
 
Journal of Engineering Science and Technology Review 15 (1) (2022) 100 - 109 

 
Research Article 

 
An Adaptive Neural Sliding Mode Controller Design for Autonomous Underwater 

Vehicle based on Improved Grey Wolf Optimization Algorithm  
 

Mustafa Wassef Hasan* and Nizar Hadi Abbas 
 

University of Baghdad, College of Engineering, Department of Electrical Engineering, Al-Jadriya, Baghdad, Iraq. 
 

Received 11 February 2022; Accepted 6 May 2022 
___________________________________________________________________________________________ 
 
Abstract 
 

An adaptive neural sliding mode with improved grey wolf optimization (ANSIGWO) controller is proposed in this paper 
for the autonomous underwater vehicle (AUV) with six degrees of freedom. The proposed ANSIGWO controller is 
presented to eliminate the environmental disturbances and uncertainties effect leading to trajectory tracking problems. The 
main principle of the ANSIGWO controller is to estimate both the disturbances and unknown uncertainties of the AUV 
dynamics and achieve a high precision position of control. In this way, online learning ability is used to deal with both the 
high nonlinear uncertainty and the time-varying environmental disturbances effect. The outstanding properties of the 
ANSIGWO controller are evaluated by a comparative analysis between the proposed controller, and other existing works 
that are quantum behaved particle swarm optimization (QPSO) with model predictive control (MPC), an adaptive neuro-
fuzzy sliding mode based genetic algorithm (ANFSGA), and adaptive neuro-fuzzy sliding mode controller (ANFSMC). At 
the end, the results show that the ANSIGWO controller enhanced the efficiency of path planning by 30.8388%, 43.5245%, 
and 49.9285% compared to the ANFSGA, QPSO-MPC, and ANFSMC controllers, respectively. 

 
Keywords: AUV, Adaptive neural sliding mode based on improved grey wolf optimization (ANSIGWO), adaptive neuro-fuzzy sliding 
mode controller (ANFSMC), adaptive neuro-fuzzy sliding based on genetic algorithm (ANFSGA). 
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1. Introduction 
 
An autonomous underwater vehicle (AUV) is considered one 
of the several studies that have been discussed during the last 
decades due to its purposes and applications in different fields 
such as military applications, pipelining, oceanography and 
oil and gas industries.  
 Trajectory tracking of underwater vehicle controller 
design is deemed a difficult task due to several issues that face 
the underwater vehicles during their operation, i.e., 
disturbances issues such as sea currents fluctuation that 
causes environmental force, nonlinearity, time variance, and 
modelling parameter acquired difficulty [1]. 
 Several controllers have been used to control the 
underwater robotic vehicle, such as self-tuning PID [2,3], 
model-free reinforcement learning algorithm by Wu et al. [4], 
sliding mode controller [5,6], predictive model controller 
(MPC) by Steenson et al. [7], adaptive sliding mode controller 
by Guo et al. [8], swarm AUVs navigation by Leblond et al. 
[9], nonlinear fractional-order PID by Hasan et al. [10], H-
infinity control by Cheng et al. [11] 
 Different techniques are used to solve the autonomous 
underwater vehicle problems; one of these techniques is the 
adaptive mechanism, which is used widely due to its benefit 
of adjusting system position, reducing system error caused by 
a different problem, and learning the system dynamics [12–
14]. The adaptive mechanism is usually coupled with other 
techniques or controllers, i.e., Guerrero et al. [15], presents an 
adaptive observer for trajectory tracking problem of two 
degrees of freedom underwater vehicle to increase and 
improved the backstepping and nonlinear (PD) controllers 
responses under constant disturbances effect. Simultaneously, 

Gan et al. [16], proposed a model predictive control based on 
quantum particle swarm optimization (QPSO) to solve the 
dynamic trajectory tracking in the three-dimensional 
environment. Javadi-Moghaddam and Bagheri [17], presents 
an adaptive neuro-fuzzy sliding mode based on a genetic 
algorithm (ANFSGA) for tracking control in four degrees of 
freedom (DOF)s. Lakhekar et al. [18], proposed an adaptive 
neuro-fuzzy sliding mode control (ANFSMC) for trajectory 
tracking problems despite the uncertainty and external 
disturbances so that the depth position tracks the desired 
trajectory. Khodayari et al. [19] presents a self-adaptive fuzzy 
PID controller for heading and depth channels. 
 Motivated by the above analysis, an adaptive neural 
network based on improved grey wolf optimization controller 
design is proposed for six degrees of freedom autonomous 
underwater vehicle. The proposed controller can solve 
complex AUV system with trajectory tracking problems in 
the presence of uncertainties and environmental disturbances 
compared to [17] that present lower performance with four 
degrees of freedom and compared to [16], which present 
performance in a three-dimensional environment or that in 
[18] which will be limited to a specific type of uncertainty and 
disturbances. 
 The main contribution of the ANSIGWO is listed as 
follows: 
 
• The adaptive neural network is used to estimate both the 

disturbances and uncertainty. 
• The improved grey wolf optimization algorithm is used 

with an adaptive mechanism as an online controller to 
give the AUV model robustness against uncertainty and 
external disturbances. 

 
JOURNAL OF 
Engineering Science 
and Technology Review 
 

 www.jestr.org 
 

Jestr

r 

______________ 
*E-mail address: m.hasan0902@coeng.uobaghad.edu.iq 
ISSN: 1791-2377 © 2022 School of Science, IHU. All rights reserved.  
doi:10.25103/jestr.151.13 



Mustafa Wassef Hasan and Nizar Hadi Abbas/Journal of Engineering Science and Technology Review 15 (1) (2022) 100 - 109 

 

 101 

• By combining both of the adaptive neural networks with 
the improved grey wolf optimization, the trajectory 
tracking of the AUV is enhanced. 

 
 The ANSIGWO is compared with other existing works 
related to the same topics with different optimization 
algorithms based on environmental design workspace path 
tracking with disturbances area.  
 The remainder of this work is structured as follows. 
Section 2 describes the AUV model used in this work. The 
adaptive neural sliding mode based on improved grey wolf 
optimization controller design is stated in Section 3. Then, the 
fundamental result of this work and some numerical 
simulations to verify the efficiency of the presented controller 
are proposed in Section 4. At the end, the conclusion part is 
presented in Section 5. 
 
 
2. Modelling of Autonomous Underwater Vehicle 
 
The AUVs model [20,21] can be expressed as Body-Fixed 
Reference (BRF), an Inertial Reference Frame (IRF), or an 
earth fixed frame. The AUV can be described as translational 
and rotational components (Suge, Sway, Heave, Roll, Pitch, 
Yaw), as shown in Fig. (1). AUV dynamics described by 
vector velocity v = [X!, X"]# where X! = [u, v, w]# which 
represent linear velocities and 𝑋" = [𝑝, q, r]$ which represent 
angular velocities of (Suge, Sway, Heave, Roll, Pitch, Yaw) 
respectively, while IRF can express as the vector η = [η!, 
η"]$  where η! = [x, y, z]# and η" = [φ, θ, ψ]# both η! and 
η" represents the position and rotational coordinate of the 
AUV. 

 
Fig. 1. AUV reference frames. 
 
 
 Vehicle dynamics described by T. I. Fossen (1994) [22] 
as follows: 
 
𝑀𝑣̇ + 𝐶(𝑣)𝑣 + 𝐷(𝑣)𝑣 + 𝑔(𝜂) = 𝐹% +𝐷																														(1) 
 
where 𝑀 ∈	ℝ𝟔×𝟔 is the inertia matrix, 𝐶	(𝑣) ∈ 	ℝ𝟔×𝟔 is the 
coriolis and centripetal matrix, 𝐷	(𝑣) ∈ 	ℝ𝟔×𝟔 is the 
hydrodynamic damping of the AUV, 𝑔(𝜂) ∈ 	ℝ𝟔 is the 
buoyancy and gravitational vector, 𝐹 ∈ 	ℝ( is the torque force 
applied on the AUV, and 𝐷 ∈	ℝ( are the disturbances applied 
on the AUV. 
 The total AUV disturbances 𝐷 is given as follows: 
 
𝐷 = 𝐷)* +𝐷+,																																																																												(2) 
 

where 𝐷)* and 𝐷+, defined as the ocean currents and waves 
induced moments, respectively.  
 
where 𝐷)*  are given as follows: 
 
𝐷)* = 𝑀𝑣̇- + 𝐶(𝑣-)𝑣- +𝐷(𝑣-)𝑣- + 𝑔(𝜂) − 𝐹%																			(3) 
 
𝑣- = 𝑣 − 𝑣*, where 𝒗𝒄 is the ocean waves velocity. 
 
 While 𝐷+, are given as follows: 
 

𝐷+, =
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																		(4) 

 
where 𝜌 is the water density, 𝐵 is the breadth of the vessel, 𝑇 
is the draft of the vessel, 𝐿 is the length of the vessel, 𝛽 is the 
encounter angle, and 𝛶/(𝑡) defined as the wave slope of the 
wave component 𝑖 which is defined as follows: 
 

𝛶/(𝑡) = 𝐴𝑚/
2𝜋
𝛿/
sin(𝑤2/𝑡 + ∅/)																																														(5) 

 
where 𝐴𝑚/ is the wave amplitude, 𝑤2/ is the encounter 
frequency, 𝛿/ is the wavelength, and ∅/ is a random phase 
uniformly distributed and constant with time corresponding 
to the wave component 𝑖. The uncertainty depends on [23,24], 
where the dynamic uncertainty is inserted with the kinematics 
model. 
Eq. (1) transformed into earth fixed coordinate as follows: 
 
𝑀!(𝜂)𝜂̈ + 𝐶!(𝑣, 𝜂)𝜂̇ + 𝐷!(𝑣, 𝜂)𝜂̇ + 𝑔!(𝜂) = 𝐹!(𝜂) + 𝐷!(𝑡)						(6) 
 
where 𝑀%(𝜂) = 𝐽(%)5$	𝑀	𝐽(%)5!,  𝐶%(𝜂) = 𝐽(%)5$[𝐶(𝑣) −
𝑀	𝐽(%)5! 	𝐽(%)̇ \	𝐽(%)5! , 𝐷%(𝜂) = 𝐽(%)5$	𝐷(𝑣)	𝐽(%)5!,  𝑔% = 𝐽(%)5$	𝑔(%), 
𝐹%(𝜂) = 𝐽(%)5$	𝐹%, and  
 
𝐷%(𝑡) = 𝐽(%)5$	𝐷(𝑡). 
 
Denote 𝜁! = 𝜂, 𝜁" = 𝜂̇ 
 
Eq. (6) can be transformed as follows:    
 

!
𝜁!̇ = 𝜁"

𝜁"̇ = −𝑀#(𝜂)$!𝐶#(𝑣, 𝜂)𝜂̇ − 𝑀#(𝜂)$!𝐷#(𝑣, 𝜂)𝜂̇ − 𝑀#(𝜂)$!𝑔#(𝜂) +
𝑀#(𝜂)$!𝐹#(𝜂) + 𝑀#(𝜂)$!𝐷#(𝑡)

       (7) 

 
Eq. (7) can be expressed as follows: 
 

^
𝜁!̇ = 𝜁"

𝜁"̇ = 𝐺(𝜁) + 𝑅(𝜁)𝐹% +𝐷(𝑡)
                                                           (8) 

 
where 𝐺(𝜁) = −𝑀%(𝜂)5!𝐶%(𝑣𝑣, 𝜂)𝜂̇ −
𝑀%(𝜂)5!𝐷%(𝑣𝑣, 𝜂)𝜂̇ − 𝑀%(𝜂)5!𝑔%(𝜂), 𝑅(𝜁) = 𝑀%(𝜂)5!𝐽(%)5$, 
and 𝐷(𝑡) = 𝑀%(𝜂)5!𝐷%(𝑡). 
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 The uncertainty developed on the system based on [23,24] 
described as 𝑈̇6 = 𝑀6

5!𝐾6 + 𝑑/, where 𝑈̇6 =
[𝑢̇ 𝑣̇ 𝑤̇ 𝑝̇ 𝑞̇ 𝑟̇]$,	𝐾6 =
[∑𝑋 ∑𝑌 ∑𝑍 ∑𝐾 ∑𝑀 ∑𝑁]$ defined as the total 
forces applied on the URV, 𝑑/ =
[𝑑7 𝑑8 𝑑+ 𝑑9 𝑑: 𝑑-]$ is the lumped uncertainties 
that caused by internal noise caused by conductors or joints 
or may that caused by winds effect,  𝑀6

5! described in 
Appendix A. 
 
 
3. Adaptive Neural Controller Design 
 
Let the AUV control be represented as follows: 
 
 ϻ = 𝑒̇ + 𝑐𝑒 + 𝛤p																																																																										(9) 
 
where 𝑒 = 𝜁!; − 𝜁!, 𝜁!; is the AUV desired reference 
trajectory, 𝜁! are the output response of the system and 𝑐 =
𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6) ∈ ℝ(×( is a positive diagonal 
matrix, and 𝛤p defined as the adaptive compensation estimator 
of both uncertainty and disturbances. 
 
Assumption 1. Assume the (roll, pitch, and yaw) angles are 
located in the region of (−𝜋 < 𝜑 < 𝜋), (−𝜋 < 𝜃 <
𝜋), 𝑎𝑛𝑑	(−𝜋 < 𝜓 < 𝜋). 
 
Assumption 2. Let the desired signal or trajectory 𝜁; of the 
first-order and second-order derivatives are bounded. 
 
Assumption 3. Let the environmental disturbance 𝐷(𝑡) 
assumed to be a continuous signal and bounded. 
It is knowing that one of the most severe problems the URV 
faces is the uncertainties caused by unknown dynamic 
parameters [25,26] and disturbances. Both of the uncertainty 
and disturbances are unpredictable and hard to find in the real 
world. Thus, using RBF to reduces the computational burden 
instead of typical techniques used with neural networks as it 
described by Liu [12]. The RBF consists of three layers (input 
layer, hidden layer, and output layer). The hidden layer uses 
Gaussian function as an activation function and describes as 
follows: 

 
ℎ< = exp }

=2!5>"=

"?"#
~, 𝑗 = 1,2,… ,6 

 
where 𝑒/ is the input vector, 𝜋<	and 𝑏< are the mean and 
standard deviation of the corresponding Gaussian function. 
 The RBF output is given as follows: 
 
𝑦(𝑡) = 𝑤!ℎ! +𝑤"ℎ" +⋯+𝑤@ℎ@ = 𝑊𝑻𝐻. 
 
where 𝑊 represents the RBF weights. 
 
Theorem 1. Let the AUV system mentioned in Eq. (1) be 
transformed into Eq. (6), and if Assumptions 1-3 are 
satisfied, then let the URV control law of the closed-loop 
system proved under AUV contro law 𝐹%. 
Proof. Consider the AUV mathematical system, let the AUV 
control law equal to the follows: 
 
𝐹% = 𝐽$𝑀%(𝜂) �𝜁!;̈ + 𝑐𝑒̇ − 𝐺p(𝜁) − 𝑄 −	𝐷�(𝑡)�																		(10) 
 
where 𝐺p(𝜁) is the unknown uncertainty estimator obtained, 
such that RBF used to approximate the function value as 
follows: 
 
𝐺p(𝜁) = 𝑊�!𝐻(𝜁) = 𝑆�!																																																														(11) 
 
𝐷�(𝑡) is the unknown disturbances estimator and also obtained 
by RBF as follows: 
 
𝐷�(𝑡) = 𝑊�!𝐻(𝜁) = 𝑆�"																																																														(12) 
 
While 
 
𝑄 = −𝑊!(𝑡, 𝜁). 𝑁!(ϻ) + 𝛽																																																					(13) 
 
𝛽̇ = −𝑊"(𝑡, 𝜁). 𝑁"(ϻ)																																																													(14) 
 
 The values of  (𝑊!(𝑡, 𝜁),𝑊"(𝑡, 𝜁)) equal as follows: 
 

𝑊!(𝑡, 𝜁) = 𝑑𝑖𝑎𝑔�𝑊!!(𝑡, 𝜁),𝑊!"(𝑡, 𝜁),𝑊!B(𝑡, 𝜁),𝑊!C(𝑡, 𝜁),𝑊!D(𝑡, 𝜁),𝑊!((𝑡, 𝜁)�																																																																											(15) 
 
𝑊"(𝑡, 𝜁) = 𝑑𝑖𝑎𝑔�𝑊"!(𝑡, 𝜁),𝑊""(𝑡, 𝜁),𝑊"B(𝑡, 𝜁),𝑊"C(𝑡, 𝜁),𝑊"D(𝑡, 𝜁),𝑊"((𝑡, 𝜁)�																																																																											(16) 
 
 Such that, each of the diagonal elements can be 
represented as follows: 
 

𝑊!<(𝑡, 𝜁) = 𝐴< +
𝐾<"

4𝐻<𝐵<
+
𝐻<
𝐵<
+ 2𝐻< +

8𝐻<B

𝐵<
+
𝐾<
𝐵<
												(17) 

 
𝑊"<(𝑡, 𝜁) = 𝐵< + 4𝐻<" + 2𝐻<𝑊!<																																									(18) 
 
where 𝐴<, 𝐻<, 𝐾<, and 𝐵< are constant numbers with 𝑗 =
1,2,… ,6. 
 
𝑁!(ϻ) = |ϻ|

!
"	𝑠𝑔𝑛(ϻ) + ϻ																																																							(19) 

 
𝑁"(ϻ) = 1

2� . 𝑠𝑔𝑛(ϻ) + 1 3� 	|ϻ|
!
"	𝑠𝑔𝑛(ϻ) + ϻ																	(20) 

 

 The closed-loop system of the AUV can be found from 
Eq. (9) by taking the time derivative of this equation as 
follows: 
 
ϻ̇ = 𝑒̈ + 𝑐𝑒̇ + 𝛤ṗ																																																																									(21) 
 
where 𝑒̈ = 𝜁!;̈ − 𝜁!̈, Eq. (21) can be represented as follows: 
 
ϻ̇ = 𝜁!;̈ − 𝜁!̈ + 𝑐𝑒̇ + 𝛤ṗ																																																													(22) 
 
 Now, by substituting Eq. (10) into Eq. (22), the following 
equations are obtained:  
 
ϻ̇ = 𝐽5$𝑀%(𝜂)5!𝐹% − 𝑐𝑒̇ + 𝐺(𝜁) + 𝑄 + 𝐸; 	− 𝜁!̈ + 𝑐𝑒̇ + 𝛤;̇	(23) 
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ϻ̇ = 𝐽5$𝑀%(𝜂)5!𝐹% − 𝑐𝑒̇ + 𝐺p(𝜁) + 𝑄 + 𝐷�(𝑡) − 𝐺(𝜁)
− 𝑅(𝜁)𝐹% −𝐷(𝑡) + 𝑐𝑒̇ + 𝛤ṗ																	(24) 

 
ϻ̇ = 𝑄 + 𝐺p(𝜁) − 𝐺(𝜁) + 𝐷�(𝑡) − 𝐷(𝑡) + 𝛤ṗ																							(25) 
 
 The optimal weights values for function 𝐺(𝜁) are 
approximated and described by Cui et al. [27] as follows: 
 
𝑆!∗ = arg min

F$∈	I
[𝑠𝑢𝑝�𝐺p(𝜁) − 𝐺(𝜁)�\																																						(26) 

 
 The error for the function above is defined and described 
by Pan and Er [28], Edalati et al. [29] as follows: 
 
𝜆! = 𝐺p(𝜁|𝑆!∗) − 𝐺(𝜁)																																																														(27) 
 
 Now, the values of the optimal weight for function 𝐷(𝑡) 
are approximated as follows: 
 
𝑆"∗ = arg min

F$∈	I
[𝑠𝑢𝑝�𝐷�(𝑡) − 𝐷(𝑡)�\																																						(28) 

 
 The error for the function above is defined as follows: 
 
𝜆" = 𝐷�(𝑡|𝑆"∗) − 𝐷(𝑡)																																																														(29) 
 
ϻ̇ = 𝑄 + [𝐺p(𝜁) − 𝐺p(𝜁|𝑆!∗) + 𝜆!\ + [𝐷�(𝑡) − 𝐷�(𝑡|𝑆"∗) + 𝜆"\

+ 𝛤ṗ																																																												(30) 
 
ϻ̇ = 𝑄 + ��𝑆�! − 𝑆!∗�

$ + 𝜆!� + ��𝑆�" − 𝑆"∗�
$ + 𝜆"� + 𝛤ṗ					(31) 

 
 Now, let the adaptive law 𝛤ṗ equal to the follows: 
 

𝛤ṗ = −
1
𝛿 ��𝑆

�! − 𝑆!∗�
$𝛺ṗ! + �𝑆�" − 𝑆"∗�

$𝛺ṗ"�																										(32) 
 
ϻ̇

= 𝑄 −
1
𝛿 ��𝑆

�! − 𝑆!∗�
$ �𝛺ṗ! − 𝛿�� −

1
𝛿 ��𝑆

�" − 𝑆"∗�
$ �𝛺ṗ" − 𝛿��

+ 𝜆! + 𝜆"																																																																																			(33) 
 

ϻ̇ = 𝑄 − �1
𝛿

1
𝛿
�  
�𝑆�! − 𝑆!∗�

$ �𝛺ṗ! − 𝛿�

�𝑆�" − 𝑆"∗�
$ �𝛺ṗ" − 𝛿�

¡

$

+ 𝜆! + 𝜆"							(34) 

 

ϻ̇ = 𝑄 − �𝒀�𝑺� − 𝑺∗�
$ �𝜴�̇ − 𝜹��

$
+ 𝜆! + 𝜆"																						(35) 

 
 Next, by using the IGWO [10], the adaptive parameter 𝜴�̇  
can reach the value of 𝜴�̇ = 𝜹, thus ϻ̇ equal to the following 
equation: 
 
ϻ̇ = 𝑄 + 𝜆! + 𝜆"																																																																							(36) 

 
 Now, by taking the integration of Eq. (14) and by 
substituting it in Eq. (13) and then substitute the result in Eq. 
(36), gives the following equation: 
 

ϻ̇ = −𝑊!(𝑡, 𝜁). 𝑁!(ϻ) −𝑊"(𝑡, 𝜁)¦ 𝑁"�ϻ(𝜏)�𝑑𝜏
J

K
+ 𝜆!

+ 𝜆"																																																											(37) 
 Let  
 
𝑧!< = ϻ< 
 

𝑧"< = −𝑊"<¦ 𝑁" �ϻ<(𝜏)� 𝑑𝜏
J

K
+ 𝜆<! + 𝜆<"																									(38) 

 
 Now, by taking the time derivative for both equations 
above and then represent it in the scalar form for better clarify 
the following equation is obtained: 
 
𝑧!̇ = −𝑊!. }|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!~ + 𝑧" 

 
𝑧"̇ = −𝑊". }1 2� . 𝑠𝑔𝑛(𝑧!) + 1 3� 	|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!	~

+
𝑑
𝑑𝑡 𝜆! 	+

𝑑
𝑑𝑡 𝜆"																																				(39) 

 
From Assumption 2 and Assumption 3, the time 

derivative of the 𝜆! is exists everywhere in the bounded 
region. 
 Then region (1) is equal to the follows: 
 
©𝜆L!(𝑡)©̇

"
≤ 𝑀<‖𝑁"(𝜇)‖", 𝑗 = 1,2, … ,6 

 
 Such that 𝑀< ≥ 0 and the same assumptions (2 and 3) can 
be developed on 𝜆" such that region (2) is equal to the follows: 
 
©𝜆L"(𝑡)©̇

"
≤ 𝑆<‖𝑁"(𝜇)‖", 𝑗 = 1,2, … ,6 

 
Now, let the following candidate Lyapunov function is 
presented  
 
𝑉 = 𝑋$𝑃𝑋																																																																																		(40) 
 
 Next, let the vector 𝑋 equal to the follows: 
 

𝑋 = �𝑁!(𝑧!)𝑧"
� ≜ ±|𝑧!|

$
#	𝑠𝑔𝑛(𝑧!) + 𝑧!

𝑧"
²																																(41)  

 
Knowing that (𝑋̇ = 𝐴𝑋) and by taking the derivative of 

vector 𝑋
M/2N;6
³⎯⎯µ 𝑋̇ = �𝑁!(𝑧!)

̇ . 𝑧!̇
𝑧"̇

� 

 

𝑋̇ = ¶
𝑁!(𝑧!)̇ . }−𝑊!. }|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!~ + 𝑧"~

−𝑊". }1 2� . 𝑠𝑔𝑛(𝑧!) + 1 3� 	|𝑧!|
!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!	~ +

𝑑
𝑑𝑡
𝜆! 	+

𝑑
𝑑𝑡
𝜆"
·																																																																																							(42) 

 
 Now, using regions (1 and 2) in Eq. (42), the following 
vector is presented: 
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𝑋̇ = ¶
𝑁!(𝑧!)̇ . }−𝑊!. }|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!~ + 𝑧"~

−𝑊". }1 2� . 𝑠𝑔𝑛(𝑧!) + 1 3� 	|𝑧!|
!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!	~ + 𝑆𝑁"(𝑧!) +𝑀𝑁"(𝑧!)

·																																																																											(43) 

 
 By taking the time derivative of 𝑁!(𝑧!) the following 
equation is presented: 
 

𝑁!(𝑧!)̇ =
1
2	

1

|𝑧!|
!
"
	+ 1																																																													(44) 

 
 Knowing that if Eq. (44) is multiplied by 𝑁!(𝑧!) the 
following equation is presented: 
 

¸
1
2	

1

|𝑧!|
!
"
	+ 1¹ ∗ }|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!~

M/2N;6
³⎯⎯µ 

¸
1
2 	𝑠𝑔𝑛

(𝑧!) +
1
2	

𝑧!

|𝑧!|
!
"
	+ |𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!¹																(45) 

 
where  
 
𝑠𝑔𝑛(𝑧!)

= »
1																																𝑖𝑓				𝑧! > 0
0																																𝑖𝑓				𝑧! = 0
−1																												𝑖𝑓				𝑧! < 0

																																								(46) 

 
𝑠𝑔𝑛(𝑧!) =

𝑧!
|𝑧!|

𝑒𝑥𝑐𝑒𝑝𝑡	(𝑧! = 0)																																										(47) 

 
 For (𝑧! > 0) and by substitute Eq. (47) into Eq. (45), the 
result will equal to 𝑁"(𝑧!) in other words 
𝑁"(𝑧!) = 𝑁!(𝑧!)̇ ∗ 𝑁!(𝑧!) in Eq. (43) and, 

 

𝑋̇ =  
𝑁!(𝑧!)̇ . }−𝑊!. }|𝑧!|

!
"	𝑠𝑔𝑛(𝑧!) + 𝑧!~ + 𝑧"~

−𝑊". 𝑁!(𝑧!)̇ . 𝑁!(𝑧!) + 𝑆𝑁!(𝑧!)̇ . 𝑁!(𝑧!) +𝑀𝑁!(𝑧!)̇ . 𝑁!(𝑧!)
¡																																																																																																			(48) 

 
 Now, taking the time derivative of Eq. (40) led to the 
following equation 
 
𝑉̇ = 𝑋̇$𝑃𝑋 + 𝑋$𝑃𝑋̇																																																																	(49) 
 
𝑉̇ = 𝑁!(𝑧!)̇ . 𝑋$(𝐴$𝑃 + 𝑃𝐴)𝑋																																															(50) 
 
Where 
 

𝐴 =

⎣
⎢
⎢
⎢
⎡𝜕𝑋̇!
𝜕𝑧!

𝜕𝑋̇!
𝜕𝑧"

𝜕𝑋̇"
𝜕𝑧!

𝜕𝑋̇"
𝜕𝑧" ⎦

⎥
⎥
⎥
⎤
M/2N;6
³⎯⎯µ= �

−𝑊! 1
−(𝑊2 − 𝑆 −𝑀) 0�												(51) 

 
where 𝑃 is chosen to satisfy the positive definite condition 
𝑃 > 0 thus, let be equal to 
 

𝑃 = �5ɣ
" 1.5ɣ

1.5ɣ 2 � > 0																																																												(52) 

 
where ɣ any positive number. 
 
where 𝐴$𝑃 + 𝑃𝐴 < 0, thus 𝐿 > 0 is symmetric and 
 
𝐴$𝑃 + 𝑃𝐴 = −𝐿, then Eq. (50) can be written as follows: 
 
𝑉̇ = −𝑁!(𝑧!)̇ . 𝑋$𝐿	𝑋																																																															(53) 
 
 Next, by using the following formula to solve the 
candidate Lyapunov candidate solution 
 
𝜆@/O(𝑃)‖𝑋‖" ≤ 𝑋$𝑃𝑋 ≤ 𝜆@,P(𝑃)‖𝑋‖"																												(54) 
 
where ‖𝑋‖" is the norm of 𝑋 
 
𝑉̇ = −𝑁!(𝑧!)̇ . 𝑋$𝐿	𝑋 ≤ −1.5	ɣ	𝑁!(𝑧!)̇ . 𝑋$𝐿	𝑋																		(55) 
 

𝑉̇ = −1.5	ɣ	 ¸
1
2	

1

|𝑧!|
!
"
	+ 1¹𝑋$𝐿	𝑋																																						(56) 

 
𝑣̇ = −𝑎!𝑣 − 𝑎"𝑣

!
"			𝑣(0) ≥ 0																																																(57) 

 

𝑎! =
ɣ	𝜆@/O

!/"

𝜆@,P(𝑃)
	, 𝑎" =

1.5ɣ	
𝜆@,P(𝑃)

 

 
 The solution converges exponentially in the finite time 
towards the origin.  
 The system design represented, as shown in Fig. (2) 
below,  

 
Fig. 2. The proposed system design. 
 
 
4. Results and Discussion 
 
This section discusses the main reason to develop the IGWO 
[10] with the adaptive neural sliding (ANS) mode controller, 
where a comparative analysis of the IGWO is done with slime 
mold algorithm (SMA) by Li et al. [30], genetic algorithm 
(GA) by Rebouças et al. [31], particle swarm optimization 
(PSO) by Isiet and Gadala [32], and grasshopper optimization 
(GSO) by Saremi et al. [33]. The simulation of the results was 
done using MATLAB R2018b on a personal computer that 
has a processor of (Intel(R) Core(TM) i7-7700HQ CPU @ 
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2.80GHz (8 CPUs), ~2.8GHz), and memory of (16 GB 
RAM). 
 The first analysis procedure of the IGWO with SMA, GA, 
PSO, and GSO depend on obtaining the total cost function 
along with a different number of population (npop) for each 
algorithm to get the best operation properties for each 
algorithm. At first, we need to define which cost function is 
used with work; thus, the following cost function is used  by 
Abbas and Sami [34] and have been used in this research also: 
 
𝐶𝑜𝑠𝑡	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛RST5(UVWX5T0R5VR5YTX5	VTX)

= ¦ (𝜁!; − 𝜁!)"
J

K
𝑑𝜏 +¦ |𝜁!; − 𝜁!|

J

K
𝑑𝜏

+
1
4𝑀𝑝								(58) 

 
where, 𝑀𝑝 = Z$%5Z$

Z$
⨉100%, 𝐼𝑆𝐸 = ∫ (𝜁!; − 𝜁!)"

J
K 𝑑𝜏, and 

𝐼𝐴𝐸 = ∫ |𝜁!; − 𝜁!|
J
K 𝑑𝜏. 

 The maximum peak 𝑀𝑝 overshoot used due to its 
characteristics of decay the response cycle time of the 
proposed controller (ANS), the integrated square error (𝐼𝑆𝐸) 
used due to its properties of making the responses fast enough 
to track the original AUV trajectory, and the integrated 
absolute error (𝐼𝐴𝐸) were used to eliminate the high 
oscillation produced by the (ISE). 
 To proceed with the first analysis procedure and to get the 
best population number of each algorithm with the ANS 
controller, we simulate each algorithm for (30) running 
simulations for population numbers of (20), (25), and (30). 
Then by taking the average distribution of the collected total 
cost value of each algorithm alongside each of the given 
population numbers, Fig. (3) below is obtained. Fig. (3) below 
represents a box plot of the distribution cost value of each 
optimization algorithm. 
 

 
Fig. 3. Average distribution cost value with a different number of populations. 
 
 Fig. (3) above show that the IGWO act better with (25) 
npop as the lowest distrbution cost value is presented. At the 
same time, the PSO algorithm acts better with (30) npop, the 
GA present better performance with (20) npop, the (SMA) 
present better performance with (25) npop, and the GSO act 
better with (25) npop. 
 Now, each of the optimization algorithms, IGWO, SMA, 
GA, PSO, and GSO, are operating for a complete running of 

iterations; each complete running represents an average cost 
value of (30) simulation with npop of (25, 25, 20, 30, and 25) 
for IGWO, SMA, GA, PSO, and GSO respectively. Table 1 
and Fig. (4) represents the collected average best cost results 
versus the number of iteration for each of the optimization 
algorithms. 

 
Table 1. Average best cost values versus the number of iterations. 

SI. 
No. 

  Simulation   
IGWO SMA GA PSO GSO 

1 497.6930 521.4729 520.5839 518.5003 519.4789 
50 271.2343 307.4638 304.6432 299.1029 300.2005 
100 250.0369 267.5673 260.9743 242.0023 255.9912 
150 207.1003 248.6288 240.2234 217.5074 230.0591 
200 145.5402 180.5638 170.1375 154.3406 165.5921 
250 124.6221 148.5832 145.4732 132.6896 138.6332 
280 124.2666 145.0385 138.1377 130.2643 135.1777 
310 65.1345 60.4992 80.4563 70.3221 72.6543 
340 45.2411 56.3221 55.3442 52.5332 54.4322 
370 45.6432 49.1345 51.3454 52.2542 54.2664 
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Fig. 4. Average best cost values versus the number of iterations. 
 
 The second procedure is to develop the AUV desired 
trajectory for the ANSIGWO controller, as follows: 
 

𝑋; = 4 ∗ cos �
𝜋
10 ∗ 𝑡�																																																													

(59) 
 
𝑌; = 3 ∗ sin �	

𝜋
5 ∗ 𝑡�																																																														

(60) 
 
𝑍; = 𝑢(𝑡)																																																																																			(61) 
 
where 𝑢(𝑡) is step input, while (𝑡) is the simulation time 
which equals to 𝑡 = 20	𝑠𝑒𝑐, the desired roll angle assumed to 
be (φ[ = π/3 ), while the desired pitch angle assumed to be 
(θ[ = π/4). Finally, the desired yaw angle is assumed to be 
(ψ[ = π/3.5). 
 The ANSIGWO controller performance is evaluated by a 
comparative analysis with other existing works, which are 
quantum behaved particle swarm optimization (QPSO) with 
model predictive control (MPC) [16], an adaptive neuro-
fuzzy sliding mode based genetic algorithm (ANFSGA) [17], 
and adaptive neuro-fuzzy sliding mode controller (ANFSMC) 
[18]. Fig. (5) below show the collected results for proposed 
controllers. 

 
Fig. 5. Trajectory tracking of the AUV for the (ANSIGWO, QPSO-MPC, ANFSGA, and ANFSMC). 
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 Fig. (5) above show clearly that the ANSIGWO controller 
presents the best performance to reject the disturbances and 
uncertainties effect compared to QPS-MPC, ANFSGA, and 
ANFSMC controllers. For better understanding, we proposed 
bathymetry data [35] used widely to represent the ocean and 
coastal trajectories for ships and underwater vehicles. The 
bathymetry data is selected and created depending on the 
latitude and longitude of the following coordinate region 
(𝑤𝑒𝑠𝑡 = 48°,	𝑒𝑎𝑠𝑡 = 52°, 𝑠𝑜𝑢𝑡ℎ = 29°, 𝑛𝑜𝑟𝑡ℎ = 31°). Fig. 
(6) below show the AUV path planning for the proposed 
controllers that represents the X and Y responses of Fig. (5). 
 

 
Fig. 6. Path planning of the AUV for the (ANSIGWO, QPSO-MPC, 
ANFSGA, and ANFSMC) controllers using bathymetry data. 
 
 Fig. (6) above shows that the ANSIGWO controller 
presents the best path planning for tracking the reference 
signal under ocean currents and wind moments compared to 
the other controllers. The ANFSMC presents the worst path 
planning for tracking the reference signal, while the QPSO-
MPC presents the best path planning than the ANFSMC, 
while the ANFSGA presents better performance QPSO-MPC 
but worst of ANSIGWO. 
 A computer-aided design (CAD) [36] has been done to 
create a moving AUV animation along a straight line path 
planning to evaluate the performance of the ANSIGWO 
controller across different trajectories with disturbances and 
uncertainties effects. Fig. (7) below represent the collected 
results for a straight-line trajectory performance for the 
ANSIGWO, ANFSGA, QPS-MPC, and ANFSMC 
controllers.  
 The results in Fig. (7) indicate that the ANSIGWO 
controller presents the best path planning trajectory with no 
effect for each disturbance and uncertainty compared to the 
ANFSGA, QPS-MPC, and ANFSMC. 
 

 
Fig. 7. Path planning of the AUV CAD design for the (ANSIGWO, 
QPSO-MPC, ANFSGA, and ANFSMC) controllers. 
 
 Now another path planning trajectory is proposed to 
evaluate the performance of the proposed controllers based on 
the following mathematical equation: 
 
𝑋; = 0.05(100 + 10	cos	(36t/50)) cos(6𝑡/50)												(62) 
 
𝑌; = 0.05(100 + 10	cos	(36t/50)) sin(6𝑡/50)													 (63) 
 

 
Fig. 8. Path planning of the AUV for the (ANSIGWO, QPSO-MPC, 
ANFSGA, and ANFSMC) controllers using bathymetry data. 

 
 As before, Fig. (8) above shows that the ANSIGWO 
controller presents the best path planning for tracking the 
reference signal compared to the ANFSMC, which presents 
the worst path planning for tracking the reference signal, 
while the QPSO-MPC presents the best path planning than the 
ANFSMC, while the ANFSGA presents better performance 
QPSO-MPC but worst of ANSIGWO. 
 At the end, the ANSIGWO, ANFSGA, QPSO-MPC, and 
ANFSMC controllers were also compared using numerical 
simulations based on taking the average cost value of eight 
samples. Such that each sample represents a complete running 
of the proposed controllers. Table 2 and Fig. (9) below 
demonstrate the results of the average cost function obtained 
for the selected controllers. 

 
Table 2. Average cost function results for ANSIGWO, ANFSGA, QPSO-MPC and ANFSMC controllers. 

Samples 
Number 

ANSIGWO ANFSGA QPSO-MPC ANFSMC 

1 45.0399 65.3642 80.1043 90.1938 
2 45.1300 65.2405 79.2539 89.8726 
3 45.0002 65.0130 79.3002 90.2000 
4 44.9201 65.2201 80.1029 90.3330 
5 45.1030 64.8013 80.1102 89.5649 
6 45.0999 65.4403 79.0005 90.2940 
7 44.9987 64.9220 80.2748 89.1348 
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8 45.1155 65.1110 80.0192 90.1935 
Average 45.0509 65.1390 79.7707 89.9733 

 

 
Fig. 9. Average cost function results for ANSIGWO, ANFSGA, QPSO-
MPC and ANFSMC controllers. 
 
 The enhancement between each controller measured by 
the following formula [34]: 
 

𝐸𝑃]])OJ-)NN2-	R	)82-	])OJ-)NN2-	^ = }1 −
𝑂𝐹]R
𝑂𝐹]^

~ × 100%					(64) 

 
where 𝐸𝑃 explained as the enhancement percentage of the 
AUV, while 𝑂𝐹 is defined as the objective function value of 
the selected controller. 
 The enhancement of the ANSIGWO compared to the 
ANFSGA controller are measured as follows: 
 

𝐸𝑃]RSTUVWX
RS_TVR 		

= }1 −
45.0509
65.1390~ × 100%	 = 30.8388% 

 
 The enhancement of the ANSIGWO compared to the 
QPSO-MPC controller are measured as follows: 

𝐸𝑃] RSTUVWX
`YTX50Y]		

= }1 −
45.0509
79.7707~ × 100%	 = 43.5245% 

 
 The enhancement of the ANSIGWO compared to the 
ANFSMC controller are measured as follows: 
 

𝐸𝑃]RSTUVWX
RS_T0] 		

= }1 −
45.0509
89.9733~ × 100%	 = 49.9285% 

 
 
5. Conclusions 
 
This paper presents an adaptive neural sliding mode based on 
an improved grey wolf optimization controller for an 
autonomous underwater vehicle to solve the path trajectory 
tracking problem in the underwater vehicle under the model 
uncertainty and external disturbances. Online learning ability 
with the adaptive mechanism is provided using an improved 
grey wolf optimization. The ANSIGWO controller is 
designed to reduce the impact of the uncertainties and 
environmental disturbances on the AUV system; afterwards, 
it was evaluated by comparing the proposed controller with 
other existing works. The results show that the ANSIGWO 
controller enhanced the efficiency of path planning by 
30.8388%, 43.5245%, and 49.9285% compared to the 
ANFSGA, QPSO-MPC, and ANFSMC controllers, 
respectively. 
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Appendix A 
The following matrix represents the kinematic equation used in Eq. (A.1) 
 

𝑀6 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑚 − 𝑋7̇ 0 0 0 𝑚𝑧b −𝑚𝑦b
0 𝑚 − 𝑌8̇ 0 −𝑚𝑧b 0 𝑚𝑥b − 𝑌-̇
0 0 𝑚 − 𝑍+̇ 𝑚𝑦b −𝑚𝑥b − 𝑍:̇ 0
0 −𝑚𝑧b 𝑚𝑦b 𝐼PP −𝐾9̇ 0 0
𝑚𝑧b 0 −𝑚𝑥b −𝑀+̇ 0 𝐼MM −𝑀:̇ 0
−𝑚𝑦b 𝑚𝑥b −𝑁8̇ 0 0 0 𝐼cc −𝑁-̇ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

      (A.1)        

      
The total kinematic force is explained in the following vector: 
 

𝑘6 = �@𝑋 @𝑌 @𝑍 @𝐾 @𝑀 @𝑁�
$
 

where  
@𝑋 = 𝑋7|7|𝑢|𝑢| + 𝑋+:𝑤𝑞 + 𝑋8-𝑣𝑟 + 𝑋7̇𝑢̇ + 𝑋::𝑞𝑞 + 𝑋--𝑟𝑟 + 𝑋9-)9 + 𝑋eT 

@𝑌 = 𝑌8|8|𝑣|𝑣| + 𝑌+9𝑤𝑝 + 𝑌7-𝑢𝑟 + 𝑌8̇𝑣̇ + 𝑌9:𝑝𝑞 + 𝑌-̇𝑟̇ + 𝑌-|-|𝑟|𝑟| + 𝑌78𝑢𝑣 + 𝑌77f&𝑢
"𝛿- + 𝑌eT 

@𝑍 = 𝑍+|+|𝑤|𝑤| + 𝑌+9𝑤𝑝 + 𝑍-9𝑟𝑝 + 𝑍+̇𝑤̇ + 𝑍89𝑣𝑝 + 𝑍:̇𝑞̇ + 𝑍:|:|𝑞|𝑞| + 𝑍7:𝑢𝑞 + 𝑍77f'𝑢
"𝛿6 + 𝑍eT 

@𝐾 = 𝐾9|9|𝑝|𝑝| + 𝐾9̇𝑝̇ + 𝐾9-)9 +𝐾eT 

@𝑀 = 𝑀+|+|𝑤|𝑤| +𝑀+9𝑤𝑝 +𝑀-9𝑟𝑝 +𝑀+̇𝑤̇ + 𝑀89𝑣𝑝 +𝑀:̇𝑞̇ + 𝑀:|:|𝑞|𝑞| +𝑀7:𝑢𝑞 +𝑀77f'𝑢
"𝛿6 +𝑀eT 

@𝑁 = 𝑁8|8|𝑣|𝑣| + 𝑁+9𝑤𝑝 +𝑁7-𝑢𝑟 + 𝑁8̇𝑣̇ + 𝑁9:𝑝𝑞 + 𝑁-̇𝑟̇ + 𝑁-|-|𝑟|𝑟| + 𝑁78𝑢𝑣 + 𝑁77f&𝑢
"𝛿- +𝑁eT 

Parameter values and their definitions can be found on Prestero [37]. 
 


