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Abstract 
 

This article discusses a boundary-value problem of impact between two cars, known as the Cauchy problem. The purpose 
of the task is to determine the two vehicles’ center of mass velocity of motion prior impact, knowing the final rest 
positions after the accident and the crumple zone. Geometric modelling is performed in SolidWorks, and dynamic finite 
element analysis is carried out with Abaqus /Explicit. The initial data are the deformations of the vehicles in three-
dimensional space and the respective boundary conditions. The movement of cars after the impact is modelled using a 
multi-mass spatial model. The macro movement is in a three-dimensional Cartesian coordinate system with six degrees of 
freedom. The deformation energy is determined by the finite element method for an elastoplastic body. The findings of 
the investigation are the initial conditions of macro movement of bodies after impact. The coincidence of the coordinates 
of the final rest positions of the cars and their trajectories on the previously described treds are an indicator of the 
reliability of the study. An example is given, based on real data driven from two car collision. 
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1. Introduction 
 
Statistical analysis police reports show that the most serious 
vehicle collisions mainly constitute of two-car accidents. 
The proportion of this type of motor vehicle crash is the 
highest compared to the total percentage of events. 
Collisions between two cars occur in three interconnected 
phases. The first phase is the vehicle motion prior to impact 
in which they most often move in retarded motion until the 
impact. In this phase, external forces act on each of the cars, 
caused by the driver's reaction on the control and monitoring 
systems. The second phase is the impact phase, in which 
cars contact, deform and move. In this phase part of kinetic 
energy is absorbed, which is transformed into energy of 
deformation. The third phase includes post-impact motion of 
vehicles to a certain final rest position, which is a result of 
the available residual kinetic energy. This phase is known as 
the macro movement phase. Such movement is evident in 
case of complete loss of control to final rest position 
(Karapetkov, Dimitrov, Uzunov, Dechkova [1, 2], Zlatev, 
Ivanov [3], Niehoff, Gabler [4], Wach [5]). 
 Characteristic feature of this type of events is that in the 
impact phase there is actually a system of parallel forces, 
which are equated the same. The study of the impact phase 
is according to two basic rules: 
 The impulse-momentum change theorem has the form of 
 
𝑚.𝑢$⃗ − 𝑚. 𝑉$⃗ = 𝑆    (1) 
 
where m is total vehicle mass; u$⃗  – velocity of the vehicle 
center of mass post collision; 𝑉$⃗ 	–velocity of the vehicle 
center of mass prior collision; 𝑆 – crash impulse. 
 The momentum change theorem applied to the vehicle 
mechanical system with respect to its mass center during its 

relative motion around it 𝑑𝐾$$⃗ !"  has the form of 
 
#$%%⃗!

"

#'
= 𝑀$$⃗ !

())                                                                           (2) 
 
where 𝑀$$⃗ !

())	is	the principle of moments of impact forces 
relative to the vehicle center of mass. 
 In reality, in the impact phase, from the initial moment 
of contact to the complete separation of the cars due to their 
displacement, the impact force system changes direction. 
Integrating the finite element method in a specifically 
designed model allows for the deformations of each car to be 
monitored, the shape and depth of indentation to be 
compared and the direction of the equivalent of the impact 
forces in the impact phase to be analysed. 
 
 
2. Creating the dynamic model of two cars in collision 
 
For the construction of the 3-D model cars, necessary for the 
impact process to be studied by the finite element method, 
the technical characteristics of real life vehicles in a real 
road accident were used. Geometric modelling was 
performed in SolidWorks (SolidWorks Simulation 2009 [6, 
7], Dechkova [8]), and real research and dynamic analysis 
was carried out in Abaqus. The respective movable and 
immovable nodes between them were defined. For each 
detail, in addition to its geometric dimensions, the 
characteristics of the materials from which they had been 
made were also indicated. Based on these input data, the 
mass characteristics of the modelled object were determined. 
The created models in SolidWorks were imported into the 
Abaqus dynamic analysis software system (Nushtayev [9], 
Yehia [10]). The Abaqus/CAE system exported a sketch in 
the standard STEP file format, recording in it all the 
geometric data of the model layer. 
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 Finite element modelling and computational procedures 
is a nonlinear dynamic analysis and is used to analyse the 
impact efficiency between the vehicles. The applied 
simulation covers a number of specific problems, which 
could be of the following kind: 
 The choice of mesh and type of element had to be 
carefully selected, especially in the area of contact between 
the two vehicles, in order to obtain accurate results regarding 
shape deformation. It should be as similar as possible to the 
one actually observed from first-hand inspection in the field 
accident.  
 About 7000 elements were generated for the whole 
model. The supposition was to use the smallest size of 
elements, of about 0.01 m, for the front contact area (bumber 
- radiators - hood and front doors). This completely 
determined the possibility of achieving identity of the 
deformed areas. 
 The Abaqus/Explicit package allows the study of elastic 
systems whose elements perform mutual movements. It is 
based on an unambiguously formulated differential equation 
(Žmindáka, Pelagića, Pastoreka, Močilana, Vybošťoka [11], 
Duni, Monfrino, Saponaro, Caudano, Urbinati [12]). 
 The differential equation of finite elements has the form 
of: 
 
𝑀𝑈̈ + 𝐶𝑈̇ + 𝐾𝑈 = 𝑅(𝑡)     (3) 
 
where 𝑀 is global mass; 𝐶 - attenuation coefficient; 𝐾 - 
stiffness matrix; 𝑅 is the vector of external loads; 𝑈, 𝑈̇	, 𝑈̈ - 

displacement, velocity and acceleration of a set of finite 
elements at the moment 𝑡. 
 The solution of the differential equation is of the form: 
 
𝑈̈(𝑡) = +(')($%&),+(')(()&)

-
    (4) 

 
𝑅(𝑡)().') is the vector of external forces and 𝑅(𝑡)(/0') is a 
vector of internal forces. 
Attenuation stability condition is determined by the 
expression 
 
∆𝑡 ≤ 1

2*+%
(=1 + 𝜉34.1 − 𝜉34.)    (5) 

 
where 𝜔34.  is maximum natural circular frequency; 𝜉34.	is 
the fraction of the critical attenuation in the highest mode. 
The introduction of a damper to the solution reduces the 
steady increase in time. 
 
 
3. Dynamic modelling investigation of two car collisions 
 
A collision between two cars Audi Q7 and Honda Civic in 
the area of an intersection has been investigated (Table 1). 
The area of mutual contact between them and the final rest 
position were known. During the impact and during the 
transition to final rest position the cars leave characteristic 
treds of friction of the car tires on the road surface. Their 
geometric arrangement is also known. A diagram of the real 
car crash is shown in Figure 1. 

 

 
Fig. 1. Diagram of two car collision, real road accident. The event data are known from a video recorder, which identifies the point of contact, the 
trajectories of motion to the final rest position. They are shown in photos 1-4, taken by surveillance camera. 
 
 

  
Photo 1 Photo 2 

  
Photo 3 Photo 4 

Table 1. Geometric dimensions, masses and mass moment of inertia of the two automobiles Audi and Honda, respectively.  
 Audi Honda 
Total mass of the automobiles 2480 kg 1100 kg 
Mass moment of inertia 𝐽5 4960 kg m2 1650 kg m2 
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Length  5086 mm 4190 mm 
Width 1983 mm 1695 mm 
Height 1737 mm 1375 mm 
Wheelbase 3002 mm 2620 mm 
Front tred 1651 mm 1478 mm 
Rear tred 1676 mm 1488 mm 
Front drag coefficient 0,37 0,34 
Drive 4х4 fore 
Size tyres 235/60R18 185/70R14 
4. Finite element model in Abaqus 
 
A real model of impact between two finite element cars was 
created using the Abaqus/Explicit software (Fig. 2). In the 
automobile finite element models, second-order integration 
elements were used, as they use a lower mesh density than 
the first-order elements. The tetrahedral element of the 
second row has ten nodes (four angular and six internal) and 
each of them has three degrees of freedom. The edges and 
surfaces of the elements of the second row take curvilinear 
shapes after deformation. This justifies the chosen modelling 
approach, namely by applying the methods and means of 
curvilinear geometry. 
 Due to better ability to deploy and compose a second-
order displacement field, second-order tetrahedral elements 
were used for multiple analyses in Abaqus/Explicit, although 
their calculation is more complex than that of first-order 
integration elements. 
 The degrees of freedom of a node in a network with a 
finite number of elements determine the ability of the node 
to perform translations. The number of degrees of freedom 
that a node has depends on the type of element to which the 
node belongs. 
 Meshing is a crucial stage in the analysis. The 
Abaqus/Explicit automated tool creates a mesh based on the 
dimensional size of the element. The system establishes this 
parameter, taking into account its volume and lateral surface 
area. 
 

 
Fig. 2. Audi and Honda automobile model of finite elements in Abaqus. 
 
 
5. Dynamic model in Abaqus/Explicit 
 
Figure 3 shows a three-dimensional model consisting of two 
automobiles, an Audi and a Honda. A fixed coordinate 
system 𝑍, 𝑋, 𝑌 is set, as well as the coordinate systems of 
𝑧67, 𝑥67, 𝑦67 and 𝑧61, 𝑥61, 𝑦61, which are invariably connected 
to the center of mass of each vehicle. The created 3D models 
are positioned on the basis of a selected fixed Cartesian 
coordinate system with a common point of the coordinates 
𝑧! 	and	𝑥!. 
 Materials and their characteristics are selected from the 
Abaqus database. When choosing material, it is assumed that 
deformation depends linearly on strain. For this reason, the 
selected isotropic steel material Steel-30XGSA is considered 

to be suitable. It has plasticity region characterized by the 
fact that significant deformations are accompanied by small 
changes in strain. The created car models have material 
density of 355	𝑁/𝑚𝑚1 with isotropic hardening to a 
strength of 490	𝑁/𝑚𝑚1 at plastic stress strain of 0.025. 
 It has been assumed that cars as solids will not introduce 
inaccuracies in obtaining initial results. The automobiles 
were modelled with standard body elements (Abaqus 
elements S3R and S4R) with thickness of 0.01 mm. 
 

 
Fig. 3. Spatial model of Audi and Honda cars in Abaqus. The selected 
contact conditions between tires and ground allow for registration of 
friction between separate parts to be taken into account during their 
deformation. In this case, a coefficient of friction μ = 0.05 is set. 
 
 
 Loads are applied with the help of the so-called steps. 
For nonlinear problems, each load step consists of several 
iterations. Each load step can also have its own type of 
analysis, boundary conditions and output. In this case a step 
with 21 iterations was set. 
 The next step in the analysis is to set the boundary 
problem conditions and load the mechanical system. The 
boundary condition was defined by fixing certain surfaces of 
the cars. 
 Load was created by using volumetric gravitational 
forces - type Gravity (the self weight is taken into account). 
This type of load defines magnitude of self weight forces, 
calculated by Abaqus for each individual element 
considering the density of the material as well. 
 The initial conditions of the study were realized at the 
following kinematic parameters: 
 
Audi car Honda car 

𝑧̇77 = 85,9	𝑘𝑚/ℎ 𝑧̇17 = −2,6	𝑘𝑚/ℎ 
𝑥̇77 = 13,6	𝑘𝑚/ℎ 𝑥̇17 = 18,7	𝑘𝑚/ℎ 
𝜑̇877 = 0	𝑠,7 𝜑̇817 = 0	𝑠,7 

 
 
6. Findings of the dynamic analysis in Abaqus 
 
The simulation in the dynamic model is performed using 
Abaqus/Explicit code. Dynamic analyses have been made, 
allowing visualization and tabular systematization of the 
results of the created model. The deformation analysis 
visualizes the displacements of the nodes along the three 
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coordinate axes "Magnitude" of impact between Audi and 
Honda cars (Fig. 4). 
 The final rest position of the cars corresponds to the 
following kinematic parameters: 
Audi Honda 

𝑧71 = 23,7	𝑚 𝑧11 = 30,6	𝑚 
𝑥71 = 7,7	𝑚 𝑥11 = −1,5	𝑚 
𝜑871 = 359 𝜑811 = 1849 

 
 Based on the dynamic investigation using the finite 
element method, the initial values of the macro-movement of 
the cars after impact are obtained: 

Audi Honda 
𝑧77 = 6,01	𝑚 𝑧17 = 9,1	𝑚 
𝑥77 = −0,69	𝑚 𝑥17 = −1,73	𝑚 
𝜑877 = 99 𝜑817 = 639 

𝑧̇71 = 57	𝑘𝑚/ℎ 𝑧̇11 = 59	𝑘𝑚/ℎ 
𝑥̇71 = 15	𝑘𝑚/ℎ 𝑥̇11 = 3,1	𝑘𝑚/ℎ 
𝜑̇871 = 1,57	𝑠,7 𝜑̇811 = −3,42	𝑠,7 

 
 

 
Fig. 4. Impact deformation between Audi and Honda in the time interval of 𝑡 = 0 ÷ 0.05	𝑠. 
 
 
 The mean values form a function of the form y = f (x). 
An approximate function in the form of a Lagrange 
polynomial is sought: 
 
𝑃0(𝑥) = 	𝑎9 + 𝑎7. 𝑥 + 𝑎1. 𝑥1 +⋯+ 𝑎0. 𝑥0  
 
so that 
 
𝑃0(𝑥/) = 𝑦/ , 𝑖 = 0,1, … . , 𝑛. 
 
 The existence of such a polynomial is ensured by the 
following Lagrange interpolation polynomial, which has the 
form: 
 

𝐿0(𝑥) = 	a𝑦/ .b
c𝑥 − 𝑥:d
c𝑥/ − 𝑥:d

0

:;<
:=/

0

/;<

																																																	(6) 

  
The results of the change of the specific kinematic 
parameters in the form of a polynomial and graphical 
dependence are shown in Figures 5 to 16. 
 The obtained values of the kinematic quantities in the 
final phase of the impact are the initial values of the macro 
movement of the cars after the impact. 

Macro simulation of vehicle motion in case of loss of lateral 
stability is observed in an arbitrarily accepted absolute 
coordinate system 𝑂𝑋𝑌𝑍 (Sharma, Brophy [13], Neptune, 
Flynn [14], Campbell [15], Prasad [16], Prochowski, 
Żuchowski [17]). To study the car motion, it has been 
assumed that its own coordinate system 𝐶𝑥′𝑦′𝑧′ is movable 
and permenantly connected to the vehicle center of mass 𝐶 
(Fig. 17). In addition, a permanently connected 𝐶𝑥𝑦𝑧 
coordinate system is attached to it, parallel to the absolute 
and translationally movable one. Coordinates of the vehicle 
center of mass	𝐶 𝑥6 , 𝑦6 , 𝑧6 in the fixed coordinate system are 
selected for generalized coordinates of the car motion. 
 Rotational motion of the car is expressed by the Euler 
transformations and corresponding angles, namely 
𝜓, 𝜃	and	𝜑. The precession angle	of		𝜓, taking into account 
the rotation around the axis 𝐶𝑧; respectively, the angular 
velocity of 𝜓̇ is obtained; the angle 𝜃 of nutation, taking into 
account the rotation with respect to the axis 𝐶>, the 
intersection of the planes О𝑥𝑦 and 𝐶𝑥?𝑦. 
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𝑧̇, = 	−2,607. 10-. 𝑡. + +2,731. 10/. 𝑡0 − 1337. 𝑡 + 88,6  
Fig.5. Change in the velocity of the Audi center of mass in the impact 
phase. 
 
 

 
𝑥̇, = 	−1.223. 10/. 𝑡. + 317,8. 𝑡0 − 52,8. 𝑡 + 13,03  
Fig.6. Change in the velocity of the Audi center of mass in the impact 
phase.  
 
 

 
𝜔1, = 	2038. 𝑡. + 217,6. 𝑡0 + 13,71. 𝑡 + 0,1597  
Fig. 7. Change of the angular velocity about the vertical axis in the 
impact phase for an Audi. 
 
 

 
𝑍, = 	2,044. 10/. 𝑡. − 2188. 𝑡0 + 83,34. 𝑡 + 4,727  
Fig.8. Change of the Audi center-of-mass coordinates in the impact 
phase. 
 
 

 
𝑋, = 	4199. 𝑡. − 426,4. 𝑡0 + 18,22. 𝑡 − 1,051 

Fig.9. Change in the velocity of the Audi center-of-mass coordinates in 
the impact phase. 
 
 

 
𝜑1, = 	43,27. 𝑡. − 1,7. 𝑡0 + 0,1398. 𝑡 + 0,1482  
Fig.10. Change in the angle of rotation of the Audi around the vertical 
axis. 
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𝑧̇0 = 	−3,588. 10-. 𝑡. + 5536. 𝑡0 + 1898. 𝑡 − 6,822  
Fig.11. Change in the velocity of the Honda center of mass in the 
impact phase. 
 

 
𝑥̇0 = 	1,87. 10/. 𝑡. − 2,737. 10/. 𝑡0 + 604,5. 𝑡+7,64  
Fig.12. Change in the velocity of the Honda center of mass in the 
impact phase. 
 
 

 
𝜔10 = 	2,498. 10/. 𝑡. − 2839. 𝑡0 + 113,6. 𝑡 − 5,124  
Fig.13. Change of the angular velocity about the vertical axis in the 
impact phase for Honda. 
 
 

 
𝑍0 = −1,226. 10/. 𝑡. + 1354. 𝑡0 − 12,43. 𝑡 + 7,714  
Fig.14. Change of the Honda center-of-mass coordinates in the impact 
phase. 
 

 
𝑋0 = 	1469. 𝑡. + 45,9. −14,18. 𝑡 − 1,319  
Fig.15. Change of the Honda center-of-mass coordinates in the impact 
phase. 
 
 

 
𝜑10 = 	5773. 𝑡. − 555.+1,187. 𝑡 + 1,712 

Fig.16. Change in the angle of rotation of the Honda around the vertical 
axis. 
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 Therefore, the force of gravity 𝐺⃗ will lie on the axis 𝑂𝑧. 
The spatial arrangement model of the car is a plane located 
on four elastic supports, which are marked by 𝐾/(𝑖 = 1 ÷
4)	(Fig. 18). 
 

 
Fig. 17. Spatial dynamic model of an automobile with elastic 
suspension. 
 
 𝐹⃗/(𝑖 = 1 ÷ 4) is elastic force generated by the elasticity 
of tires and springs; 𝑁$$⃗ /(𝑖 = 1 ÷ 4) is normal reaction at the 
contact point of automobile tires, corresponding to elastic 
force; 𝑉$⃗ /(𝑖 = 1 ÷ 4) is velocity of the contact point 𝑃/ in the 
plane of the road О𝑥𝑦; 𝑇$⃗ /(𝑖 = 1 ÷ 4) is friction force at the 
contact points that lies in the plane of the road О𝑥𝑦; 
𝑅$⃗ /(𝑖 = 1 ÷ 4) is resistance force generated by damping 
elements in suspension; 𝑐/ ,

@
3
(𝑖 = 1 ÷ 4) elasticity of 

suspension, taking into account both coefficient of elasticity 

of tires and suspension; 𝑏/ ,
@∙B
3
(𝑖 = 1 ÷ 4) coefficient of 

linear resistance. 
 The car motion according to the studies of kinetic energy 
and generalized forces is defined by six differential 
equations with six generalized coordinates. These equations 
are valid if the friction force is in accordance with 
Coulomb's law and the wheels slide on the ground without 
rolling (Karapetkov [18, 19], Karapetkov, Uzunov [20]). 
According to (11), the wheels keep a continuous contact 
with the road. 
 Generalized forces and moments in the right-hand sides 
of the differential equations (8) are determined by assuming 
that the absolute coordinate system has a vertical axis of О𝑧. 
 
 

 
Fig. 18. Model of the forces acting on a car in its spatial motion, taking 
into account the elasticity of tires (suspension). 
 

 
 
 

𝑚 ∙ 𝑥̈ = sa𝐹./

C

/;7

t ; 	𝑚 ∙ 𝑦̈ = sa𝐹8/

C

/;7

t ; 	𝑚 ∙ 𝑧̈ = s−𝐺 +a𝑁/

C

/;7

−a𝑅/

C

/;7

t																																																																																														(7)

 
𝑎77 ∙ 𝜑̈ + 𝑎71 ∙ 𝜓̈ + 𝑎7D ∙ 𝜃̈ = 

v
a𝑁/ ∙ 𝛿E/

C

/;7

+ax𝐹./ ∙ 𝑓E%( + 𝐹8/ ∙ 𝑓E2(z
C

/;7

−a𝑅/ ∙ 𝛿E/

C

/;7

−𝑏77 ∙ 𝜑̇1 − 𝑏71 ∙ 𝜓̇1 − 𝑏7D ∙ 𝜃̇1 − 𝑐77 ∙ 𝜑̇ ∙ 𝜓̇ − 𝑐71 ∙ 𝜑̇ ∙ 𝜃̇ − 𝑐7D ∙ 𝜓̇ ∙ 𝜃̇

{ ; 

 
 
𝑎17 ∙ 𝜑̈ + 𝑎11 ∙ 𝜓̈ + 𝑎1D ∙ 𝜃̈ = 

= v
ax𝐹./ ∙ 𝑓F%( + 𝐹8/ ∙ 𝑓F2(z −
C

/;7

𝑏17 ∙ 𝜑̇1 − 𝑏11 ∙ 𝜓̇1 − 𝑏1D ∙ 𝜃̇1 −

−𝑐17 ∙ 𝜑̇ ∙ 𝜓̇ − 𝑐11 ∙ 𝜑̇ ∙ 𝜃̇ − 𝑐1D ∙ 𝜓̇ ∙ 𝜃̇

{ ; 

 
𝑎D7 ∙ 𝜑̈ + 𝑎D1 ∙ 𝜓̈ + 𝑎DD ∙ 𝜃̈ = 

= v
a𝑁/ ∙ 𝛿G/

C

/;7

+ax𝐹./ ∙ 𝑓G%( + 𝐹8/ ∙ 𝑓G2(z −a𝑅/ ∙ 𝛿G/

C

/;7

C

/;/

−

−𝑏D7 ∙ 𝜑̇1 − 𝑏D1 ∙ 𝜓̇1 − 𝑏DD ∙ 𝜃̇1 − 𝑐D7 ∙ 𝜑̇ ∙ 𝜓̇ − 𝑐D1 ∙ 𝜑̇ ∙ 𝜃̇ − 𝑐DD ∙ 𝜓̇ ∙ 𝜃̇

{ ; 

 
𝑎77 = 𝐽5353; 	𝑎71 = −𝐽5353 ∙ 𝑐𝑜𝑠𝜃 − 𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝜃 − 𝐽8353 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛𝜃; 
 
𝑎7D = −𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 + 𝐽8353 ∙ 𝑠𝑖𝑛𝜑; 

             (8) 
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𝑏77 = 0;	𝑏71 =

⎝

⎜
⎛

−
1
2 ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛

1𝜃 ∙ c𝐽.3.3 + 𝐽8383d +

+𝐽.383 ∙ 𝑐𝑜𝑠2𝜑 ∙ 𝑠𝑖𝑛1𝜃 +

+
1
2 ∙ 𝑠𝑖𝑛2𝜃 ∙ c𝐽5

3.3 ∙ 𝑐𝑜𝑠𝜑 − 𝐽8353 ∙ 𝑠𝑖𝑛𝜑d⎠

⎟
⎞
; 

 

𝑏7D = �
1
2 ∙ c𝐽.

3.3 − 𝐽8383d ∙ 𝑠𝑖𝑛2𝜑 − 𝐽.383 ∙ 𝑐𝑜𝑠2𝜑� ; 
 

𝑐77 = 0;	𝑐71 = 0;	𝑐7D =

⎝

⎜⎜
⎛
𝑐𝑜𝑠2𝜑 ∙ 𝑠𝑖𝑛𝜃 ∙ c𝐽.3.3 + 𝐽8383d −

−𝐽5353 ∙ 𝑠𝑖𝑛𝜃 −

−2 ∙ �
𝐽.383 ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛𝜃 +
+𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃 +
+𝐽8353 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃

�
⎠

⎟⎟
⎞

 

 
𝑎17 = c𝐽5353 ∙ 𝑐𝑜𝑠𝜃 − 𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝜃 − 𝐽8353 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛𝜃d; 
 

𝑎11 = �
𝐽.3.3 ∙ 𝑠𝑖𝑛1𝜑 ∙ 𝑠𝑖𝑛1𝜃 + 𝐽8383 ∙ 𝑐𝑜𝑠1𝜑 ∙ 𝑠𝑖𝑛1𝜃 +

+𝐽5353 ∙ 𝑐𝑜𝑠1𝜃 − 𝐽.383 ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛1𝜃
−𝐽.353 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛2𝜃 − 𝐽8353 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛2𝜃

� ; 

 

𝑎1D =

⎝

⎛
0,5 ∙ 𝐽.3.3 ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛𝜃 −

1
2 ∙ 𝐽8

383 ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛𝜃 −
−𝐽.383 ∙ 𝑐𝑜𝑠2𝜑 ∙ 𝑠𝑖𝑛𝜃 − 𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃 +

+𝐽8353 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃 ⎠

⎞ ; 

 
𝑏17 = c−𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 + 𝐽8353 ∙ 𝑠𝑖𝑛𝜑d ∙ 𝑠𝑖𝑛𝜃; 
 

𝑏11 = 0;	𝑏1D =

⎝

⎜
⎛�0,5 ∙ 𝐽.3.3 ∙ 𝑠𝑖𝑛2𝜑 −

1
2 ∙ 𝐽8

383 ∙ 𝑠𝑖𝑛2𝜑 −
−𝐽.383 ∙ 𝑐𝑜𝑠2𝜑

� ∙ 𝑐𝑜𝑠𝜃 +

+c𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 − 𝐽8353 ∙ 𝑠𝑖𝑛𝜑d ∙ 𝑠𝑖𝑛𝜃 ⎠

⎟
⎞
; 

 

𝑐17 = �
c𝐽.3.3 ∙ 𝑠𝑖𝑛2𝜑 − 𝐽8383 ∙ 𝑠𝑖𝑛2𝜑 − 2 ∙ 𝐽.383 ∙ 𝑐𝑜𝑠2𝜑d ∙ 𝑠𝑖𝑛1𝜃 −

−c𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 − 𝐽8353 ∙ 𝑠𝑖𝑛𝜑d ∙ 𝑠𝑖𝑛2𝜃
� ; 

 

𝑐11 = �c𝐽.3.3 ∙ 𝑐𝑜𝑠2𝜑 − 𝐽8383 ∙ 𝑐𝑜𝑠2𝜑 + 2 ∙ 𝐽.383 ∙ 𝑠𝑖𝑛2𝜑d ∙ 𝑠𝑖𝑛𝜃 −
−𝐽5353 ∙ 𝑠𝑖𝑛𝜃

� ; 

 

𝑐1D = �
c𝐽.3.3 ∙ 𝑠𝑖𝑛1𝜑 + 𝐽8383 ∙ 𝑐𝑜𝑠1𝜑 − 𝐽.383 ∙ 𝑠𝑖𝑛2𝜑 − 𝐽5353d ∙ 𝑠𝑖𝑛2𝜃 −

−2 ∙ c𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 + 𝐽8353 ∙ 𝑐𝑜𝑠𝜑d ∙ 𝑐𝑜𝑠2𝜃
� ; 

 
𝑎D7 = 𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 + 𝐽8353 ∙ 𝑠𝑖𝑛𝜑; 
 

𝑎D1 = �
0,5 ∙ c𝐽.3.3 − 𝐽8383d ∙ 𝑠𝑖𝑛2𝜑 ∙ 𝑠𝑖𝑛𝜃 − 𝐽.383 ∙ 𝑐𝑜𝑠2𝜑 ∙ 𝑠𝑖𝑛𝜃 −

−𝐽53.3 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃 + 𝐽8353 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃
� ; 

 

𝑎DD = 𝐽.3.3 ∙ 𝑐𝑜𝑠1𝜑 + 𝐽8383 ∙ 𝑠𝑖𝑛1𝜑 +
1
2 ∙ 𝐽.

383 ∙ 𝑠𝑖𝑛2𝜑;		𝑏D7 = 𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 + 𝐽8353 ∙ 𝑐𝑜𝑠𝜑; 
 

𝑏D1 = �
−�0,5 ∙ �

𝐽.3.3 ∙ 𝑠𝑖𝑛1𝜑 + 𝐽8383 ∙ 𝑐𝑜𝑠1𝜑 +
+𝐽5353 − 𝐽.383 ∙ 𝑠𝑖𝑛2𝜑

�� ∙ 𝑠𝑖𝑛2𝜃 +

+c𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 + 𝐽8353 ∙ 𝑐𝑜𝑠𝜑d ∙ 𝑐𝑜𝑠2𝜃
� ;		𝑏DD = 0; 

 

𝑐D7 = �
�c𝐽.3.3 + 𝐽8383d ∙ 𝑐𝑜𝑠2𝜑 + 2 ∙ 𝐽.383 ∙ 𝑠𝑖𝑛2𝜑 + 𝐽5353� ∙ 𝑠𝑖𝑛𝜃 +

+2 ∙ c𝐽53.3 ∙ 𝑠𝑖𝑛𝜑 + 𝐽8353 ∙ 𝑐𝑜𝑠𝜑d ∙ 𝑐𝑜𝑠𝜃
� ; 

 
𝑐D1 = �c−𝐽.3.3 + 𝐽8383d ∙ 𝑠𝑖𝑛2𝜑 + 2 ∙ 𝐽.383 ∙ 𝑐𝑜𝑠2𝜑�;	𝑐DD = 0 
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We substitute the equations before 𝛿E/ and 𝛿G/ using the notation  
 
𝛿E/ = [(𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑥H/? + (−𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝑦H/? ]; 
 

𝛿G/ = �
(𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑥H/? +

+(𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃) ∙ 𝑦H/? + (−𝑠𝑖𝑛𝜃) ∙ 𝑧H/?
�.     (9) 

 
To facilitate notation, substitution has been done, which looks like as follows: 
 

𝑓F%( =

⎣
⎢
⎢
⎢
⎡ �

−𝑠𝑖𝑛𝜓 ∙ 𝑐𝑜𝑠𝜑 −
−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑥H/

? +

+�
𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜑 −

−𝑐𝑜𝑠𝜓 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑦H/
? +

+(−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝛿𝑧H/? ⎦
⎥
⎥
⎥
⎤

; 𝑓G%( = �
(𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜑) ∙ 𝛿𝑥H/? +
+(𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜓 ∙ 𝑐𝑜𝑠𝜑) ∙ 𝛿𝑦H/? +

+(−𝑐𝑜𝑠𝜃 ∙ 𝑠𝑖𝑛𝜓) ∙ 𝛿𝑧H/?
� 

 

𝑓E2( = �
�

−𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜑 +
+𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑥H/

? +

+�
−𝑠𝑖𝑛𝜓 ∙ 𝑐𝑜𝑠𝜑 −

−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑦H/
?
� ; 𝑓F2( =

⎣
⎢
⎢
⎢
⎡ �

𝑐𝑜𝑠𝜓 ∙ 𝑐𝑜𝑠𝜑 −
−𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑥H/

? +

+�
−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑 −

−𝑠𝑖𝑛𝜓 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝜃� ∙ 𝛿𝑦H/
? +

+(𝑠𝑖𝑛𝜓 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝛿𝑧H/? ⎦
⎥
⎥
⎥
⎤

 

 

𝑓G2 = �
(−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝛿𝑥H/? +
+(−𝑐𝑜𝑠𝜓 ∙ 𝑐𝑜𝑠𝜑 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝛿𝑦H/? +

+(−𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜃) ∙ 𝛿𝑧H/?
�                    (10) 

 
 
 
 The relative motion of the wheels, the differential(s) and 
the engine are characterized by a system of four differential 
equations derived by the Lagrangian method, which has the 
form of 
 
�𝐼I� ∙ [𝛾̈] = �𝑀I/�;     
 
𝑀I/ = {𝐹/J ∙ 𝑟/ + 𝑠𝑖𝑔𝑛	(𝛾̇/) ∙ [𝑀#/ − 𝑓/ ∙ 𝑁/ −𝑀B/]} 
 (11) 
 𝐹⃗/J is tangential component of the tire-road friction force, 
the positive direction of which is taken backwards, in the 
more frequent cases of braking or loss of stiffness. 
 Where 𝜇 is friction coefficient depending on slipping 
speed on the contact spot; 𝑟⃗/ – radius of the wheel; 𝑓/ – 
coefficient of rolling friction; 𝑁$$⃗ / – normal reaction of the 
road on wheels; �𝐼I� - a square matrix of coefficients in front 
the actual angular acceleration of the drive wheels, 
depending on the moment of inertia of the wheels and the 
engine; 𝛾̇/	/𝑖 = 1÷4/	- wheel angular velocity; [𝛾̈] - a 
matrix-column of the actual angular acceleration of the 
wheels, two or four of which are propulsive;	𝑀#/ , 𝑀B/ - 
corresponding engine and brake torque applied to each 
wheel. 
 Figure 19 shows the dynamic model of an active 
suspension system. Figure 20 shows the dynamic diagram of 
a driving or sliding wheel. 
 

 
Fig. 19. Dynamic model of an active suspension system. 
 

7. Results of the macro-movement of the cars after the 
impact 
 
Initial conditions for the velocity of the center of mass and 
the angular velocity of the vehicle, satisfying the differential 
equations of motion, determine the residual energy of 
motion of the vehicles after impact. The graphs show the 
change of the kinematic parameters as a function of time 
(Fig. 21-29). 

 
Fig. 20. Drive wheel diagram. 
 

 
Fig. 21. Motion of cars after the collision. 
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Fig.22. Change in the velocity of the Audi center of mass and angular 
velocity. 
 
 

 
Fig.23. Change in the velocity of the Honda center of mass and angular 
velocity. 
 
 

 
Fig.24. Change of the Audi center-of-mass coordinates.  
 
 
 

 
Fig.25. Change of the Honda center-of-mass coordinates. 
 
 

 
Fig.26. Audi center of mass trajectory. 
 
 

 
Fig.27. Honda center of mass trajectory. 
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Fig.28. Audi rotation angle about a vertical axis. 
 

 
Fig.29. Honda rotation angle about a vertical axis. 

 
8. Conclusions 
 
1. A common engineering problem, known as the Cauchy 
problem, has been solved – the pre-impact velocity of the 
center of mass of automobiles using the finite element 
method has been determined. The traditional methods in this 
dynamic analysis, used in modern automotive expertise, do 
not meet the requirements for accuracy and precision. 
2. The proposed finite element approach is a modern 
innovative tool for solving similar tasks in order to identify 
road accidents. In this way, the deformation zones can be 
reliably and reasonably analysed with sufficient accuracy. 
3. The presented methodology for car impact can be offered 
for other vehicles, including service and freight vehicles - 
tractor trailers and semi-trailers. The solution of this problem 
requires corresponding adequate mechanical and 
mathematical modelling of vehicle motion after the impact. 
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License. 
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