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Abstract 
 

In this paper Extreme Learning Machine, Chaotic, Quantum and Opposition based California condor Optimization 
algorithms are applied to solve the power loss lessening problem. California condor Optimization (CO) algorithm is 
modelled based on the deeds of California condor.  In normal environs, numerous California condors can be substantially 
alienated into dual clusters, in which the procedure principally computes the fitness rate for elucidations to split 
California condor’s into classes. In the design period, in order to alleviate hunger, presumptuous that the poorest solution 
in the populace is the feeblest and ravenous, the California condor’s attempt to preserve their expanse from the poor and 
emanated up with the preeminent solution. In California condor Optimization (CO) algorithm, twofold of the preeminent 
solutions are measured as the robust and preeminent California condor’s, and the other California condor’s attempt to 
approach the preeminent one. In iterations, the complete population is recomputed. In the proposed Extreme Learning 
Machine based California condor Optimization (ELMCO) Algorithm, CO approach enhances Extreme Learning Machine 
features to determine an optimal skeleton of Extreme Learning Machine for enhanced canons. In ELMCO Algorithm 
principally all elements don’t own any info about the explication area. Chaotic sequences are integrated into the 
California condor Optimization (CO) algorithm and it called as - Chaotic based California condor Optimization (CCO) 
algorithm. This integration will augment the Exploration and Exploitation. Tinkerbell chaotic map engendering standards 
are implemented. Quantum mechanics has been combined with California condor Optimization (CO) algorithm and it 
entitled as Quantum based California condor Optimization (QCO) algorithm. In quantum method, features emulate the 
analogous performance with the certain stage as they route in a credible powdered of median. California condor 
Optimization (CO) algorithm, even though the initiative of contestant explications slants to touch an optimal solution, yet 
several are get entombed and not adept of emotive in the route of the dominant solution. It significances to snare in local 
optima and it accordingly enforces into primary and slow convergence. Subsequently Opposition based California condor 
Optimization (OCO) algorithm employs Laplace distribution to enhance the exploration skill.  Proposed Extreme 
Learning Machine, Chaotic, Quantum and Opposition based California condor Optimization algorithms are corroborated 
in IEEE 30 bus system and IEEE 14, 30, 57, 118, 300 bus test systems without considering the voltage constancy index. 
True power loss lessening, voltage divergence curtailing, and voltage constancy index augmentation has been attained. 
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1. Introduction 

 
Endorsing a satisfactory quantity of reactive power is spirited 
for the reliable operation of power transmission systems, as 
the reactive power insufficiency may lead to severe voltage 
collapse and primary power disruptions. Covering numerous 
directive measures, reactive power planning has become a 
mystifying issue that supports to the safe and economic 
growth of power systems. 
 
1.1. Literature survey  
Zhu et al [1] solved the problem by adapted interior point 
technique.  Quintana et al [2] solve the problem by 
successive quadratic programming. Jan et al [3] used fast N-
R for solving the optimal power flow.  Terra et al [4] did 
Security constrained power dispatch. Grudinin [5] solved the 
problem by successive quadratic programming. Mohamed 
Ebeed et al [6] used Marine Predators Algorithm to solve the 
problem. Zahir Sahli et al [7] applied Hybrid Algorithm. 
Davoodi et al [8] used semidefinite programming-based 

approach. Bingane et al [9] applied Tight-and-cheap conic 
method. Sahli et al [10] applied Hybridized PSO-Tabu. 
Mouassa et al [11] applied Ant lion algorithm.   
 Mandal et al [12] solved the problem by using quasi-
oppositional teaching. Khazali et al [13] solved the problem 
by harmony search procedure. Tran et al [14] solved problem 
by innovative enhanced stochastic fractal search procedure. 
Polprasert et al [15] solved the problem by using enhanced 
pseudo-gradient pursuit particle swarm optimization. Thanh 
et al [16] solved the problem by an Operative Metaheuristic 
Procedure.  Muhammad et al solved the problem by using 
FACTS.  Lin et al [17] solved by using chaotic Lévy flight 
bat algorithm.  Hakli et al [18] did a novel particle swarm 
optimization algorithm with Levy flight. Nagarajan et al [20] 
used Interior Search Algorithm. Dai et al [21] used Seeker 
optimization. Subbaraj et al [22] used self-adaptive real 
coded Genetic procedure. Pandya et al [23] applied Particle 
swarm optimization. Ali Nasser Hussain et al [24] applied 
Amended Particle Swarm Optimization.  
 Vishnu et al [25] applied an Enhanced Particle Swarm 
Optimization. Vodchits Angelina et al [26] did Development 
of a Design Algorithm. Vodchits Angelina et al [27] did the 
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work on organization of logistic systems of scientific 
constructions. Vodchits Angelina et al [28] solved the 
Problems and organizational and technical solutions. Mei, et 
al [29] used moth-flame optimization technique. Li et al [30] 
did Multiobjective Discrete Artificial Bee Colony Algorithm 
for Multiobjective Permutation Flow Shop Scheduling 
Problem with Sequence Dependent Setup.   Kanata et al [31] 
did Non-dominated Sorting Genetic Algorithm III for Multi-
objective Optimal Reactive Power Dispatch Problem in 
Electrical Power System.  
 
1.2. Proposed methodology  
In this paper Extreme Learning Machine, Chaotic, Quantum 
and Opposition based California condor Optimization 
algorithms are applied for solving the power loss lessening 
problem. Important goals of the paper are Voltage stability 
enrichment, voltage deviation minimization and Tangible 
power loss lessening. California condor Optimization (CO) 
algorithm is modelled based on the deeds of California 
condor. Mature California condor is an identical dark with 
the exemption of big trilateral spots of gray on the 
underneath of the wings. It has ashen limbs and bottoms, an 
ivory dyed beak, an embellishment of dark quills contiguous 
to the base of the neckline with red eyes. The infantile is 
habitually a dappled black brunette with blackish pattern on 
the pate. It has dappled somber as a replacement for of 
snowy on the underneath of its flying quills. 
 The California condor's cranium and neckline have little 
quills, and the membrane of the cranium and neckline is 
accomplished of reddening strikingly in reaction to emotive 
phase, a competence that can assist as message between 
entities. The membrane pigment diverges from yellow to 
radiant roseate orange. The California condor does not 
possess exact syrinx communications. California condor can 
create a little groaning sound solitary heard once very 
nearby. It is considered N California condor’s in an environs. 
It defines the equivalent amount of population in the 
metaheuristic procedure.  And in normal environs, numerous 
California condors can be substantially alienated into dual 
clusters, in which the procedure principally computes the 
fitness rate for elucidations (preliminary populace) to split 
California condor’s into classes.  
 The finest response is assumed as the preeminent as chief 
California condor and the succeeding solution as the 
subsequent finest California condo. Remaining create a 
population that passages or substitutes one of the twofold 
preeminent California condor’s in every activity. The motive 
for splitting clusters in this procedure is that California 
condor’s' utmost vital normal task can be articulated: cluster 
living to discover nutrition.  
 Every cluster of California condor’s is a dissimilar 
helplessness to discover nutrition and consume. The 
propensity to consume in California condor’s and seeing for 
nutrition for periods sources them to seepage from the 
starving ruse. At the design period, in order to alleviate 
hunger, presumptuous that the poorest solution in the 
populace is the feeblest and ravenous, the California 
condor’s attempt to preserve their expanse from the poor and 
emanated up with the preeminent solution.  
 In California condor Optimization (CO) algorithm, 
twofold of the preeminent solutions are measured as the 
robust and preeminent California condor’s, and the other 
California condor’s attempt to approach the preeminent one. 
Subsequent to the formation of preliminary population, the 
aptness or fitness rate of all solutions is computed, and the 
preeminent solution is designated as the preeminent 

California condor of the chief cluster and the subsequent 
preeminent solution as the best California condor of the 
succeeding cluster, and remaining solutions will passage in 
the direction of the preeminent solutions for the chief and 
succeeding clusters.  
 In iterations, the complete population is recomputed. 
California condors are frequently eyeing for nutrition and 
possess great vigor when they are slaked, which creates them 
go extended expanses to quest for nutrition, nonetheless 
when California condors are starving, they do not possess 
vigor to fly lengthy and gaze for nutrition subsequent to the 
robust California condor and converted belligerent while 
ravenous.  This aspect has been utilized for transferal activity 
from the exploration to the exploitation segment, which is 
stimulated by the degree at which the California condors are 
slaked or ravenous.  
 In the proposed Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm, CO 
approach enhances Extreme Learning Machine features to 
determine an optimal skeleton of Extreme Learning Machine 
for enhanced canons. In Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm 
principally all elements don’t own any info about the 
explication area. In initial stages of iteration, the California 
condor contestants are assorted in milieu and exponential 
skimp generates boundless unpremeditated amounts which 
contribute the rudiments to lodging the entire explication 
zone. Congruently, all over end stage of iterations, rudiments 
are surrounded by California condor contestants and all an 
optimal situation with similar pattern. 
 Chaotic sequences are integrated into the California 
condor Optimization (CO) algorithm and it called as - 
Chaotic based California condor Optimization (CCO) 
algorithm. This integration will augment the Exploration and 
Exploitation. Tinkerbell chaotic map engendering standards 
are implemented. Quantum mechanics has been combined 
with California condor Optimization (CO) algorithm and it 
entitled as Quantum based California condor Optimization 
(QCO) algorithm. In quantum method, features emulate the 
analogous performance with the certain stage as they route in 
a credible powdered of median. California condor 
Optimization (CO) algorithm, even though the initiative of 
contestant explications slants to touch an optimal solution, 
yet several are get entombed and not adept of emotive in the 
route of the dominant solution. It significances to snare in 
local optima and it accordingly enforces into primary and 
slow convergence.  
 Subsequently Opposition based California condor 
Optimization (OCO) algorithm employs Laplace distribution 
to enhance the exploration skill.  Then examining the 
prospect to widen the exploration, a new method endorses 
stimulating capricious statistics used in formation stage 
regulator factor in California condor Optimization (CO) 
algorithm. In the proposed procedure, the exchanging of 
capricious statistics is done with the illogical numbers 
stimulated by Laplace distribution to enlarge the assistance 
of the probability of formation stage in the exploration zone. 
Proposed Extreme Learning Machine, Chaotic, Quantum and 
Opposition based California condor Optimization algorithms 
are corroborated in IEEE 30 bus system and IEEE 14, 30, 57, 
118, 300 bus test systems without considering the voltage 
constancy index. True power loss lessening, voltage 
divergence curtailing, and voltage constancy index 
augmentation has been attained. 
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2. Problem Formulation  

 
Power loss minimization is defined by 
 
𝑀𝑖𝑛	𝐹&'𝑑̅, 𝑒̅,         (1) 
 
𝑤ℎ𝑒𝑟𝑒min 𝑖𝑠	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑝𝑜𝑤𝑒𝑟	𝑙𝑜𝑠𝑠  
Subject to the constraints  
 
𝐴'𝑑̅, 𝑒̅, = 0       (2) 
 
𝐵'𝑑̅, 𝑒̅, = 0                         (3) 
 
𝑤ℎ𝑒𝑟𝑒	d	, e	are		control	and	dependent	variables		  
 
𝑑 = L𝑉𝐿𝐺!, . . , 𝑉𝐿𝐺"#; 𝑄𝐶!, . . , 𝑄𝐶"$; 𝑇!, . . , 𝑇"!U    (4) 
 
𝑒 =
L𝑃𝐺%&'$(; 𝑉𝐿!, . . , 𝑉𝐿""#$%; 𝑄𝐺!, . . , 𝑄𝐺"#; 𝑆𝐿!, . . , 𝑆𝐿"!U							(5) 
 
𝐹! = 𝑃)*+*,*-. = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 X∑ 𝐺,"/0

, L𝑉*1 + 𝑉21 − 2 ∗

𝑉*𝑉2𝑐𝑜𝑠Ø*2U`                                                                  (6) 
 
𝐹1 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 X∑ a𝑉0( − 𝑉0(3.%*4.3a

1 + ∑ a𝑄56 −
"#
*7!

""&
*7!

𝑄650*,a
1`                                                                                 (7) 

 
𝐹8 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐿)'9:,;,                                                   (8) 
 
𝐿)'9*,;, = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚L𝐿2U; 𝑗 = 1;𝑁0<       (9) 
 
 

Andg
𝐿2 = 1 − ∑ 𝐹2*

='
=(

">=
*7!

𝐹2* = −[𝑌!]![𝑌1]
    (10) 

 
𝐿)'9*,;, = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 k1 − [𝑌!]?![𝑌1] ×

='
=(
m     (11) 

 
Parity constraints  
 
0 = 𝑃𝐺* − 𝑃𝐷* − 𝑉* ∑ 𝑉22∈"& X𝐺*2𝑐𝑜𝑠LØ* − Ø2U +

𝐵*2𝑠𝑖𝑛LØ* − Ø2U`       (12) 
 
0 = 𝑄𝐺* −𝑄𝐷* − 𝑉* ∑ 𝑉22∈"& X𝐺*2𝑠𝑖𝑛LØ* − Ø2U +

𝐵*2𝑐𝑜𝑠LØ* − Ø2U`                         (13) 
 
Disparity constraints  
PABCDEFGHIHGJG ≤ PABCDEF ≤ PABCDEFGDKHGJG                        (14) 
 
QAHGHIHGJG ≤ QAH ≤ QAHGDKHGJG	, i ∈ NA       (15) 
 
VLHGHIHGJG ≤ VLH ≤ VLHGDKHGJG	, i ∈ NL              (16) 
 
THGHIHGJG ≤ TH ≤ THGDKHGJG	, i ∈ NL    (17) 
 
QEGHIHGJG ≤ QE ≤ QMGDKHGJG	, i ∈ NM                                (18) 
 
|𝑆𝐿*| ≤ 𝑆0'

,'9*,;,	, i ∈ NLN                    (19) 
 

VGHGHIHGJG ≤ VGH ≤ VGHGDKHGJG	, i ∈ NA   (20) 
 
𝑀𝑢𝑙𝑡𝑖	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	(𝑀𝑂𝐹) = 𝐹_1 + 𝑟_𝑖	𝐹_2 +
𝑢𝐹_3 = 𝐹_1 + [∑_(𝑖 = 1)^𝑁𝐿〖𝑥_𝑣	[〖𝑉𝐿〗_𝑖 −〖𝑉𝐿〗
_𝑖^𝑚𝑖𝑛	]^2	〗+∑_(𝑖 = 1)^𝑁𝐺〖𝑟_𝑔	[〖𝑄𝐺〗_𝑖 −
〖𝑄𝐺〗_𝑖^𝑚𝑖𝑛	]^2	〗] + 𝑟_𝑓	𝐹_3                            (21) 
 

𝑉𝐿*,*+*,;, = �
𝑉𝐿*,'9	, 𝑉𝐿* > 𝑉𝐿*,'9

𝑉𝐿*,*+, 𝑉𝐿* < 𝑉𝐿*,*+
         (22) 

 

𝑄𝐺*,*+*,;, = �
𝑄𝐺*,'9	, 𝑄𝐺* > 𝑄𝐺*,'9

𝑄𝐺*,*+, 𝑄𝐺* < 𝑄𝐺*,*+
                             (23) 

 
        
3. California condor Optimization Algorithm 

 
California condor Optimization (CO) algorithm is modelled 
based on the deeds of California condor. It is considered N 
California condor’s in an environs. It defines the equivalent 
amount of population in the metaheuristic procedure.  And in 
normal environs, numerous California condors can be 
substantially alienated into dual clusters, in which the 
procedure principally computes the fitness rate for 
elucidations (preliminary populace) to split California 
condor’s into classes. The finest response is assumed as the 
preeminent as chief California condor and the succeeding 
solution as the subsequent finest California condo. 
Remaining create a population that passages or substitutes 
one of the twofold preeminent California condor’s in every 
activity. Subsequent to the formation of preliminary 
population, the aptness or fitness rate of all solutions is 
computed, and the preeminent solution is designated as the 
preeminent California condor of the chief cluster and the 
subsequent preeminent solution as the best California condor 
of the succeeding cluster, and remaining solutions will 
passage in the direction of the preeminent solutions for the 
chief and succeeding clusters. In iterations, the complete 
population is recomputed. 
 

𝑂(𝑖) = �Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

     (24) 

 
𝑤ℎ𝑒𝑟𝑒	𝐶!	, 𝐶1 ∈ [0,1]  
 
 The prospect of selecting the preeminent solution is 
expanded by Roulette wheel to select every preeminent 
solution for each one cluster as follows, 
 
	𝑞* =

O'
∑ O')
'*+

                                                                         (25) 
 
 California condors are frequently eyeing for nutrition and 
possess great vigor when they are slaked, which creates them 
go extended expanses to quest for nutrition, nonetheless 
when California condors are starving, they do not possess 
vigor to fly lengthy and gaze for nutrition subsequent to the 
robust California condor and converted belligerent while 
ravenous.  This aspect has been utilized for transferal activity 
from the exploration to the exploitation segment, which is 
stimulated by the degree at which the California condors are 
slaked or ravenous. The degree of being slaked possess 
diminishing trend and it defined as, 
 
𝑡 = 𝑔 × �𝑠𝑖𝑛Q �R

1
× *S.4'

GDK *S.4
� + 𝑐𝑜𝑠 �R

1
× *S.4'

GDK *S.4
� − 1�    (26) 
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𝐻 = (2 × 𝑅𝑎𝑛𝑑𝑜𝑚! + 1) × 𝑦 × �1 −
*S.4'

GDK *S.4
� + 𝑡         (27) 

 
𝑤ℎ𝑒𝑟𝑒	𝑦 ∈ [−1,1], 
𝑔 ∈ [−2,2],  
𝑅𝑎𝑛𝑑𝑜𝑚! ∈ [0,1]  
 
 When the value of 𝑦 is decreases below to zero value 
then California condor is in ravenous phase and if the value 
of 𝑦 increases to zero then the California condor is slaked. 
The motive for splitting clusters in this procedure is that 
California condor’s' utmost vital normal task can be 
articulated: cluster living to discover nutrition. Every cluster 
of California condor’s is a dissimilar helplessness to discover 
nutrition and consume. The propensity to consume in 
California condor’s and seeing for nutrition for periods 
sources them to seepage from the starving ruse. At the design 
period, in order to alleviate hunger, presumptuous that the 
poorest solution in the populace is the feeblest and ravenous, 
the California condor’s attempt to preserve their expanse 
from the poor and emanated up with the preeminent solution. 
In California condor Optimization (CO) algorithm, twofold 
of the preeminent solutions are measured as the robust and 
preeminent California condor’s, and the other California 
condor’s attempt to approach the preeminent one. 
 
 In resolving perplexing optimization complications, there 
is no assurance that the concluding populace will comprise 
precise approximations for the global optimal solution at the 
completion of the exploration segment. Aimed at this 
purpose, it grounds early convergence in local solution.  To 
escape from the escape from local optimal solutions 𝑡 =
𝑔 × �𝑠𝑖𝑛Q �R

1
× *S.4'

GDK *S.4
� + 𝑐𝑜𝑠 �R

1
× *S.4'

GDK *S.4
� − 1� is 

employed. The concluding iterations of the California 
condor Optimization (CO) algorithm execute the exploitation 
segment and do exploration processes in concluding 
iterations. Through this stratagem’s complete aim is to 
amend 𝑡 = 𝑔 × �𝑠𝑖𝑛Q �R

1
× *S.4'

GDK *S.4
� + 𝑐𝑜𝑠 �R

1
× *S.4'

GDK *S.4
� −

1� to alter exploration and exploitation segments so that 
California condor Optimization (CO) algorithm can upsurge 
the possibility of arriving the exploration segment at certain 
period in the process. 𝑅 Specifies the process disorders the 
exploration and operation segments and when 𝑅 upsurges, 
the possibility of arrive to the exploration segment in the 
concluding phase’s upsurges, nevertheless, by lessening	𝑅, 
the possibility of arrive to the exploration segment 
diminishes.  
 
𝑤ℎ𝑒𝑛	𝐻
> 1	𝑡ℎ𝑒𝑛	California	condor	explore	the	nutrition	in	various	 
places	 
𝑤ℎ𝑒𝑛	𝐻
< 1	𝑡ℎ𝑒𝑛	California	condor	optimization	(CO)algorithm	 
enters	to	exploitation	segment  
 

𝑄(𝑖 + 1) = �
𝑂(𝑖) − 𝐸(𝑖) × 𝐻	𝑖𝑓	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!	
𝑈 × 𝑂(𝑖) − 𝑄(𝑖)	𝑖𝑓	𝑄! < 𝑅𝑎𝑛𝑑𝑜𝑚T!

   (28) 

 
𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻                                            (29) 
 
𝐸(𝑖) = |𝑈 × 𝑂(𝑖) − 𝑄(𝑖)	|                                               (30) 
 
𝑈 = 2 × 𝑅𝑎𝑛𝑑𝑜𝑚                                               (31) 
 

 In the exploration segment California condor will search 
nutrition in different zones.  
 
𝑅𝑎𝑛𝑑𝑜𝑚T! 	 ∈ [0,1]  
 𝑤ℎ𝑒𝑟𝑒	𝑄(𝑖 + 1)	𝑠𝑖𝑔𝑛𝑖𝑓𝑦	𝑡ℎ𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛	𝑡ℎ𝑒	Subsequent	 
iteration	𝐻	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒	𝑡ℎ𝑒	𝑅𝑎𝑡𝑒	𝑜𝑓	𝑡ℎ𝑒	𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎	𝑐𝑜𝑛𝑑𝑜𝑟 
𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑠𝑙𝑎𝑘𝑒𝑑	𝑂(𝑖)	𝑖𝑠	𝑚𝑜𝑠𝑡	𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡	California	 
condor	𝑈	𝑖𝑠	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑣𝑒𝑐𝑡𝑜𝑟  
 
𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗
(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵,                                                           (32) 
 
𝑤ℎ𝑒𝑟𝑒	𝑈𝐵, 𝐿𝐵	𝑖𝑠	𝑈𝑝𝑝𝑒𝑟	𝑎𝑛𝑑	𝑙𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑              
 
When
𝐻	𝑖𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	0.5	𝑎𝑛𝑑	1	𝑡ℎ𝑒𝑛	California	condor	optimization 
	(CO)	algorithm	enters	to	exploitation	segment 
 
𝑄(𝑖 + 1) =

�
𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)𝑖𝑓	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1	

𝑂(𝑖) − (𝐽! + 𝐽1)	𝑖𝑓	𝑄1 < 𝑅𝑎𝑛𝑑𝑜𝑚T1
   (33) 

 
𝑤ℎ𝑒𝑛	𝐻 ≥
0.5	𝑡ℎ𝑒𝑛	𝑡ℎ𝑒	𝐶𝑎𝑙𝑖𝑓𝑜𝑟𝑛𝑖𝑎	𝑐𝑜𝑛𝑑𝑜𝑟	𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑠𝑙𝑎𝑘𝑒𝑑	  
 
 Many times the fragile California condors will rim the 
robust California condors which possess the nutrition and it 
defined as, 
𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)    (34) 
 
𝑑(𝑡) = 𝑂(𝑖) − 𝑄(𝑖)                                                           (35) 
 
𝑤ℎ𝑒𝑟𝑒	𝑅𝑎𝑛𝑑𝑜𝑚U ∈ [0,1]  
𝑂(𝑖)	𝑖𝑠	𝑚𝑜𝑠𝑡	𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡	California	condor		  
𝑄(𝑖)𝑠𝑖𝑔𝑛𝑖𝑓𝑦	𝑡ℎ𝑒	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	  
 
 The gyratory flying of California condors is articulated 
as, 
 
𝐽! = 𝑂(𝑖) × (𝑅𝑎𝑛𝑑𝑜𝑚V × 𝑄(𝑖) 2𝜋⁄ ) × 𝑐𝑜𝑠(𝑄(𝑖))           (36) 
 
𝐽1 = 𝑂(𝑖) × (𝑅𝑎𝑛𝑑𝑜𝑚W × 𝑄(𝑖) 2𝜋⁄ ) × 𝑠𝑖𝑛(𝑄(𝑖))           (37) 
 
𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1)                                 (38) 
 
𝑤ℎ𝑒𝑟𝑒	𝐽!, 𝐽1	𝑠𝑝𝑒𝑐𝑖𝑓𝑦	𝑡ℎ𝑒	gyratory	flying		  
𝑅𝑎𝑛𝑑𝑜𝑚V, 𝑅𝑎𝑛𝑑𝑜𝑚W ∈ [0,1]  
 
 In the subsequent segment of exploitation, the dual 
California condor’s activities accrue numerous categories of 
California condors over the nutrition source and this 
period	𝐻 < 0.5, 
 
𝑄(𝑖 + 1) =

�
𝑀! +𝑀1 2	𝑖𝑓	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8⁄

𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿𝑒𝑣𝑦(𝑑)𝑖𝑓	𝑄8 < 𝑅𝑎𝑛𝑑𝑜𝑚T8
        (39) 

 
𝑀_1 =〖Preeminent	California	condor	〗_1	(𝑖) − (
〖Preeminent	California	condor	〗_1	(𝑖) × 𝑄(𝑖)) ⁄ (
〖Preeminent	California	condor	〗_1	(𝑖) ×〖𝑄(𝑖)〗
^2	) ×
																																																																																																			(40) 
 
𝑀_2 =〖Preeminent	California	condor	〗_2	(𝑖) − (
〖Preeminent	California	condor	〗_2	(𝑖) × 𝑄(𝑖)) ⁄ (
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〖Preeminent	California	condor	〗_2	(𝑖) ×〖𝑄(𝑖)〗
^2	) × 𝐻                    (41) 
 
𝑤ℎ𝑒𝑟𝑒	𝑄(𝑖 +
1)	𝑠𝑖𝑔𝑛𝑖𝑓𝑦	𝑡ℎ𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛	𝑡ℎ𝑒	Subsequent	iteration	  
 
𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄                                                     (42) 
 
 Then the movement of the robust California condor’s in 
search of nutrition with reference to Levy flight [17-19] is 
mathematically articulated as, 
 
𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿𝑒𝑣𝑦(𝑑)                       (43) 
 
𝐿(𝑠)	~	|𝑠| − 1 − 𝛽	𝑤ℎ𝑒𝑟𝑒	0	 < 	ß	 < 	2	                          (44) 
 

L(s, γ, µ) = g ¤
X
1Y
													

0				if	s ≤ 0		
exp X− X

1(B?[)
` !
(B?[), -⁄ 				if	0		 <

µ < s < ∞										                                                    (45) 
 
F(k) = expL−α|k|]U		0 < β ≤ 2,            (46) 
𝑤ℎ𝑒𝑟𝑒	𝛼 ∈ [−1,1]  
𝛽	 ∈ 	 [0, 2]  
 
Z^_! = Z^ + α⊕ Levy	(β)               (47) 
 
Z^_! = Z^ + R	'size(D),⊕ Levy(β)         (48) 
 
Z^_! = Z^ + R	'size(D),⊕ Levy(β)~0.01 J

|a|+ /⁄ 'Zb
^ − gb, 

      (49) 
 

u~N(0, σJ1)			v~N(0, σa1)               (50) 
 

σJ = ° Г(!_])BHI(Y]/1)
Г[(!_])/1]]1(/1+)/-

±
!
]g 	 , σa = 1        (51) 

 
𝑤ℎ𝑒𝑟𝑒	𝑅	𝑠𝑝𝑒𝑐𝑖𝑓𝑦	𝑡ℎ𝑒	𝑟𝑎𝑛𝑑𝑜𝑚  
Г	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒	𝑡ℎ𝑒	𝐺𝑎𝑚𝑚𝑎	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
 
Г(𝑍5S ) = (𝑍5S − 1)!                       (52) 
 
 Fig 1 shows the Flow chart of California 
condor Optimization (CO) algorithm. 

a. Start  
b. Fix the parameter values  
c. Initialize the population arbitrarily  
d. 𝑤ℎ𝑖𝑙𝑒	(𝑒𝑛𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑡)𝑑𝑜 
e. Compute the fitness rate of the California condor 
f. 𝐹𝑖𝑥	preeminent	as	chief	California	condor	(
〖Preeminent	California	condor	〗_1) 

g. 𝐹𝑖𝑥	𝑛𝑒𝑥𝑡	𝑏𝑒𝑠𝑡	California	condor	(
〖Preeminent	California	condor	〗_2) 
h. 𝐹𝑜𝑟	'𝑒𝑣𝑒𝑟𝑦	California	condor	(𝑄*),	𝑑𝑜 
i. 𝑃𝑖𝑐𝑘	𝑂(𝑖) 
j. 𝑂(𝑖) =

�Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

 

k. 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒	𝐻(𝑖) 
l. 𝐻 = (2 ×〖𝑅𝑎𝑛𝑑𝑜𝑚〗_1 + 1) × 𝑦 × (1 −
〖𝑖𝑡𝑒𝑟〗_𝑖/max	 𝑖𝑡𝑒𝑟	) + 𝑡 

m. 𝑖𝑓(|𝐻| > 1)	𝑡ℎ𝑒𝑛 
n. 𝑖𝑓	'	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!,	𝑡ℎ𝑒𝑛 
o. Streamline the position of the California condor 

p. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻 
q. Otherwise  
r. Modernize the spot of California condor 
s. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗

(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵, 
t. 𝑖𝑓(|𝐻| < 1)	𝑡ℎ𝑒𝑛 
u. 𝑖𝑓(|𝐻| ≥ 0.5)	𝑡ℎ𝑒𝑛 
v. 𝑖𝑓	'	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1,	𝑡ℎ𝑒𝑛 
w. Streamline the position of the California condor 
x. 𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)          
y. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	             
z. Modernize the spot of California condor 
aa. 𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1) 
bb. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 
cc. 𝑖𝑓	'	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8,	𝑡ℎ𝑒𝑛 
dd. Streamline the position of the California condor 
ee. 𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄  
ff. Otherwise  
gg. 𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿𝑒𝑣𝑦(𝑑) 
hh. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑡ℎ𝑒	Preeminent	California	condor	!		 
ii. 𝐸𝑛𝑑	 

 
4. Extreme Learning Machine based California 
condor Optimization Algorithm 

 
In the proposed Extreme Learning Machine based California 
condor Optimization (ELMCO) Algorithm, CO approach 
enhances Extreme Learning Machine features to determine 
an optimal skeleton of Extreme Learning Machine for 
enhanced canons.  Extreme learning machine (ELM) is 
applied and learning speed of feed-forward neural networks 
is composed of input, hidden and output layer [34-16]. 
 The correlating neurons weight matrix of input to hidden 
layer is defined as, 

𝑊𝑒𝑖𝑔ℎ𝑡	(𝑊ℎ𝑡) =

⎣
⎢
⎢
⎡𝑤ℎ𝑡!

/

𝑤ℎ𝑡1S
;

𝑤ℎ𝑡&/⎦
⎥
⎥
⎤
= ½

𝑤ℎ𝑡!! ⋯ 𝑤ℎ𝑡!+
⋮ ⋱ ⋮

𝑤ℎ𝑡0! ⋯ 𝑤ℎ𝑡0+
Á         (53) 

 

	(𝑛𝑤𝑚. 𝛽) =

⎣
⎢
⎢
⎡𝑛𝑤𝑚. 𝛽!

/

𝑛𝑤𝑚. 𝛽1S
;

𝑛𝑤𝑚. 𝛽&/⎦
⎥
⎥
⎤
= ½

𝑛𝑤𝑚. 𝛽!! ⋯ 𝑛𝑤𝑚.𝛽!+
⋮ ⋱ ⋮

𝑛𝑤𝑚. 𝛽0! ⋯ 𝑛𝑤𝑚.𝛽0+
Á (54) 

 

Neurons	hidden	layer	bias	vector	(bsv) = Â

𝑏𝑠𝑣!
𝑏𝑠𝑣1
:

𝑏𝑠𝑣0

Ä

0×!

   (55) 

 
For N impulsive e (𝐵* , 𝐹*)	; 	𝐹* = [𝐹*!, 𝐹*1, . . , 𝐹*3+]i ∈
𝑀𝑁3+, 𝐶* = [𝐶*!, 𝐶*1, . . , 𝐶*3+]i ∈ 𝑀𝑁3+,	     

(𝐶) =

⎣
⎢
⎢
⎡𝐶!

/

𝐶1S
;
𝐶&/⎦
⎥
⎥
⎤
= ½

𝐶!! ⋯ 𝐶!+
⋮ ⋱ ⋮
𝐶0! ⋯ 𝐶0+

Á                                  (56) 

 
∑ 𝑛𝑤𝑚.𝛽*"
*7! ∙ 𝑘'𝜔*𝐹2 + 𝑎*, = 𝐶2 , 𝑗 = 1,2,3, . . , 𝑁           (57) 

 
(𝑂) ∙ (𝑛𝑤𝑚. 𝛽) = 𝐶                            (58) 
 
𝑂(𝐹!, . . 𝐹0; 𝜔!, . . , 𝜔0; 𝑎!, . . , 𝑎&) =

½
𝑘(𝜔!𝐹! + 𝑎!) ⋯ 𝑘(𝜔0𝐹! + 𝑎0)

⋮ ⋱ ⋮
𝑘(𝜔!𝐹" + 𝑎!) ⋯ 𝑘(𝜔0𝐹" + 𝑎0)

Á              (59) 
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𝑛𝑤𝑚. 𝛽 = 𝑂?! ∙ 𝐶                                   (60) 
 
 Method of the Extreme Learning Machine (ELM)  

1) Start  
2) Input the data  
3) Engender the Test and Training set  
4) Rendering to the training set - standardize the 

quantity of  (𝑂) 
5) 𝑂(𝐹!, . . 𝐹0; 𝜔!, . . , 𝜔0; 𝑎!, . . , 𝑎&) =

½
𝑘(𝜔!𝐹! + 𝑎!) ⋯ 𝑘(𝜔0𝐹! + 𝑎0)

⋮ ⋱ ⋮
𝑘(𝜔!𝐹" + 𝑎!) ⋯ 𝑘(𝜔0𝐹" + 𝑎0)

Á 

6) Express the output level of weight  
7) 𝑛𝑤𝑚. 𝛽 = 𝑂?! ∙ 𝐶	 
8) Rendering to the test set - estimate the level of  (𝐵) 
9) 𝑂(𝐹!, . . 𝐹0; 𝜔!, . . , 𝜔0; 𝑎!, . . , 𝑎&) =

½
𝑘(𝜔!𝐹! + 𝑎!) ⋯ 𝑘(𝜔0𝐹! + 𝑎0)

⋮ ⋱ ⋮
𝑘(𝜔!𝐹" + 𝑎!) ⋯ 𝑘(𝜔0𝐹" + 𝑎0)

Á 

10) Appraise the genuine level through 𝑛𝑤𝑚. 𝛽	𝑎𝑛𝑑	𝑀 
11) Computation of error status  
12) Assessment of genuine rate with possible level  
13) Return the error level  
14) End  

 
 

 
Fig 1. Flow chart of California condor Optimization (CO) algorithm. 
 
 
 In the proposed Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm, CO 

approach enhances Extreme Learning Machine features to 
determine an optimal skeleton of Extreme Learning Machine 
for enhanced canons. In Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm 
principally all elements don’t own any info about the 
explication area. In initial stages of iteration, the California 
condor contestants are assorted in milieu and exponential 
skimp generates boundless unpremeditated amounts which 
contribute the rudiments to lodging the entire explication 
zone. Congruently, all over end stage of iterations, rudiments 
are surrounded by California condor contestants and all an 
optimal situation with similar pattern. Fig 2 shows the 
schematic diagram of Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm.  

a. Start  
b. Input the data  
c. Engender the Test and Training set  
d. Engender the population  
a. 𝑤ℎ𝑖𝑙𝑒	(𝑒𝑛𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑡)𝑑𝑜 
b. Compute the fitness rate of the California condor 
c. 𝐹𝑖𝑥	preeminent	as	chief	California	condor	 

(Preeminent	California	condor	!) 
d. 𝐹𝑖𝑥	𝑛𝑒𝑥𝑡	𝑏𝑒𝑠𝑡	California	condor	 

(Preeminent	California	condor	1) 
e. 𝐹𝑜𝑟	'𝑒𝑣𝑒𝑟𝑦	California	condor	(𝑄*),	𝑑𝑜 
f. 𝑃𝑖𝑐𝑘	𝑂(𝑖) 
g. 𝑂(𝑖) =

�Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

 

h. 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒	𝐻(𝑖) 
i. 𝐻 = (2 × 𝑅𝑎𝑛𝑑𝑜𝑚! + 1) × 𝑦 × �1 −

*S.4'
GDK *S.4

� + 𝑡 
j. 𝑖𝑓(|𝐻| > 1)	𝑡ℎ𝑒𝑛 
k. 𝑖𝑓	'	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!,	𝑡ℎ𝑒𝑛 
l. Streamline the position of the California condor 
m. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻 
n. Otherwise  
o. Modernize the spot of California condor 
p. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗

(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵, 
q. 𝑖𝑓(|𝐻| < 1)	𝑡ℎ𝑒𝑛 
r. 𝑖𝑓(|𝐻| ≥ 0.5)	𝑡ℎ𝑒𝑛 
s. 𝑖𝑓	'	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1,	𝑡ℎ𝑒𝑛 
t. Streamline the position of the California condor 
u. 𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)          
v. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	             
w. Modernize the spot of California condor 
x. 𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1) 
y. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 
z. 𝑖𝑓	'	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8,	𝑡ℎ𝑒𝑛 
aa. Streamline the position of the California condor 
bb. 𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄  
cc. Otherwise  
dd. 𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿𝑒𝑣𝑦(𝑑) 
ee. Fix Extreme Learning Machine input weights and 

hidden bias 
ff. Extreme Learning Machine testing 
gg. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑡ℎ𝑒	Preeminent	California	condor	!		 
hh. 𝐸𝑛𝑑	 

 
 
5. Chaotic based California condor Optimization 
Algorithm 
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Chaotic sequences are integrated into the California condor 
Optimization (CO) algorithm and it called as - Chaotic based 
California condor Optimization (CCO) algorithm. This 
integration will augment the Exploration and Exploitation. 
Tinkerbell chaotic map [37, 38] engendering standards are 
implemented. Fig 3 shows the schematic diagram of Chaotic 
based California condor Optimization (CCO) algorithm.  
 
𝑢S_! = 𝑢S1 − 𝑣S1 + 𝑎 ∙ 𝑢S + 𝑏 ∙ 𝑣S      (61) 
 
𝑣S_! = 2𝑢S𝑣S + 𝑐 ∙ 𝑢S + 𝑑 ∙ 𝑣S                    (62) 
 
𝑤ℎ𝑒𝑟𝑒	𝑎, 𝑏, 𝑐	𝑎𝑛𝑑	𝑑	𝑎𝑟𝑒	𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠	  
𝑎 = 0.900  
𝑏 = −0.600  
𝑐 = 2.000  
𝑑 = 0.500  
𝐴𝑡	𝑝𝑟𝑖𝑚𝑎𝑟𝑦	𝑠𝑡𝑎𝑔𝑒		𝑢j𝑎𝑛𝑑	𝑣j = 0.10  
 
 The functional value by linear scaling in Tinkerbell 
chaotic map [33, 34] is demarcated as, 
𝑢S_!∗ =
𝑢S_! −𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑢) 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑢) −𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑢)⁄    (63) 

a. Start  
b. Fix the parameter values  
c. Initialize the population arbitrarily  
d. 𝑤ℎ𝑖𝑙𝑒	(𝑒𝑛𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑡)𝑑𝑜 
e. Compute the fitness rate of the California condor 
f. 𝐹𝑖𝑥	preeminent	as	chief	California	condor 

	(Preeminent	California	condor	!) 
g. 𝐹𝑖𝑥	𝑛𝑒𝑥𝑡	𝑏𝑒𝑠𝑡	California	condor	 

(Preeminent	California	condor	1) 
h. 𝐹𝑜𝑟	'𝑒𝑣𝑒𝑟𝑦	California	condor	(𝑄*),	𝑑𝑜 
i. 𝑃𝑖𝑐𝑘	𝑂(𝑖) 
j. 𝑂(𝑖) =

�Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

 

k. 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒	𝐻(𝑖) 
l. 𝐻 = (2 × 𝑅𝑎𝑛𝑑𝑜𝑚! + 1) × 𝑦 × �1 −

*S.4'
GDK *S.4

� + 𝑡 
m. 𝑖𝑓(|𝐻| > 1)	𝑡ℎ𝑒𝑛 
n. 𝑖𝑓	'	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!,	𝑡ℎ𝑒𝑛 
o. Streamline the position of the California condor 
p. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻 
q. Otherwise  
r. Modernize the spot of California condor 
s. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗

(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵, 
t. 𝑖𝑓(|𝐻| < 1)	𝑡ℎ𝑒𝑛 
u. 𝑖𝑓(|𝐻| ≥ 0.5)	𝑡ℎ𝑒𝑛 
v. 𝑖𝑓	'	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1,	𝑡ℎ𝑒𝑛 
w. Streamline the position of the California condor 
x. 𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)          
y. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	             
z. Modernize the spot of California condor 
aa. 𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1) 
bb. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 
cc. 𝑖𝑓	'	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8,	 
dd. Smear the Tinkerbell chaotic map 
ee. u^_! = u^1 − v^1 + a ∙ u^ + b ∙ v^         
ff. 	v^_! = 2u^v^ + c ∙ u^ + d ∙ v^                                
gg. 𝑢S_!∗ =

𝑢S_! −𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑢) 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑢) −𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑢)⁄   
a. Streamline the position of the California condor 
b. 𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄  

c. Otherwise  
d. 𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿(𝑑) 
e. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑡ℎ𝑒	Preeminent	California	condor	!		 
f. 𝐸𝑛𝑑	 

 

 
Fig 2. Schematic diagram of Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm.  
 
 
6. Quantum based California condor Optimization 
Algorithm  
 
Quantum mechanics [39-43] has been combined with 
California condor Optimization (CO) algorithm and it 
entitled as Quantum based California condor Optimization 
(QCO) algorithm. In quantum method, features emulate the 
analogous performance with the certain stage as they route in 
a credible powdered of median. The wave utility in the 
Quantum mechanics [39-43] is demarcated as, 
 
|𝛹|1 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧    (64) 
 
𝑤ℎ𝑒𝑟𝑒	𝛹	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑣𝑎𝑙𝑢𝑒	  
 
 The time contingent Schrodinger equation [39-43] is 
smeared to evaluate the wave utility is demarcated as, 
 
𝑖ℎ ∙ Ə Ə𝑡⁄ ∙ 𝛹(𝑥, 𝑡) = 𝐻𝑜𝑟 ∙ 𝛹(𝑥, 𝑡)                         (65) 
 
𝑤ℎ𝑒𝑟𝑒	𝐻𝑜𝑟	𝑠𝑝𝑒𝑐𝑖𝑓𝑦	𝑡ℎ𝑒	Hamiltonian	operator[39 − 43]  
 
𝐻𝑜𝑟 = −ℎ1 2𝑚⁄ ∙ ∆1 + 𝑉(𝑥)                   (66) 
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 In the quantum pattern ∆𝐹𝑖𝑡 consecutively achieve as 
particle and it successively passages in delta potential in the 
direction of center. Fig 4 shows the schematic diagram of 
Quantum based California condor Optimization (QCO) 
algorithm. 
Schrodinger(Time − independent)𝑖𝑠	 3

-l
3--

+ 1,
m-
[𝐺 +

𝛾𝛿(𝑧)]𝛹 = 0                                                              (67) 
 
𝛹(𝑧) = !

√0
𝑒?

|5|
"                                                                   (68) 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚(𝑧) = |𝛹(𝑧)|1 = !
√0
𝑒?

|5|
"                     (69) 

 
𝑧 = ± 0

1
𝐼𝑛(1 𝑔⁄ )                                                                (70) 

 
𝑤ℎ𝑒𝑟𝑒	𝑢 ∈ [0,1]  

a. Start  
b. Fix the parameter values  
c. Initialize the population arbitrarily  
d. 𝑤ℎ𝑖𝑙𝑒	(𝑒𝑛𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑡)𝑑𝑜 
e. Compute the fitness rate of the California condor 
f. 𝐹𝑖𝑥	preeminent	as	chief	California	condor	(Preeminent	California	condor	!) 
g. 𝐹𝑖𝑥	𝑛𝑒𝑥𝑡	𝑏𝑒𝑠𝑡	California	condor	(Preeminent	California	condor	1) 
h. 𝐹𝑜𝑟	'𝑒𝑣𝑒𝑟𝑦	California	condor	(𝑄*),	𝑑𝑜 
i. 𝑃𝑖𝑐𝑘	𝑂(𝑖) 
j. 𝑂(𝑖) =

�Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

 

k. 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒	𝐻(𝑖) 
l. 𝐻 = (2 × 𝑅𝑎𝑛𝑑𝑜𝑚! + 1) × 𝑦 × �1 −

*S.4'
GDK *S.4

� + 𝑡 
m. 𝑖𝑓(|𝐻| > 1)	𝑡ℎ𝑒𝑛 
n. 𝑖𝑓	'	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!,	 
o. |𝛹|1 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 = 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑑𝑧 
p. 𝐻𝑜𝑟 = −ℎ1 2𝑚⁄ ∙ ∆1 + 𝑉(𝑥) 
q. Streamline the position of the California condor 
r. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻 
s. Otherwise  
t. Modernize the spot of California condor 
u. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗

(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵, 
v. 𝑖𝑓(|𝐻| < 1)	𝑡ℎ𝑒𝑛 
w. 𝑖𝑓(|𝐻| ≥ 0.5)	𝑡ℎ𝑒𝑛 
x. 𝑖𝑓	'	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1,	𝑡ℎ𝑒𝑛 
y. Streamline the position of the California condor 
z. 𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)          
aa. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	             
bb. Modernize the spot of California condor 
cc. 𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1) 
dd. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 
ee. 𝑖𝑓	'	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8,	𝑡ℎ𝑒𝑛 
ff. Streamline the position of the California condor 
gg. 𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄  
hh. Otherwise  
ii. 𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿𝑒𝑣𝑦(𝑑) 
jj. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑡ℎ𝑒	Preeminent	California	condor	!		 
kk. 𝐸𝑛𝑑	 

 
 
7. Opposition based California condor Optimization 
Algorithm  
 
California condor Optimization (CO) algorithm, even though 
the initiative of contestant explications slants to touch an 
optimal solution, yet several are get entombed and not adept 

of emotive in the route of the dominant solution. It 
significances to snare in local optima and it accordingly 
enforces into primary and slow convergence. Subsequently 
Opposition based California condor Optimization (OCO) 
algorithm employs Laplace distribution to enhance the 
exploration skill.  Then examining the prospect to widen the 
exploration, a new method endorses stimulating capricious 
statistics used in formation stage regulator factor in 
California condor Optimization (CO) algorithm. In the 
proposed procedure, the exchanging of capricious statistics is 
done with the illogical numbers stimulated by Laplace 
distribution [44-46] to enlarge the assistance of the 
probability of formation stage in the exploration zone. The 
propagation of Laplace dispersal [44-46] is scientifically 
demarcated as, 
 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣) = g
!
1
	𝑒𝑥𝑝(− |𝑣 − 𝑐| 𝑑⁄ ), 𝑏 ≤ 𝑐

1 − !
1
	𝑒𝑥𝑝(− |𝑣 − 𝑐| 𝑑⁄ ), 𝑏 > 𝑐

            (71) 

 
 The probability propagation function of Laplace dispersal 
is,  
 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑣; 𝑐, 𝑑) = 1 2𝑣⁄ 	𝑒𝑥𝑝(− |𝑣 − 𝑐| 𝑑⁄ ), −∞ 
< 𝑐 < ∞                                                                              (72 
 
𝑤ℎ𝑒𝑟𝑒	𝑐 ∈ (−∞,∞)  
 
 Opposition based learning (OBL) is one of the influential 
approaches to improve the convergence quickness of 
procedures [44-46]. The flourishing use of the Opposition 
based learning includes evaluation of opposite populace and 
dominant populace in the analogous generation to regulate 
the superior contestant explication. The perception of 
opposite number requirements is to be delineated to explicate 
Opposition based learning. Fig 5 shows the schematic 
diagram of Opposition based California condor Optimization 
(OCO) algorithm. 
 Let 𝑂	(𝑍 ∈ [𝑐, 𝑑]) be a palpable figure and the 𝑂j 
(opposite figure) can be delineated as, 
 
 
𝑂j = 𝑐 + 𝑑 − 𝑈                      (73) 
 
 In the exploration area it has been protracted as, 
 
𝑂*j = 𝑐* + 𝑑* −𝑈*                          (74) 
 
Where	(𝑂!, 𝑂1, . . 𝑂3)	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙	𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛	 
𝑧𝑜𝑛𝑒  
 𝑂* ∈ [𝑐* , 𝑑*], 𝑖 → {1,2,3, . . 𝑑} 
 
 The perception of Opposition based learning is employed 
in the initialization procedure and in iterations by means of 
the cohort vaulting level.  

a. 𝑀𝑖𝑛	𝑓	 
b. 𝑖𝑓	𝑓	(𝑂∗) ≤ 𝑓(𝑂); 𝑡ℎ𝑒𝑛	𝑂 = 𝑂∗	  
c. 𝑂𝑟	𝑒𝑙𝑠𝑒	  
d. Sustain with O in successive generations  

 An opposite component is assimilated after streamlining 
and produced the distinguished component 
 
𝐶𝐶*(𝑖𝑡𝑒𝑟) = '𝐿𝐵* +𝑈𝐵* − 𝐶𝐶.(𝑖𝑡𝑒𝑟),     
(75) 
 
𝑤ℎ𝑒𝑟𝑒	𝐿𝐵	, 𝑈𝐵	𝑎𝑟𝑒	𝑙𝑜𝑤𝑒𝑟	𝑎𝑛𝑑	𝑢𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑	  
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Fig 3. Schematic diagram of Chaotic based California condor 
Optimization (CCO) algorithm. 
 
 At that moment the Variable speeding up factor (𝑉%) 
balance the exploration and exploitation and scientifically 
demarcated as, 
𝑉% = 𝑉,'9 − 𝑖𝑡𝑒𝑟o ∙ 𝑉,'9 − 𝑉,*+ 𝑖𝑡𝑒𝑟,'9⁄                    (76) 
 The Opposition based learning method engaged round 
the distinguished component and it demarcated as, 
 
𝐶𝐶*(𝑖𝑡𝑒𝑟) = 𝑉% ∗ '𝐿𝐵* +𝑈𝐵* − 𝐶𝐶.(𝑖𝑡𝑒𝑟),                   (77) 
 

a. Start  
b. Fix the parameter values  
c. Employ	opposition	based	learning	approach		 
d. 𝑤ℎ𝑖𝑙𝑒	(𝑒𝑛𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑡)𝑑𝑜 
e. Compute the fitness rate of the California condor 
f. 𝐹𝑖𝑥	preeminent	as	chief	California	condor	( 

Preeminent	California	condor	!) 
g. 𝐹𝑖𝑥	𝑛𝑒𝑥𝑡	𝑏𝑒𝑠𝑡	California	condor	( Preeminent	

California	condor	6
) 

h. 𝐹𝑜𝑟	'𝑒𝑣𝑒𝑟𝑦	California	condor	(𝑄*),	𝑑𝑜 
i. 𝑃𝑖𝑐𝑘	𝑂(𝑖) 
j. 𝑂(𝑖) =

�Preeminent	California	condor	!		𝑖𝑓	𝑞* = 𝐶!
Preeminent	California	condor	1		𝑖𝑓	𝑞* = 𝐶1

 

k. 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒	𝐻(𝑖) 
l. 𝐻 = (2 × 𝑅𝑎𝑛𝑑𝑜𝑚! + 1) × 𝑦 × �1 −

*S.4'
GDK *S.4

� + 𝑡 
m. 𝑖𝑓(|𝐻| > 1)	𝑡ℎ𝑒𝑛 
n. 𝑖𝑓	'	𝑄! ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T!,	𝑡ℎ𝑒𝑛 
o. Streamline the position of the California condor 
p. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐸(𝑖) × 𝐻 
q. Otherwise  
r. Modernize the spot of California condor 
s. 𝑄(𝑖 + 1) = 𝑂(𝑖) − 𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚1 ∗ '(𝑈𝐵 − 𝐿𝐵) ∗

(𝑅𝑎𝑛𝑑𝑜𝑚8) + 𝐿𝐵, 
t. 𝑖𝑓(|𝐻| < 1)	𝑡ℎ𝑒𝑛 

u. 𝑖𝑓(|𝐻| ≥ 0.5)	𝑡ℎ𝑒𝑛 
v. 𝑖𝑓	'	𝑄1 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T1,	𝑡ℎ𝑒𝑛 
w. Streamline the position of the California condor 
x. 𝑄(𝑖 + 1) = 𝐸(𝑖) × (𝐻 + 𝑅𝑎𝑛𝑑𝑜𝑚U) − 𝑑(𝑡)          
y. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	             
z. Modernize the spot of California condor 
aa. 𝑄(𝑖 + 1) = 𝑂(𝑖) − (𝐽! + 𝐽1) 
bb. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 
cc. 𝑖𝑓	'	𝑄8 ≥ 𝑅𝑎𝑛𝑑𝑜𝑚T8,	 
dd. 𝐸𝑚𝑝𝑙𝑜𝑦	𝑡ℎ𝑒	Opposition	based	learning	approach	 

	to	modernize	the	component	 
ee. 𝐶𝐶*(𝑖𝑡𝑒𝑟) = '𝐿𝐵* +𝑈𝐵* − 𝐶𝐶.(𝑖𝑡𝑒𝑟), 
ff. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒	𝑡ℎ𝑒	Opposition	based	learning	approach		 

with	Variable	speeding	up	factor	(𝑉%) 
gg. 𝑉% = 𝑉,'9 − 𝑖𝑡𝑒𝑟o ∙ 𝑉,'9 − 𝑉,*+ 𝑖𝑡𝑒𝑟,'9⁄  
hh. 𝐶𝐶*(𝑖𝑡𝑒𝑟) = 𝑉% ∗ '𝐿𝐵* +𝑈𝐵* − 𝐶𝐶.(𝑖𝑡𝑒𝑟), 
ii. Streamline the position of the California condor 
jj. 𝑄(𝑖 + 1) = 𝑀! +𝑀1 2	⁄  
kk. Otherwise  
ll. 𝑄(𝑖 + 1) = 𝑂(𝑖) − |𝑑(𝑡)| × 𝐻 × 𝐿(𝑑) 
mm. 𝑅𝑒𝑡𝑢𝑟𝑛	𝑡ℎ𝑒	Preeminent	California	condor	!		 
nn. 𝐸𝑛𝑑	 

 

 
Fig 4. Schematic diagram of Quantum based California condor 
Optimization (QCO) algorithm. 
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Fig 5. Schematic diagram of Opposition based California condor 
Optimization (OCO) algorithm. 
 
 The computational complexity of Extreme Learning 
Machine, Chaotic, Quantum and Opposition based California 
condor Optimization algorithms are contingent on 
initialization, aptness assessment, and appraisal of the 
California condor. Specified N California condor, the 
computational complication in the initialization procedure is 
equivalent to 𝑂(𝑀). Likewise, the computational 
complication in the modernizing procedure is based on 
examining for the preeminent position and modernizing the 
position of all designed California condor’s is, 
 
𝑂(𝑇 ×𝑀) + 𝑂(𝑇 ×𝑀 × 𝐸)   
 
𝑤ℎ𝑒𝑟𝑒	𝑇	𝑖𝑠	𝑚𝑎𝑥	𝑖𝑡𝑒𝑟  
𝐸	𝑖𝑠	𝑑𝑖𝑚  
Then the computation complexity of Extreme Learning 
Machine, Chaotic, Quantum and Opposition based California 
condor Optimization algorithms is, 
 
𝑂'𝑁 × (𝑇 + 𝑇𝐸),                                                               
 
 
8.  Simulation Results and Discussion  
 
Projected Extreme Learning Machine, Chaotic, Quantum and 
Opposition based California condor Optimization algorithms 
are corroborated in IEEE 30 bus system [20].  In Table 1 

shows the loss appraisal, Table 2 shows the voltage 
aberration evaluation and Table 3 gives the Voltage 
constancy assessment.  Figures 6 to 8 gives the graphical 
appraisal between the methods.  
 

 
Fig 6. Assessment of real power loss  
 
 
 Appraisal of loss has been done with Particle swarm 
optimization, adapted Particle swarm optimization, enriched 
Particle swarm optimization, comprehensive learning 
Particle swarm optimization, Adaptive genetic algorithm, 
Canonical genetic algorithm, enhanced genetic algorithm, 
Hybrid Particle swarm optimization -Tabu search , Ant lion 
approach, quasi-oppositional teaching learning based 
algorithm, enriched stochastic fractal search optimization 
algorithm , harmony search , advanced pseudo-gradient 
search particle swarm optimization and cuckoo search 
algorithm. Power loss abridged competently and proportion 
of the power loss lessening has been enhanced. 
Predominantly voltage constancy augmentation attained with 
minimized voltage deviancy.  
 
Table 2. Comparison of voltage aberration 

Technique Voltage deviancy (PU) 
Hybrid-PSOTVIW [15] 0.1038 
Hybrid-PSOTVAC  [15] 0.2064 
Hybrid-PSOTVAC [15] 0.1354 
Hybrid-PSOCF   [15] 0.1287 
Hybrid-PGPSO  [15] 0.1202 

Hybrid-SWTPSO  [15] 0.1614 
Hybrid-PGSWTPSO  [15] 0.1539 

Hybrid-MPGPSO  [15] 0.0892 
Hybrid-QOTLBO     [12] 0.0856 

B-TLBO       [12] 0.0913 
B-FS    [14] 0.1220 

Hybrid-ISFS  [14] 0.0890 
B-FS [16] 0.0877 

CO 0.0830 
ELMCO 0.0828 

CCO 0.0826 
QCO 0.0825 
OCO 0.0821 

 
 
Table 3. Appraisal of Voltage constancy.  

Technique (Voltage constancy) 
L-index (PU) 

Hybrid-PSOTVIW [15] 0.1258 
Hybrid-PSOTVAC  [15] 0.1499 
Hybrid-PSOTVAC [15] 0.1271 
Hybrid-PSOCF   [15] 0.1261 
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Hybrid-PGPSO  [15] 0.1264 
Hybrid-SWTPSO  [15] 0.1488 

Hybrid-PGSWTPSO  [15] 0.1394 
Hybrid-MPGPSO  [15] 0.1241 

Hybrid-QOTLBO     [12] 0.1191 
B-TLBO       [12] 0.1180 

B-ALO [11] 0.1161 
B-ABC [11] 0.1161 
B-GWO [11] 0.1242 
B-BA [11] 0.1252 
B-FS    [14] 0.1252 

Hybrid-ISFS  [14] 0.1245 
B-FS [16] 0.1007 

CO 0.1003 
ELMCO 0.1002 

CCO 0.1001 
QCO 0.1002 
OCO 0.1001 

 

 
Fig 7. Appraisal of Voltage aberration. 

 
 

 Then the Extreme Learning Machine, Chaotic, Quantum 
and Opposition based California condor Optimization 
algorithms are substantiated in IEEE 14, 30, 57, 118 and 300 
bus test systems deprived of Voltage constancy. Loss 
appraisal is shown in Tables 4 to 8. Figure 9 to 13 gives 
graphical comparison between the approaches with 
orientation to power loss. 
 
 

 
Fig 8. Assessment of voltage constancy index. 
 
 
 Proposed algorithms are compared with Adapted Particle 
swarm optimization, Particle swarm optimization, 
Evolutionary Programming, self-adaptive real coded Genetic 
algorithm, Canonical Genetic Algorithm, Adaptive Genetic 
Algorithm, Enhanced Particle swarm optimization, 
Comprehensive Learning Particle swarm optimization, 

Enhanced Genetic Algorithm, Faster Evolutionary algorithm 
and Cuckoo search Optimization algorithm.  
 

 
Fig 9. Power Loss appraisal (IEEE 14 bus system). 
 
 

 
Fig 10. Appraisal of Power Loss (IEEE 30 bus system). 
 
 
Table 4. Assessment of results (IEEE 14 Bus). 

Parameter  True Loss (MW) Ratio of loss 
diminution 

Base case [24] 13.550 0.000 
Improved PSO [24] 12.293 9.2000 
B-PSO [23] 12.315 9.1000 
B-EP [23] 13.346 1.500 
Hybrid-SARGA 
[22] 

13.216 2.500 

CO 10.051 25.8228 
ELMCO 10.043 25.8819 
CCO 10.039 25.9114 
QCO 10.027 26.0000 
OCO 10.020 26.0516 

 
Table 5. Appraisal of loss (IEEE 30 bus system)  

Parameter Actual Power 
Loss in MW 

Proportion of  
Lessening in Power 
Loss 

Base case value  
[24] 

17.5500 0.0000 

Improved 
PSO[24] 

16.0700 8.40000 

B -PSO [23] 16.2500 7.4000 
B-EP  [21] 16.3800 6.60000 
B-GA [22] 16.0900 8.30000 
S-PSO [25] 17.5246 0.14472 
Improved 17.52 0.17094 
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DEPSO [25] 
B-JAYA [25] 17.536 0.07977 
CO 14.064 19.8632 
ELMCO 14.051 19.9373 
CCO 14.045 19.9715 
QCO 14.034 20.0341 
OCO 14.029 20.0626 

 
Table 6. Assessment of parameters (IEEE 57 Bus system) 

Parameter  True Loss 
(MW) 

Ratio of loss 
diminution 

Base case [24] 27.8 0.00 
Improved PSO [24] 23.51 15.400 
B-PSO [23] 23.86 14.100 
Canonical -GA[22] 25.24 9.200 
Adaptive -GA [22] 24.56 11.600 
CO 21.087 24.1474 
ELMCO 21.076 24.1870 
CCO 21.059 24.2482 
QCO 21.044 24.3021 
OCO 21.029 24.3561 

 
Table 7. Assessment of results (IEEE 118 Bus system). 

Parameter True Loss (MW) 
Ratio of loss 
diminution 

Base case [24] 132.8 0.00 
Improved PSO 
[24] 117.19 11.700 
B-PSO [23] 119.34 10.100 
B-EPSO [21] 131.99 0.600 
B-CLPSO [21] 130.96 1.300 
CO 112.062 15.6159 
ELMCO 112.054 15.6219 
CCO 112.042 15.6310 
QCO 112.029 15.6408 
OCO 112.018 15.6490 
 
Table 8. Power Loss appraisal (IEEE 300 Bus system) 
Parameter  True Loss (MW) 
Adaptive -GA [33] 646.299800 
Faster -EA  [33] 650.602700 
B-CSO [32] 635.894200 
CO 625.109287 
ELMCO 625.107452 
CCO 625.106009 
QCO 625.104135 
OCO 625.102428 
 

 

Fig 11. Power Loss appraisal (IEEE 57 bus system). 

 
Fig 12. Power Loss appraisal (IEEE 118 bus system). 
 
 

 
Fig 13. Power Loss appraisal (IEEE 300 bus system). 
 
 
 Table 9 shows the convergence characteristics of 
Extreme Learning Machine, Chaotic, Quantum and 
Opposition based California condor Optimization algorithms 
are for IEEE 30 bus system.  In IEEE 30 bus system, 
Extreme Learning Machine, Chaotic, Quantum and 
Opposition based California condor Optimization algorithms 
are appraised as Multiobjective and single objective mode. 
Figure 14 shows the graphical representation of the 
characteristics.  
 

Table 9. Convergence characteristics  
Metho

d 
Actual  Loss in 

MW(With Power 
reliability) 

Actual  Loss in 
MW (without 

Power reliability) 

Time (S) 
 ( with 
Power 

reliability) 

Time (S)  
( without 

Power 
reliability) 

No. of iter. 
(with Power 
reliability) 

No. of 
iter.(without 

Power 
reliability) 
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CO 4.4015 14.064 29.81 27.76 30 28 
ELMC
O 

4.4002 14.051 27.24 25.98 28 25 

CCO 4.3987 14.045 28.92 27.82 27 24 
QCO 4.3976 14.034 29.09 28.14 29 28 
OCO 4.3965 14.029 30.15 28.07 30 29 
 
 
9.  Conclusion 
 
Extreme Learning Machine, Chaotic, Quantum and 
Opposition based California condor Optimization algorithms 
condensed the Actual power loss resourcefully. In normal 
environs, numerous California condors can be substantially 
alienated into dual clusters, in which the procedure 
principally computes the fitness rate for elucidations 
(preliminary populace) to split California condor’s into 
classes. 
 The finest response is assumed as the preeminent as chief 
California condor and the succeeding solution as the 
subsequent finest California condo. Remaining create a 
population that passages or substitutes one of the twofold 
preeminent California condor’s in every activity. Subsequent 
to the formation of preliminary population, the aptness or 
fitness rate of all solutions is computed, and the preeminent 
solution is designated as the preeminent California condor of 
the chief cluster and the subsequent preeminent solution as 
the best California condor of the succeeding cluster, and 
remaining solutions will passage in the direction of the 
preeminent solutions for the chief and succeeding clusters. In 
iterations, the complete population is recomputed. When the 
value of y is decreases below to zero value then California 
condor is in ravenous phase and if the value of y increases to 
zero then the California condor is slaked. The motive for 
splitting clusters in this procedure is that California condor’s' 
utmost vital normal task can be articulated: cluster living to 
discover nutrition. 
 Every cluster of California condor’s is a dissimilar 
helplessness to discover nutrition and consume. The 
propensity to consume in California condor’s and seeing for 
nutrition for periods sources them to seepage from the 

starving ruse. At the design period,   in order to alleviate 
hunger, presumptuous that the poorest solution in the 
populace is the feeblest and ravenous, the California 
condor’s attempt to preserve their expanse from the poor and 
emanated up with the preeminent solution.  
 In California condor Optimization (CO) algorithm, 
twofold of the preeminent solutions are measured as the 
robust and preeminent California condor’s, and the other 
California condor’s attempt to approach the preeminent one. 
In resolving perplexing optimization complications, there is 
no assurance that the concluding populace will comprise 
precise approximations for the global optimal solution at the 
completion of the exploration segment. Aimed at this 
purpose, it grounds early convergence in local solution.  To 
escape from the escape from local optimal solutions 𝑡 =
𝑔 × �𝑠𝑖𝑛Q �R

1
× *S.4'

GDK *S.4
� + 𝑐𝑜𝑠 �R

1
× *S.4'

GDK *S.4
� − 1� is 

employed. The concluding iterations of the California 
condor Optimization (CO) algorithm execute the exploitation 
segment and do exploration processes in concluding 
iterations. Through this stratagem’s complete aim is to 
amend 𝑡 = 𝑔 × �𝑠𝑖𝑛Q �R

1
× *S.4'

GDK *S.4
� + 𝑐𝑜𝑠 �R

1
× *S.4'

GDK *S.4
� −

1� to alter exploration and exploitation segments so that 
California condor Optimization (CO) algorithm can upsurge 
the possibility of arriving the exploration segment at certain 
period in the process. 𝑅 Specifies the process disorders the 
exploration and operation segments and when 𝑅   upsurges, 
the possibility of arrive to the exploration segment in the 
concluding phase’s upsurges, nevertheless, by lessening	𝑅, 
the possibility of arrive to the exploration segment 
diminishes.  
 

 

 
Fig 14. Convergence characteristics.  
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 In the proposed Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm, CO 
approach enhances Extreme Learning Machine features to 
determine an optimal skeleton of Extreme Learning Machine 
for enhanced canons. In Extreme Learning Machine based 
California condor Optimization (ELMCO) Algorithm 
principally all elements don’t own any info about the 
explication area.  
 In initial stages of iteration, the California condor 
contestants are assorted in milieu and exponential skimp 
generates boundless unpremeditated amounts which 
contribute the rudiments to lodging the entire explication 
zone. Congruently, all over end stage of iterations, rudiments 
are surrounded by California condor contestants and all an 
optimal situation with similar pattern. Chaotic sequences are 
integrated into the California condor Optimization (CO) 
algorithm and it called as - Chaotic based California condor 
Optimization (CCO) algorithm. This integration will 
augment the Exploration and Exploitation. Tinkerbell chaotic 
map engendering standards are implemented. Quantum 
mechanics has been combined with California condor 
Optimization (CO) algorithm and it entitled as Quantum 
based California condor Optimization (QCO) algorithm.  
 In quantum method, features emulate the analogous 
performance with the certain stage as they route in a credible 
powdered of median. Opposition based California condor 
Optimization (OCO) algorithm employs Laplace distribution 
to enhance the exploration skill.  Then examining the 
prospect to widen the exploration, a new method endorses 
stimulating capricious statistics used in formation stage 
regulator factor in California condor Optimization (CO) 

algorithm. Opposition based learning is one of the influential 
approaches to improve the convergence quickness of 
procedures.  
 The flourishing use of the Opposition based learning 
includes evaluation of opposite populace and dominant 
populace in the analogous generation to regulate the superior 
contestant explication. The perception of opposite number 
requirements is to be delineated to explicate Opposition 
based learning.  
 Proposed Extreme Learning Machine, Chaotic, Quantum 
and Opposition based California condor Optimization 
algorithms is corroborated in IEEE 30 bus system and IEEE 
14, 30, 57, 118, 300 bus test systems without considering the 
voltage constancy index.  
 Proposed Extreme Learning Machine, Chaotic, Quantum 
and Opposition based California condor Optimization 
algorithms creditably condensed the power loss and 
proportion of Tangible power loss lessening has been 
elevated. Convergence characteristics show the better 
performance of the proposed Extreme Learning Machine, 
Chaotic, Quantum and Opposition based California 
condor Optimization algorithms. Valuation of power loss has 
been done with other customary reported algorithms.  
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License. 
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