance when temperature reaches 
its critical value 
 

𝑅.2 = a
𝑑𝑟
2𝜋𝑟𝜎

6&

6*
																																																																								(26) 

 
Equation (25) can be rewritten as 
 

𝑉32 ≈ 𝑉3# :1 −
𝐼5#𝑅7𝑅.2
𝑉3##

=																																																					(27) 

 
Or, the estimated reduction in maximum thermal voltage due 
to load effect is given by: 
 

𝛥𝑉32 =
𝐼5#𝑅7𝑅.2
𝑉3##

																																																																							(28) 

 
 The computation of maximum thermal voltage becomes 
complex when we consider the non-linearity of conductivity. 
Eoll [18] has approximated the stress dependent portion of 
conductivity equation to obtain the expression of electric field 
distribution for an oil impregnated paper cable, both with and 
without insulation power losses. 
 
A. Eoll’s method: 
Eoll has considered a slightly different model of resistivity 
from Klein as shown below. 
  
𝜌 = 𝜌1𝑒")(𝑒"+* 																																																																							(29) 
 
 Where, a and k are empirically determined constants. Also 
assume that 
 

𝑒"+*(6) ≈ :
𝐸(𝑟)
𝐸1

=
"2

																																																																(30) 

 
 Where 𝐸1is defined by  
 

𝐸1 =
𝛷

𝑒(𝑟# − 𝑟%)
																																																																								(31) 

 
 Here c is chosen so that the approximation is as accurate 
as possible when 𝐸1 takes such a value. One estimate for c is 
given by 
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𝑐 =
𝑘𝛷

𝑟# − 𝑟%
																																																																																(31) 

 
 Without considering power losses in insulation, the 
electric stress is given by 
 

𝐸(𝑟) = h
𝐼𝜌1
2𝜋𝑟#

𝑒")((6&)i %
𝑟
𝑟#
&
'"%

𝑒"+*(6)																														(33) 

 
 And the breakdown voltage is simply obtained by 
 

𝑉32 = a 𝐸(𝑟)𝑑𝑟
6&

6*
																																																																				(34) 

 
 Where 
 

𝑏 =
𝑎𝑊2

2𝜋𝑘.
																																																																																			(35) 

 
 And 𝑊2 are conductor losses per unit length. Eoll’s results 
will be discussed in more detail in subsequent sections. 
 
B. Author’s method: 
Unlike Eoll’s method, the author uses mean value theorem to 
obtain the closed form expression for maximum thermal 
voltage with non-linear conductivity. 
 Let the conductivity be defined as product of arbitrary 
functions of field and temperature. 
 
𝜎 = 𝜎1𝑓(𝑇)𝑔(𝐸)																																																																						(36) 
 
 Now from equation (14) and (36) we have, 
 

𝑉3## = a
2𝑘.

𝜎1𝑓(𝑇)𝑔(𝐸)
𝑑𝑇																																																				(37)

(+

($
 

 
 If 𝑑 is the insulation thickness and 𝐸1 =

:,&
;

, then from 
mean value theorem, we obtain: 
 

𝑉3## =
1

𝑔(𝜂𝐸1)
a

2𝑘.
𝜎1𝑓(𝑇)

𝑑𝑇																																															(38)
(+

($
 

 
 where 𝜂𝐸1 = 𝐸(𝑟3) for some known values of 𝜂 and 𝑟3 
in	𝑟% ≤ 𝑟3 ≤ 𝑟# 
 

𝑉3## 	𝑔(𝜂
𝑉3#
𝑑 ) =

2𝑘.
𝜎1

a
1

𝑓(𝑇)𝑑𝑇																																									(39)
(+

($
 

 
η can be any random number depending on the linearity of 
field distribution, 0 < 𝜂 < 2. 𝜂 = 1 is often the most 
reasonable choice. 
 Using similar approach, the critical insulation resistance 
is found out to be: 
 

𝑅.2 =
1

2𝜋𝜎1𝑔(𝜂
𝑉3#
𝑑 )

a
𝑑𝑟

𝑟𝑓(𝑇)

6&

6*
																																											(40) 

 
 Now, a logarithmic temperature distribution is essential 
for this approach. 
 

𝑇(𝑟) = 𝑇) + (𝑇2 − 𝑇))
𝑙𝑛 ,𝑟𝑟#

2

𝑙𝑛 ,𝑟%𝑟#
2
																																													(41) 

Substituting equation (41) in (40) will yield closed form 
solution for critical insulation resistance. Since the 
conductivity has positive temperature coefficients, it accounts 
for positive feedback of thermal runaway.  
 
C. Temperature distribution of DC cable 
Rewriting equation (22) in terms of leakage current and 
separating 𝐸(𝑟) and 𝑇(𝑟), we get: 
 

lnp𝐸(𝑟)q + 𝑎𝐸(𝑟) = 𝑙𝑛 %
𝐼

2𝜋𝑟𝐴& +
𝑏

𝑇(𝑟)																											(42) 

 
 Now, expanding the above equation into Taylor’s series 
onto some known values 𝐸1 and 𝑇1 for up to two terms, and 
simplifying, we get: 
 
𝐸(𝑟) = 𝑏% + 𝑏# ln(𝑟) + 𝑏4𝑇(𝑟)																																												(43) 
 
 Where 
 

𝑏% = −𝑏# %𝑙𝑛 %
𝐼

2𝜋𝐴𝐸1
& + 1 +

2𝑏
𝑇1
&																																						(44) 

 

𝑏# =
−𝐸1

𝑎𝐸1 + 1
																																																																												(45) 

 

𝑏4 = 𝑏#
𝑏
𝑇1#
																																																																																	(46) 

 
 Thus the heat continuity equation (21) can be modified 
and rearranged by substituting equation (43) 
 
𝑑#𝑇(𝑟)
𝑑𝑟# +

1
𝑟
𝑑𝑇(𝑟)
𝑑𝑟 −

𝛽
𝑟 𝑇

(𝑟) =
1
𝑟
(𝛾 ln(𝑟) − 𝛼)																(47) 

 
 Where 𝛼 = 𝑘%𝑏%,	𝛽 = −𝑘%𝑏4, 𝛾 = −𝑘%𝑏# and 𝑘% =

<
#=+-

 
 This is an inhomogeneous modified Bessel’s equation 
whose solution is given by 
 
𝑇(𝑟) = 𝑎%𝐼1p2u𝛽𝑟q + 𝑎#𝐾1p2u𝛽𝑟q +

𝛼
𝛽 −

𝛾
𝛽 ln

(𝑟)							(48) 

 
 Where 𝑎% and 𝑎# are arbitrary constants determined by 
boundary conditions, and 𝐼1 and	𝐾1 are the modified Bessel 
functions of zero order.  
 
D. Electric field distribution of a DC cable 
Computing electric field distribution is just straightforward 
back substitution of 𝑇(𝑟) in equation (42), which yields: 
 

𝐸(𝑟) =
−𝑐#
2𝑐%

±x
𝑐##

4𝑐%#
−
1
𝑐%
%ln %

𝐼
2𝜋𝑟𝐴𝐸1

& +
𝑏

𝑇(𝑟) +
3
2&		(49) 

 
 where 𝑐% =

%
#*.&

 and 𝑐# =
"#")*.

*.
 .  

 
E. Mapping electric field and temperature distributions  
The details of the cable used by the author are listed below: 
 
• = 22.5 mm, = 44.2 mm,   = 1m; 1r 2r 3r
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• = 17.38 x 10-6 Ω / m; 

• = 0.34 W/mK, = 1 W/mK; 

• = 2.2896 x 10-6 (Ω. m)-1; 
• = 0.142 x 10-6 (V/m)-1, =7600 (0K);  
• = 0.6549 e v. 

• = 1.9112 x 10-7 (V/m)-1; 

• = 3.41118862 x 102 V / (Ω m2); 
 
 Using equations (37), (48) and (49), the electric field and 
temperature distributions are obtained at different voltages 
and load currents. First, they are computed at 600 kV for 
different load currents are plotted in Fig. 6. 

 
Fig. 6. Temperature and Electric Stress distributions at different load 
currents. 

 
 

 We can see that 𝐸(𝑟) is a strong function of load current 
unlike AC case and clearly observe the field inversion effects. 
Now, the field and temperature distributions are plotted with 
increasing voltages until critical limits in Fig. 7. 
 The stress distribution is more or less linear until the 
critical point, where it begins to fold into two solutions. The 
upper fold corresponds to higher leakage current regime and 
is unstable. The lower fold yields stable solution, however the 
temperature beings to increase dramatically after the critical 
point. This criticality is termed as maximum thermal voltage. 
This phenomenon is better illustrated in Fig. 8, where peak 
temperature and field is plotted with increasing voltages, load 
currents and sheath temperatures. 

 
(a) 

 
(b) 

Fig. 7. (a) Temperature and (b) Electric Stress distributions with applied 
voltage until critical limits. 
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Fig. 8. Peak stress and temperature with increasing voltages at different 
load currents and sheath temperatures. 

 
 

F. Intrinsic thermal instability of DC cables 
External thermal resistance also plays an important role in 
deciding the thermal instability of the insulation. Even when 
the ambient environment (soil) is assumed to be of zero 
thermal resistance, the unstable conditions still persist, save 
for the difference in their magnitudes. This type of thermal 
instability in cables was first addressed by Eoll [21, 22]. 
 

 
Fig. 9. Heat flow patterns in DC cable. 

 
 Referring to Fig. 9, the thermal boundary conditions are 
quite similar to that of section IV. 
 

2𝜋𝑟%𝑘.
𝑑𝑇(𝑟)
𝑑𝑟 |606*) = −𝐼5#𝑅7 																																																	(50) 

 
 However, since the external thermal resistance is zero, 
temperature at 𝑟 = 𝑟# is ambient temperature. 
 
𝑇(𝑟#) = 𝑇)																																																																																	(51) 
 
 Now the dc conductivity at any position 𝑟 can be 
estimated using already established field and temperature 
distributions (equations (48) and (49)). The steady state 
voltage across the insulation can now be written in terms of 
leakage current and bulk resistance as 
 
𝑉 = 𝑅.𝐼																																																																																							(52) 
 
 Now, from Fig. 10, we can observe that the bulk insulation 
resistance monotonically decreases with leakage current, until 
a certain point, after which, the decrement of bulk resistance 
is much more rapid than increment of leakage current. 
 
 At the point of maxima, the product of bulk resistance and 
leakage current is maximum, which corresponds to intrinsic 
maximum thermal voltage (IMTV). Application of voltages 
higher than this result in imminent thermal instability. 
 Intrinsic instability is a direct consequence of stress and 
temperature dependence of conductivity, in other words, for a 
given sheath temperature, IMTV is purely material 
dependent.  
 

 
Fig. 10. Dependence of bulk insulation resistance on leakage current. 
 
 
 It is the ultimate upper limit of a cable. Interactive thermal 
instability on the other hand occurs due to the failure of 
thermal equilibrium with surroundings (non-zero external 
thermal resistance), in addition to the nonlinear conductivity, 
hence Interactive maximum thermal voltage is lower. 
 
G. Dependence of thermal breakdown strength on insulation 
thickness 
It is generally believed that the breakdown strength of 
insulation has only marginal dependence on insulation 
thickness [9]. However, it is only true for plane-parallel 
geometry case where conductivity is only a function of 
temperature. In dc cables (cylindrical geometry) where 
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conductivity has radial dependence with electric field and 
temperature, breakdown strength does depend on insulation 
thickness. This is further enhanced due to field inversion 
occurring in dc cables. 
 The conductor radius (𝑟%) and sheath temperature 𝑇(𝑟#) 
are kept constant at 22.5 mm and 250C respectively, while the 
outer radius (𝑟#) is varied corresponding to different 
insulation thicknesses. 
 

 
Fig. 11. Maximum insulation temperature with increasing thickness. 
 
 
 Fig. 11 shows the variation of maximum insulation 
temperature with voltage at different thicknesses. With 
increasing thickness, the maximum insulation temperature 
curves seem to have shifted up. This is due to the fact that 
thermal resistance of insulation increases with thickness. 
 The maximum insulation stress curves are plotted with 
voltage at different thicknesses in Fig. 12, and the critical 
maximum and average stresses (or breakdown stress) are 
plotted with thickness in Fig. 13. We can observe how both 
the maximum and average breakdown stress decrease with 
insulation thickness, despite the increase in ITMV. 

 
Fig. 12. Maximum insulation stress with increasing thickness. 

 
H. Comparison of Author’s and Eoll’s methods: 
The variation of MTV with load current at increasing sheath 
temperatures and MTV with sheath temperature at constant 
load current is plotted in Fig. 14. 
 The authors results are found to be in close conformity 
with Eoll’s results on oil impregnated paper cables. Eoll has 
worked on two types of cables shown in table I, with a slightly 
different conductivity model (equation (29)). 

 Eoll’s and authors results for cable 1 data is shown in Fig. 
15. Eoll has assumed an intrinsic breakdown strength of 1.2 x 
108 𝑉/𝑚, which is the reason for steep deviation in Eoll’s 
results at lesser sheath temperatures. The Authors results 
more or less match with Eoll’s barring that constraint. 
 The authors results were also compared with Eoll’s results 
for cable 2 data, which are again observed to be in close 
conformity with each other. 

 

 
Fig. 13. Maximum and average stresses with increasing thickness. 
 
 

 
Fig. 14. Variation of MTV with load current and sheath temperatures. 
 
 

400 600 800 1000  1200 1400 1600 1800 2000  2200 2400
300

320

340

360

380

400

420

440

460

480

Voltage  (kV)      ®

M
ax

im
um

 I
ns

ul
at

io
n 

T
em

pe
ra

tu
re

 (
K

) 
   

  ®

16.7 mm

36.7 mm

19.7 mm

31.7 mm

26.7 mm

22.7 mm

41.7 mmO - MITB

IL = 1400 A

400 600 800 1000  1200 1400 1600 1800 2000 2200 2400
20

30

40

50

60

70

80

90

Voltage (kV)     ®

M
ax

im
um

 I
ns

ul
at

io
n 

St
re

ss
 (

kV
/m

m
) 

   
  ®

o - Stress at Breakdown

16.7mm

19.7 mm

22.7 mm

26.7 mm

31.7 mm

36.7 mm

41.7 mm

IL = 1400 A

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
60

65

70

75

80

85

90

95

100

105

Maximum Field at Breakdown

Average Breakdown Strength

r2 (m) ®

C
rit

ic
al

 E
le

ct
ric

 F
ie

ld
 (k

V
/m

m
) ®

Maximum Field at Breakdown

Average Breakdown Strength

Maximum Field at Breakdown

Average Breakdown Strength

0 500 1000 1500 2000 2500 3000
0.2

0.5

1.0

2.0

Load Current  (A)   ®

T
he

rm
al

 B
re

ak
do

w
n 

V
ol

ta
ge

  (
M

V
)  ®

Increasing Sheath
   Temperatures

Ta = 25 o C

Ta = 35 o C

Ta = 45 o C

Ta = 55 o C

25 30 35 40 45 50 55
0.8 

0.9 

1.0   

1.1 

1.2 

Sheath Temperature  ( o C )     ®

Th
er

m
al

 B
re

ak
do

w
n 

V
ol

ta
ge

 (M
V

)  
 ®      At Constant

Load Current (1000A)



CC Reddy/Journal of Engineering Science and Technology Review 15 (SI) (2022) 49 - 62 

 57 

 
Fig. 15. Comparison of Eoll’s and Author’s results for cable 1. 
 
 
5. V. Transient Behavior of a DC Cable  
 
Obtaining a closed form analytical solution of electric field 
and temperature for a DC cable in transient conditions is 
wrought with utmost mathematical complexity. Even a 
numerical solution is challenging enough. Hence all the 
FEM/circuit models hitherto [29-35] were approximations, be 
it neglecting leakage current losses, or not considering non-
linear conductivity, or lumping thermal capacitances and so 
on and so forth. In this section, a proper distributed circuit 
model for both thermal and electrical phenomena of a DC 
cable considering non-linear conductivity and thermal-
electrical interdependence is discussed. 
 
A. Electro-thermal circuit model of a DC cable 
Since thermal quantities such as heat flow, temperature and 
thermal conductivity are analogous to their respective 
electrical quantities such as current flow, voltage and 
electrical conductivity, the thermal behavior of cable can be 
modelled with their equivalent distributed electrical 
parameters. Fig. shows the DC cable with all its layers and 
Fig. 16, shows how they can be modelled by dividing into 
several concentric cylindrical strips/elements. 
 All the quantities are in the form 𝑀>

?, where 
 
𝑀 – small letter denotes thermal quantity, block letter denoted 
electrical quantity 
𝛾 – denotes the node/section number 
𝛿 – denotes the type of layer ('𝑐'- conductor, '𝑐𝑠'- conductor 
screen, '𝑖' - insulation, '𝑖𝑠'- insulation screen, '𝑤𝑟'- water 
resistant layer, '𝑠ℎ'- sheath, '𝑜𝑠'- outer serving and '𝑠𝑢'- 
surrounding medium) 
 
 The thermal resistance per unit length between nodes 𝛾 
and 𝛾 + 1 is given by 
 

𝑟>? =
𝑙𝑜𝑔 %

𝑑>@%
𝑑>

&

2𝜋𝑘>?
																																																																						(53) 

 
 The variation of the thermal conductivityp𝑘>?q with 
temperaturep𝑣>?q is taken into account by 
 
𝑘>? =	𝑘? + 𝛼? 	p𝑣>? − 293q																																																				(54) 
 
 The thermal capacitance per unit length is given by 

 
𝑐>? = 𝜋 }p𝑑>@%q

# −	p𝑑>q
#~ 𝜌?𝑠? 																																										(55) 

 
 The heat source in conductor and insulation are 
represented as current sources in thermal circuit, which are in 
turn just 𝐼#𝑅 losses in electric circuit. 
 
𝑖>2 = p𝐼>2q

#𝑅>2 																																																																														(56) 
 
𝑖>. =	p𝐼>.q

#𝑅>. 																																																																													(57) 
 
 These ultimately comprise the thermal circuit of a DC 
cable as shown in Fig. 18. The electrical circuit on the other 
hand is straightforward. The resistance per unit length of 
conductor is modeled around the standard resistivity	⍴1 at 
standard temperatures (293 K). 
 

𝑅>2 =	
⍴1 :1 + ⍺%

𝑣> + 𝑣>@%
2 − 293&=

𝜋 ,p𝑑>@%q
# −	p𝑑>q

#2
																																(58) 

 
 The resistance per unit length of insulation can be written 
as: 
 

𝑅>. =
log%

𝑑>@%
𝑑>

&

2𝜋𝜎 																																																																						(59) 
 
 Now substituting equation () we get 
 

𝑅>. =
log%

𝑑>@%
𝑑>

& 𝑒
A 'B/

	"	)D*/DE

2𝜋𝐴 																																																	(60) 
 
 The electric field in the strip can be estimated as 
 

𝐸> ≈
𝑉> − 𝑉>@%

p𝑑>@% −	𝑑>q
																																																																		(61) 

 
 The electrical capacitance of insulation is modeled with 
constant permittivity 
 

𝐶>. =
2𝜋𝜀1𝜀6

log %
𝑑>@%
𝑑>

&
																																																																							(62) 

 
 The electrical circuit of conductor and insulation is 
ultimately shown in the Fig. 17. 
 
B. Cables used in the simulation 
A 400	𝑀𝑊, bipolar, ±200	𝑘𝑉, 500	𝑚𝑚#, HVDC cable is 
used for simulation. Its physical parameters are listed in table 
III. 
 
C. Electric field and Temperature under step voltage 
The electric field and temperature distribution for cable is 
shown in Figs. 19 and 20, respectively when the cable is 
switched on at full load. 
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Fig. 16. (a) Sectional view of buried HVDC cable (C1) used in simulation 
(1-conductor (Cu-12.6 mm), 2-conductor screen (2 mm), 3-insulation 
(XLPE-12 mm), 4-insulation screen (1.5 mm), 5-water resistant layer 
(5.7mm), 6-aluminium sheath (2.3 mm) 7- PE outer serving (5 mm) and 
8-soil (1 m). (b) Depiction of concentric cylinders of insulation with 
increasing radii from 𝑑0 to 𝑑120 and respective node 1 to node n+1. 
 
 

 

 
Fig. 17. Electrical circuit of (a) Conductor, (b) Insulation. 

 
 

 
Fig. 18. Thermal circuit of a cable with all layers and surrounding medium. 
 
 
Table Ι. Parameters of experimental cables [12] 

Parameter Cable 1 Cable 2 

𝑟%(m) 0.0134 0.004 
𝑟#(m) 0.0231 0.010 
𝜎1(S/m) 0.5 X 10-15 0.5 X 10-15 
𝑎	(oC)-1 0.088 0.1 
𝑊7 	(W/m) 17.9 0 
𝐼5	(A) 776 0 

𝑘	(W m-1 (oC)-1) 0.167 0.167 
 
 
Table II. Comparison of Eoll’s and Author’s results for Cable 2. 

Sheath 
Temperature 

(0C) 

Breakdown 
Voltage (kV) 

Eoll’s [12] 
(experimental) 

Author’s 
(computed)  

63 430 420.232 
73 320 349.853 
83 250 284.609 
100 140 187.940 
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Table III. Physical parameters of power cable. 

Quantity Value Quantity Value 

𝑘2  413	(𝑊 (𝑚.𝐾)⁄ ) 𝑘FG.H 2.1	(𝑊 (𝑚.𝐾)⁄ ) 

𝛼2  -0.06	(𝑊 (𝑚.𝐾#)⁄ ) 𝑠FG.H 700	(𝐽 (𝑘𝑔. 𝐾)⁄ ) 

⍴2 8960	(𝑘𝑔 𝑚4⁄ ) 𝜌1 2.65	x	10"I	(𝛺.𝑚) 

𝑠2 390	(𝐽 (𝑘𝑔. 𝐾)⁄ ) 𝛼 	0.0039	(𝐾"%) 

𝑘. 0.33	(𝑊 (𝑚.𝐾)⁄ ) 𝑘G.H 0.11	(𝑊 (𝑚.𝐾)⁄ ) 

𝛼. -1.53	x	10"J %
𝑊

𝑚.𝐾#& 𝑠G.H 1860		(𝐽 (𝑘𝑔. 𝐾)⁄ ) 

⍴. 920	(𝑘𝑔 𝑚4⁄ ) ⍴G.H 877	(𝑘𝑔 𝑚4⁄ ) 

𝑠. 2200	(𝐽 (𝑘𝑔. 𝐾)⁄ ) 𝐴 2 × 10"%%	pS m� q 
𝜀1 8.854x	10"%#	pF 𝑚� q 𝑎 7 × 10"1I	pm V� q 

𝜀6 2.25	 𝑏 3.7 × 104	𝐾 

⍴FG.H 2270	(𝑘𝑔 𝑚4⁄ ) 𝑙 1	(𝑚) 

 

 
Fig. 19. Temperature distribution across cable insulation at full load for 
different time instants after switch on. 

 
Fig. 20. Electric Field distribution across cable insulation at full load for 
different time instants after switch on. 
 
 It is immediately obvious that temperature takes much 
more time to stabilize than electric field. This happens 
because rT (which determines the electric field) stabilizes 
faster than T which can be seen in Figs. 21 and 22 respectively 

 
Fig. 21. Boundary temperature stabilization after switch on. 

 

 
Fig. 22. rT stabilization after switch on. 
 
 
 The steady state temperature and field for different load 
currents is shown in Figs. 23 and 24 respectively. Stress 
inversion phenomena can be observed as reported in previous 
literature [20], though the peak field at full load is not as high 
as peak field at no load.  

 
Fig. 23. Steady state temperature distributions at different load currents. 
 

 
Fig. 24. Steady state field distributions at different load currents. 
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D. Electric field and Temperature under load cycle 
A typical load cycle of heating for 240 hours (load) followed 
by natural cooling (no-load) for 240 hours is considered. The 
corresponding field and temperature distributions are shown 
in Figs. 25 and 26 respectively. 

 
Fig. 25. Electric field distribution at load cycle. 
 
 

 
Fig. 26. Temperature distribution at load cycle. 
 
 
 The electric fields near conductor and sheath are also 
shown in Fig. 27. The peak field is high during switch on 
because it assumes Laplacian field distribution, but it soon 
changes to resistive distribution during steady state. 
 

 
Fig. 27. Conductor and Sheath fields at load cycle. 
 
 
E. Simulation of breakdown of DC cable 
The cable is simulated at a step voltage equal to its MTV until 
breakdown. The ambient temperature is fixed at 300C. The 
dynamic field and temperature distribution during breakdown 
are shown in Figs. 29 and 30 respectively 
 

 
Fig. 29. Electric field distribution at breakdown. 

 
Fig. 30. Temperature distribution at breakdown. 
 
 
 The peak temperature and electric field in the insulation 
increase drastically before breakdown, indicating that even in 
thermal breakdown electric field increases before breakdown. 
The runaway phenomenon is better illustrated in Figs. 31-33 
respectively, for leakage current, peak field and peak 
temperature. 
 

 
Fig. 31. Leakage current runaway at different applied voltages. 
 
 

 
Fig. 32. Temperature runaway at different applied voltages. 

 
 

 
Fig. 33. Electric field runaway at different applied voltages. 

 
 The load effects on time to breakdown is illustrated in Fig. 
34. This might look similar to volt-time (life) characteristics, 
but it is not to be confused with life characteristics, as no 
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ageing is involved here. These are purely the characteristics 
of transient thermal breakdown. 
 

 
Fig. 34. Voltage vs time to breakdown characteristics for cable under no 
load and loaded conditions. 

 
 Time to breakdown decreases with voltage magnitude and 
the load effects are much severe at higher breakdown times. 
The effect of soil thermal resistance on breakdown is also 
observed, which is shown in Fig. 35, both at load and no-load 
conditions. 
 

 
Fig. 35. Voltage vs time to breakdown characteristics at different soil 
thermal conductivities (external thermal resistances). 
 
 
 Hence the back fill of the cable assumes huge 
significance, as the breakdown voltages are heavily 
dependent on external thermal conductivities. 
 
F. Special setup for cable breakdown and few results 
The conventional cable breakdown setup involves copper 
strips; however, it is wrought with edge breakdown. The 
authors have designed a special electrode setup so that 
breakdown occurs at the center and the breakdown value 
reflects its true insulation withstand capability. 
 The authors have also conducted several breakdown tests 
on 1.1 kV XLPE cables (of 6 mm2 conductor diameter and 0.7 
mm insulation thickness) and few results at varying load 
currents (at constant ambient temperature of 500C) are shown 
in the Fig. 36. 
 
 

 
Fig. 35. Special high voltage electrode used for cable breakdown (a) top 
view, (b) front view. (c) Punctured XLPE cable. 
 
 
 

 
Fig. 36. Breakdown voltages and 63% breakdown values with load 
current. 
 
6. Conclusions 
 
The problem of thermal breakdown in DC cables is evergreen 
and relevant, especially with the increase in polymeric cable 
installations, be it due to the advent of renewable energy 
sources such as offshore energy wind turbines, or due to smart 
grids, and with everchanging voltage shapes due to power 
electronic converters. 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License. 
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