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Abstract 
 

Maintaining a balance between energy production and consumption is essential for power grid stability. This article 
proposes two demand-side management mechanisms for residential users, called SREM-BS (Smart Residential Energy 
Management for Billing Savings) and SREM-EE (Smart Residential Energy Management for Emergency Events). SREM-
BS is an energy-saving mechanism using variable tariffs, and SREM-EE is a mechanism designed to reduce demand during 
emergency events. The proposed mechanisms are based on heuristics, where the devices in the house are classified and 
adjusted progressively until reaching the percentage of savings established by the user or by the emergency event. The aim 
is to achieve high performance using low CPU power and a small set of input variables that are naturally available in power 
systems. We compared the proposals to others of the literature using simulation. For that purpose, a simulator was 
developed by integrating EnergyPlus (E+), used to calculate the consumption of the electric grid, and NS-3, to simulate the 
telecommunication network. The test results showed that the mechanisms can adjust demand to the user's consumption 
targets or in the face of emergency events and are more efficient than other literature proposals. 
 
Keywords: Smart Grids; Smart Homes; Demand-Side Management; Demand Response. 
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1. Introduction 

 
Smart grids appear as an evolution of the power grid. The key 
idea is to incorporate telecommunications networks into the 
electric grid, allowing real-time monitoring, fast 
detection/treatment of failures, more natural integration of 
renewable sources, and other new services [1].  With the 
Advanced Metering Infrastructure (AMI), the utility has real-
time information about users' power demand and users have 
detailed information about their consumption.  
 In this scenario, the increasing number of renewable 
sources turns the energy-producing plans more difficult. The 
generation prediction becomes more complex due to the 
intermittent nature of these sources [2]. As a consequence, the 
maintenance of the balance between energy production and 
consumption, which is essential for energy grid stability, gets 
affected. Therefore, a paradigm-changing is required due to 
grid modernization: in the traditional energy grid, production 
adapts to demand, but in smart grids, demand should adapt to 
production to make the grid more efficient [3].  
 Demand Side Management (DSM) programs arise as one 
of the solutions to adjust user consumption to generation 
through actions or decisions taken by the energy company to 
change or model the user's consumption pattern. It is essential 
noticing that each residential consumer unit represents a 
minimal impact on the total energy demand of the grid. 
However, the set of residential users corresponds to about 
26% of the electricity consumption in developing countries, 
such as Brazil [4]. So, when DSM programs reach a large 
number of customers, they become relevant solutions to 
support the balance between production and consumption.  

The distribution grid, designed to attend peak hours demand, 
is underutilized in other hours of the day, which increases 
both the capital used to expand the grid (CAPEX) and the 
operating cost to maintain the grid (OPEX). Again, DSM 
programs can remodel power demand, reducing peak 
requirements and, consequently, reducing utility costs. 
 When considering both the impact of renewable sources 
and the marginal costs of the distribution grid, the need for 
flexible DSM models that meet different profiles of electricity 
customers arises. The DSM program must also be appealing 
to achieve a significant number of adept residential users. As 
an opt-in program, it usually depends on the cooperation of 
the consumer.  
 In this paper, we propose two DSM mechanisms called 
SREM-BS and SREM-EE to reduce the distribution grid 
planning and maintenance costs and simplify fast and small 
adjustments to residential user demands. The user will be able 
to opt into one of the programs or even both simultaneously. 
SREM-BS is an energy-saving mechanism based on a 
dynamic tariff model.  It creates autonomic management of 
residential energy consumption to save energy during peak 
hours while respecting the thresholds of comfort set by the 
user. Using SREM-BS, the user can reduce energy bills 
without severe routine modifications, which brings 
advantages for both the user and the utility. SREM-EE is an 
emergency mechanism aimed at reducing demand during 
events in which keeping system stability depends on a fast 
reduction of consumption in large areas. Instead of shutting 
off an area due to problems in energy production or 
transmission, the utility can start SREM-EE to reduce energy 
consumption in a larger area up to some threshold. In this 
case, users are encouraged to join SREM-EE through 
economic incentives, which are paid off to the utility by 
avoiding fines for power interruption. 
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 The main DSM-related works propose strategies based 
only on shifting loads during peak hours, that is, rescheduling 
the operation of some devices from peak hours to off-peak 
hours [5, 6]. Other proposals use only the adjustment of 
Heating, Venting, and Cooling (HVAC) system to save 
energy [7, 8]. Our models propose efficient heuristics that 
implement both strategies, as well as the power regulation of 
the adjustable devices. These adjustable devices are devices 
that can operate at different powers, for example, the fan 
(when operating at different speeds), smart showers, or even 
smart lamps. Thus, with the proposed mechanisms, it is 
possible to create a residential DSM program with a greater 
possibility of large-scale deployment, without being restricted 
to users with air conditioning. Moreover, our mechanisms 
base the power consumption reduction actions on user 
preferences, adapting the impact to each profile in a simple 
way and without requiring high computational power. These 
characteristics make SREM-BS and SREM-EE more 
appealing, improving the chances of the DSM program 
application. 
 We validated the mechanisms through simulation. For this 
validation, it is important to have software that not only 
simulates the electrical system, but also the communication 
network. However, the authors did not find any simulator with 
these characteristics in the literature.  Li and Zhang use 
eQuest to simulate the electrical system, and MatLab to 
perform the response actions to the demand [7]. Inspired by 
them, we developed a simulator that integrates EnergyPlus [9] 
to simulate energy consumption, with NS-3 simulator, to 
simulate communication between smart devices. Our 
simulator, which we call Energy and Communication 
Network Simulator (ECNS), analyzes different DSM 
programs, considering different consumption patterns. 
Through ECNS modular design, it is possible to add different 
DSM programs and evaluate their impacts on the power 
system. SREM-BS and SREM-EE were tested and showed 
the ability to achieve the consumption objectives in more 
efficient ways than other proposals from the literature. 
Therefore, this paper brings three main contributions: 
 

• The design of a mechanism called SREM-BS to perform 
load adjustment according to user preferences, causing 
the least impact on the user experience quality; This 
mechanism uses fewer inputs than other proposals as 
well as it presents more efficient results, which make it 
simple to implement and be accepted by the general 
public; 
• The design of a mechanism called SREM-EE to perform 

load adjustment in a fast and efficient way during 
emergency events, providing a pragmatic response and 
reducing the probability of power service interruption in 
the area; and 
• The development of a modular stochastic event-driven 

simulator called ECNS that effectively integrates power 
and telecommunication systems, allowing the evaluation 
of different DSM models and smart grid applications in 
a simple way. 
• The remaining of this article is organized as follows. 

Section 2 introduces the concepts related to the smart 
homes and DSM and Section 3 presents related works. 
Section 4 shows the design of SREM-BS and SREM-EE, 
while Section 5 covers the development and operation of 
our simulation tool. In the sequence, in Section 6, 
presents the simulation environment, results and 
discussion. 

 

2. Smart Homes and DSM 
 
Automatic DSM mechanisms usually depend on the concept 
of smart homes. The devices considered in this work are smart 
appliances, which have a communication interface allowing 
remote monitoring and control of the equipment. Different 
smart appliances are already available in the market, while 
other proposals are under development or are expected to be 
developed shortly. We also consider the use of a smart meter, 
which periodically reports the user's energy consumption. 
This type of infrastructure allows, among other features, the 
smart grid to send information such as dynamic prices of the 
energy tariff conditioned to the time of use [10]. 
 Fig. 1 shows the network architecture of a smart home, 
which presents internal and external areas, defined 
considering the control of the power system. The limit of the 
internal area is the Energy Management System (EMS), 
which communicates with the internal loads and manages 
them. The devices periodically send consumption information 
to the EMS, which uses that information to feed the operating 
algorithms that are the core of the DSM program 
implementation. The smart meter and the Energy Service 
Interface (ESI) define the limits of the outside area. They 
work like gateways and exchange data, such as energy price 
or consumption measurement data, between the consumer and 
external domains.  
 Smart meters usually handle only the aggregated 
measurement data [11]. On the other hand, ESI supports 
remote service control, demand response programs, 
monitoring of renewable energy sources, and monitoring of 
electric vehicles. Despite performing different functions, ESI 
and smart meters can be physically integrated into the same 
device [10].  
 

 
 Fig. 1.  Smart home architecture adapted from [10]. 
 
 
 The DSM programs are defined as the planning, 
implementation, and monitoring of utility activities that 
influence customer usage of electricity [12]. These influences 
aim mainly to change the consumption pattern by flattening 
the peak hour curve or even to model the consumption curve 
according to energy production. We use two load modeling 
techniques: load shifting and flexible load shaping [13]. When 
a device is rescheduled, the technique used is load shifting. In 
other words, the operating time of the device is shifted from 
peak to next off-peak time. However, when the power of a 
device is adjusted, the technique used is flexible load 
modeling. 
 One way to implement DSM is through variable price 
rates. In a fully connected system, it is possible to vary the 
price during the day according to the consumer demand and 
distributed energy generation. This tariff model is called Real-
Time Pricing (RTP) [14-16]. More usual tariff models 
increase the energy price during peak hours, which is called 
Time-Of-Use (TOU) model [17-19]. For instance, Brazil uses 
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a variable tariff called white tariff, which is a TOU model of 
pricing [20].  In this tariff, there are three different prices for 
kWh throughout the day. In the off-peak period, the energy 
price is lower than the traditional tariff, which has a fixed 
price throughout the day [20]. In the intermediate period, the 
price is slightly higher than the traditional tariff. However, in 
the peak period, the energy price is much higher than in the 
traditional tariff. 
 
 
3. Related work 
 
Several initiatives have been proposed to enable the 
application of DSM, reducing costs for distribution 
companies and customers of the power system. Kinhekar et. 
al. encourage the use of variable price tariffs in India as an 
alternative to reduce operational costs. They propose a DSM 
mechanism based on the load shift from peak hours to lower 
demand hours [5]. Prices are established throughout the day 
and a desirable consumption curve is calculated, which is 
inversely proportional to the price curve. Load shifting is used 
to reschedule the operation of some equipment, adjusting the 
final consumption curve to the desired curve. 
 Conejo et. al. describe an optimization model to adjust the 
load level of a given consumer in response to hourly 
electricity prices [21]. The system uses a price variation 
forecast to draw a consumption plan using a linear 
programming algorithm. Every hour, the utility sends the real 
price, and the algorithm is fed back, thus drawing up a new 
consumption plan for the rest of the day and updating the 
forecasting algorithm. 
 Tham and Zhou propose a program based on points 
collecting and environmental sensing, where the idea is to 
penalize the misuse of energy and the reward for the correct 
use [22]. The temperature and relative humidity of the air are 
collected and used in a calculation to establish if it is a hot day 
or a cold day. If on a hot day the user takes a hot shower, he 
will lose points, but if on a cold day the user takes a cold 
shower, he will earn points. At the end of the month, points 
are converted into discounts or fines on the consumer's energy 
bill. This kind of approach depends on different input 
variables that are not available on the user’s residence or 
energy distribution company domains. Temperature and 
humidity vary a lot in large area cities and may not be 
available in real-time for smaller cities. 
 Jindal et. al. propose a system that is based on a heuristic 
technique [6]. The idea is to schedule residential loads 
considering not only the power available from the grid but 
also the distributed energy resources. Every smart home has a 
battery energy storage system, a solar photovoltaic panel, and 
is connected to an aggregator. An aggregator gathers a day-
ahead load demand from smart homes in a region and sends it 
to the electric utility. The utility then checks the availability 
of power and provides the day-ahead power for 24 h duration 
to the aggregator. So, the system schedule residential loads 
considering the power supply from the utility, power from the 
solar photovoltaic panel, battery energy storage system, and 
the user’s priority. This approach, however, depends on the 
distributed power generation, which is not available for most 
residential clients. 
 Remani et. al. introduce a load scheduling model 
considering consumer comfort, renewable sources, and any 
type of tariff [3]. Loads of smart homes are divided into 
schedulable and non-schedulable. The schedulable loads have 
a parameter that captures the degree of discomfort due to the 
delay in switching. The smart home here also has a 

photovoltaic solar panel and to solve the problem of load 
scheduling, a reinforcement learning approach is used. It is 
important noticing that machine learning efficiency depends 
on proper training of the algorithm. As a consequence, the 
efficiency of the algorithm will vary with time, as users may 
acquire or discard devices as well as change usage patterns, 
causing concept deviation. 
 Li and Zhang present and compare some models that work 
with ambient air conditioning systems, which can be 
classified as Heating, Venting, and Cooling (HVAC) [7]. The 
idea of these mechanisms is to change the thermostat of the 
devices according to the variation in the energy price. 
Generally, these models are very effective and great savings 
are achieved by varying a few degrees of the ambient 
temperature. 
Rezaei and Dagdougui present a building energy management 
system that integrates a local shared renewable power 
generation, energy storage system, and electric vehicles [23]. 
It also controls the HVAC system in each apartment of the 
building to reduce the electric bill of the building and improve 
the matching performance between the local generation and 
consumption. The proposed algorithm aims to maintain the 
temperature in a pre-defined comfort range, which means that 
each apartment requires a specific comfort range. 
 Tavakkoli et. al. propose a demand response scheme for a 
small residential area including several houses using an 
HVAC system to reduce the demand [8]. It is supposed that 
residential consumers are connected to an aggregator, and the 
Stackelberg game is adopted to consider the interaction 
between the aggregator (leader) and consumers (followers). 
The leader sends a series of bonuses to consumers to 
encourage them to participate in the DR. The followers define 
the demand reduction strategy to maximize the bonus and 
send it to the leader. The leader at this stage can update his 
strategy and send it back to followers. This process is repeated 
until the necessary demand reduction is obtained. 
 Arun and Selvan introduce an intelligent residential 
energy management system for prosumers of smart 
residential buildings [24]. The system manages the battery 
energy storage, renewable energy resources, and residential 
loads. Residential loads are divided into non-interruptible and 
non-schedulable loads (NINSLs), interruptible and non-
schedulable loads (INSLs), and schedulable loads (SLs). 
NINSLs are loads controlled only by the consumer. INSLs are 
temperature-controlled loads. SLs are loads that can be 
scheduled. 
 Zhang et. al. present a mechanism that combines machine 
learning, optimization, and data structure design to build a 
demand response and home energy management system [25]. 
The loads are divided into three categories: fixed loads, 
adjustable loads, and deferrable loads. Fixed loads include 
stoves, lights, and home computers, which must be used when 
needed. The second may include an HVAC system, which can 
be regulated but cannot be delayed. The third may contain 
dishwashers and dryers which can be delayed but cannot be 
regulated. 
 No solution on the demand-side management is excellent 
for all scenarios. Each region or country must take into 
account its scenario to propose a better solution. However, it 
must not be forgotten that a single residence causes a very 
small impact on the grid. In other words, the feasibility of 
large-scale deployment is critical to a residential solution. In 
some countries, only the temperature adjustment of HVAC 
systems is sufficient for large-scale deployment. But there are 
other countries where HVAC systems are not common to a 
large part of the population.  
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 Most residential solutions work only with load scheduling 
and residential renewable energy resources or only with 
temperature adjustment of the HVAC systems, conditioned to 
the price variation. Our work proposes residential 
mechanisms that combine load scheduling, temperature 
adjustment of HVAC system, and power adjustment of some 
devices (for example, lighting and shower), also considering 
a variable tariff. The idea is to attract as many consumers’ 
profiles as possible in countries where HVAC systems and 
residential distributed generation sources are not common to 
a large part of the population. Hence, our proposal focuses on 
developing countries, where smart appliances and smart 
meters are already a reality, but distributed generation, 
electrical vehicles, and residential battery banks are not usual. 
Also, our proposal uses information available on the power 
system and residential domains only, depends on low 
computation power, and does not suffer from concept 
deviation, as the heuristics adjust to user preferences and 
different usage profiles. 
 
 
4. Proposed Residential Demand-Side Management 
Mechanisms 
 
The proposed mechanisms aim to create a flexible program 
for developing countries that adapts to different customer 
profiles, helping to save energy during peak hours or in 
emergency events.  
 The mechanisms consider some requirements and 
restrictions. First, the system must be economically viable. In 
developing countries, most of the population does not have 
access to electric vehicles, solar photovoltaic panels, and 
energy storage batteries. Although HVAC systems present an 
excellent opportunity to save energy, the mechanisms cannot 
be based only on them, as they are also not widespread in 
these countries. The system must also require little 
computational power and consider user comfort thresholds to 
define in which load to act. 
 Considering these requirements, we developed two 
models: SREM-BS and SREM-EE. SREM-BS is a 
mechanism to save energy during peak hours of TOU tariffs. 
The user sets the percentage of savings, so the system 
automatically implements actions on the house devices, 
seeking to achieve the desired savings. SREM-EE is a 
mechanism to reduce energy demand during emergency grid 
events. The utility sends a demand reduction message to users' 
systems who participate in this program. In this case, the 
home system is obliged to reduce demand. 
 SREM-BS and SREM-EE are different solutions, with 
different purposes. However, nothing prevents the user from 
using both at the same time. Both use two load modeling 
techniques: flexible load shaping and load shifting. The 
flexible load will be used with the variation of the HVAC 
system thermostat or power variation of devices that can be 
adjusted. The load shifting will be done with load scheduling, 
such as the washing machine, shifting its operation to off 
peak-hours. 
 SREM-BS and EE modules are shown in Fig. 2. Most 
modules are common to each other and the difference lies in 
the Control Logic module, described in Subsections 4.2.1 and 
4.3.1 respectively. 
 The first module, Authentication, relates to the association 
and authentication of the devices in the house with the energy 
manager. This is important to ensure privacy and avoid 
attacks against house infrastructure. This module depends on 

and must support the security and privacy standards 
implemented in each smart device of the residence. 
 The Load Monitoring module tracks the energy 
consumption of each smart device connected to the system. 
First, it recognizes all available smart devices that have been 
able to authenticate themselves to the system. After this 
bootstrap phase, the module gathers and stores energy usage 
data per smart device, providing rich information for clients, 
through a graphic user interface, and for the Control Logic 
module. 
The Settings module allows the user to check and modify the 
system parameters, such as their comfort level and the 
percentage of savings on SREM-BS. It depends on the 
bootstrap phase of the Monitoring module, as the list of 
authenticated devices must be available to set default 
parameter values and to allow users to personalize the 
parameter set. 
 Following, there are three modules related to the Control 
System, which are: 
 

• Control Logic - presents the control algorithm. It 
interacts with the Target Calculation and History Update 
modules to define which devices must be rescheduled or 
have their power adjusted. 
• Target Calculation - defines what the consumption target 

should be at each moment to achieve the savings 
percentage configured by the user or defined by the 
emergency event. This target is used by the Control 
Logic module. 
• History Update - This module stores information about 

the household's consumption history throughout the day 
per smart device and also by the set of conventional 
devices. These historical data assist in the calculation of 
the target, performed by the Target Calculation module. 
The consumption history at each time of the day is 
calculated using a weighted moving average. This 
calculation depends on the weight (α), which varies in 
the range between 0 and 1. The weight determines the 
impact of that the last measurement over the 
consumption history update for that period of the day. 
The weighted moving average was chosen to avoid 
storing a large number of measurements to define the 
usage pattern. 
 

 The last four modules, called Meter Communication, Turn 
off Loads, Turn on Loads, and Load Regulation, execute 
commands sent by the Control Logic module on the 
equipment of the system. The Meter Communication module 
is responsible for feeding the Control Logic with the energy 
measurements of the house in real-time. Whenever necessary, 
the Control Logic module uses this module to send messages 
to the smart meter, requesting instantaneous energy demand. 
Besides, during an emergency event, the utility sends a 
message to the smart meter, which in turn forwards the 
message to the SREM through the Meter Communication 
module. 
 Turn off Loads module is in charge of disconnecting 
devices. When the Control Logic decides to shut down or 
reschedule a device, this module is responsible for sending a 
command message to this device.  
 Turn on Loads module is responsible for rewiring a 
device. When the Control Logic decides to rewire a device, it 
sends a message through this module.  
 Load Regulation is a module that acts in the power 
regulation of the devices. As we will see in Subsection 4.1 
some devices have adjustable power, and this can be used to 
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save energy. If the Control Logic wants to use this power 
setting, this module will send a message to the devices. 
 
4.1. Classification of home appliances 
The household electrical devices are divided into four groups: 
Adjustable, Flexible, Dispensable, and Indispensable. 
Devices that have the power regulation ability are classified 
as Adjustable. For example, HVAC systems, smart lamps, 
and smart showers. Devices that the user allows to be 
rescheduled are classified as Flexible. For example, washing 
machines, clothes dryers, and cleaning robots recharge. 
Dispensable are devices that are neither Flexible nor 
Adjustable, but their interruption has little impact on customer 
comfort. For example, water filters or decorative ambient 
lights. Indispensable is equipment that the interruption would 
cause great discomfort to the customer. For example, 
television and computer. 
 
 

 
Fig. 2. SREM-BS and SREM-EE modules. 
 
 
 The system, in the bootstrap phase, defines a standard 
classification of devices in each of these classes. The user can 
change the classification among Dispensable and 
Indispensable, as well as to define comfort thresholds for 
Adjustable devices. 
 SREM-BS operates in the first two groups, Adjustable and 
Flexible. It regulates the power of the Adjustable devices, 
changes HVAC system temperature, or reschedules Flexible 
devices. SREM-EE operates in four groups. It prioritizes the 
operation in the first two groups, but, whenever necessary, it 
turns off the Dispensable and Indispensable Devices. 
 
4.2. SREM-BS 
SREM-BS (Smart Residential Energy Management for 
Billing Savings) aims to save energy during peak hours of 
TOU tariffs. After a few user inputs, SREM-BS implements 
automatic management of smart appliances seeking to save 
energy during peak and intermediate hours. The mechanism 
performs energy economy by load shifting and power 
consumption reduction of some devices, however always 
respecting the user's comfort parameters. The user configures 
three parameters in the system: classification of devices, 
comfort parameters, and percentage of savings. 
 The system implements user comfort through a parameter 
called Intensity. The Intensity is an integer variable that 
ranges from 1 to 5. Intensity 1 represents the lowest operating 
power value of the device. Intensity 5 represents the highest 
operating power of the device. Device operating power is 
directly proportional to the Intensity.  This parameter 
represents the lowest operating power allowed by the user. 
For instance, if a device is configured with Intensity 3, the 

system will regulate the power of this equipment between 
Intensity 3 and Intensity 5. For HVAC systems, each Intensity 
value corresponds to a temperature value. The user then sets 
the minimum and maximum operating Intensity. 
The savings percentage represents the amount of energy that 
the customer wants to save during peak and intermediate 
times. The system calculates a demand target to be reached 
using this parameter. The savings target, Trg(t), varying in the 
time t, is calculated using Eq. 1 and 2. On the first day, at the 
beginning of an intermediate or peak tariff period, the initial 
saving target, Trg(t) is calculated based on the current 
demand, D(t), and the percentage of savings defined by the 
user, P_eco. Then, for the others days, Trg(t) is updated in a 
time window of size W. For each t-th time interval, Trg(t) is 
recalculated based on the historical average of demands for 
this time interval (〖Avg〗_hist (t)) and the percentage of 
savings defined by the user (P_eco). So, the target is dynamic, 
changing according to the period of the historical average. 
The historical average update period (T_s) must not be too 
short, which would make the target highly dynamic. 
However, in large periods, such as an hour or half an hour, the 
average demand does not reflect the real demand of the user, 
as this masks the functioning of devices such as microwaves, 
which have great power but are used for short periods.  
 
Trg(t)= D(t)  x P_eco       (1) 
 
Trg(t)= 〖Avg〗_hist (t) x P_eco      (2) 
 
 The historical average is updated using the Eq. 3 where  
〖Avg〗_hist (t) is the new expected demand average, D(t-1) 
is the actual demand of the last period t-1 and α is the weight, 
chosen between 0 and 1. 
 
Avg_{hist}(t)=α x  (D(t-1))/P_eco   + (1-α) x 〖Avg〗_hist 
(t-1)         (3) 
 
 The steps of SREM-BS are illustrated in Fig. 3 and 
described as follows: 

• Configuration - the user sets the percentage of savings, 
classification of devices, and comfort parameters in the 
energy management system. The user needs to perform 
this step only once, then the mechanism automatically 
implements the remaining steps each day. 
• Connection and authentication - establishment of 

connection and authentication between manager and 
smart meter, and between devices and manager. 
• Status update - at the end of each time window t, with 

duration T_s, the manager sends messages requesting the 
demand for each device and the current demand 
registered on the smart meter. In the meantime, the 
manager checks whether the current period corresponds 
to off-peak, peak, or intermediate. In these messages, the 
devices send the demand, status (on or off), and power 
status (minimum, maximum, or intermediate). 
• SREM-BS Module - during the intermediate or peak 

period, the manager calculates how to achieve the target 
Trg(t) using the Algorithm 1 and applies the changes to 
the devices. 
• Normalization - at the end of a peak/intermediate period, 

the manager normalizes the operation of the devices, by 
sending a normalization message. It resets devices that 
have had Intensity adjustment and reconnects those that 
have been turned off. 
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4.2.1. SREM-BS Module 
The logic of the SREM-BS Module is shown in the heuristic 
Algorithm 1. It receives the following input: Trg(t) (Eq. 1 or 
2), T_A and T_S. T_A is the minimum period of time to 
readjust an adjustable device, regulating power consumption. 
This period is important because some Intensity adjustments 
take some time to stabilize, such as the consumption of 
HVAC systems. T_S is the period between each round of the 
algorithm after the target has been reached. 

 
 

 
Fig. 3. Flowchart of the steps of SREM-BS. 
 
 

 
 
 
 The savings algorithm works in phases. In the first phase, 
〖Demand〗_total and 〖Demand〗_Flexible are updated 
(line 3). 〖Demand〗_total is the total demand of the house 
devices and 〖Demand〗_Flexible is the total demand of the 
Flexible devices. Then, it checks if consumption is below or 
above the target Trg(t) (line 5).  
 If the total demand is above the target, the algorithm starts 
a slight power reduction of the Adjustable equipment (lines 7-
13). Each round the mechanism reduces the Adjustable 
Intensity by one level, unless the device Status is at the 
minimum. The function 〖Reduce〗_(Intensity ) () performs 
the Intensity reduction and updates the Device Status (line 9). 
The reduced devices are inserted in the 〖List〗_Reduced 
(line 10), and the time T_A  is waited (line 17). 

 This reduction continues until the target is reached or until 
all adjustable equipment has reached the tolerable adjustment 
limit. The internal variables 〖Counter〗_reduced and 〖
Counter〗_Adjustable assist in this step (lines 15-16). The 
variable 〖Counter〗_reduced stores the number of Intensity 
reductions made in the Adjustable devices and it is reset at the 
beginning of each round (line 4). If during the round no device 
is reduced, then Status_Adjustable is set as a minimum. The 
variable 〖Counter〗_Adjustable represents the status of the 
Intensity parameter for all Adjustable devices. If 〖Counter
〗_Adjustable is set as a minimum, it means that all the 
Adjustable are operating at the minimum power allowed by 
the user. 
 If the target is not reached after all Adjustable devices are 
set to a minimum, the load shifting phase begins (lines 19-22). 
Each round, if the demand is greater than the target, a Flexible 
device is selected (line 20) and turned off (line 21). When it 
is turned off, it is inserted in the 〖List〗_(Turned-off) (line 
22). So, Flexible devices are rescheduled until reaching the 
target.  
 If the total demand remains above the target, the user is 
notified (line 24), because the system performed all possible 
actions to save energy, respecting the user's comfort. In this 
case, the customer must take some action on his own to reach 
the target. 
 In the case where the target is reached (line 27), an 
adjustment phase is initiated. The mechanism analyzes if it is 
possible to rewire any Flexible device or to increase the power 
of any Adjustable device. This is performed by the functions 
Rewire() and Increase() (line 28-32), described in the 
Algorithm 2 and Algorithm 3, respectively. After reaching the 
target, the interval between rounds is T_S (line 33). 
 The function Rewire() acts by turning on Flexible devices. 
It receives the following input:  Trg(t), 〖Demand〗_total, 
and 〖List〗_(turned-off). 〖List〗_(turned-off) is the list of 
rescheduled devices. The list is used to store the device states 
during the execution of Algorithm 1. At the beginning of 
Algorithm 2, 〖List〗_(turned-off) is sorted in increasing 
order of power (line 1). So, the lower power devices will be 
turned on first and, consequently, a greater number of devices 
will be rewired. When a device is rewired (line 6), it is moved 
from 〖List〗_(turned-off) to 〖List〗_rewired (lines 7-8). 
In the rewiring step, an appliance could be on the edge 
between reaching and not reaching the target. The system 
would then turn this appliance on and off, generating 
instability. So, if a device has been reconnected before, it will 
not be reconnected a second time (line 3). It will only be 
activated after a normalization message (normalization step 
of Fig. 3). So, all devices turned off by the control logic will 
be rewired and the 〖List〗_rewired  will be reset. 
 

 
 
 
 The function Increase() acts by increasing power of 
Adjustable devices. It receives a single input, 〖List〗
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_reduced, as shown in Algorithm 3. 〖List〗_reduced is the 
list of devices whose Intensity has been reduced. 〖Size〗
_reduced is a global variable that stores the size of the reduced 
list. 
 The main logic of the increase function occurs on lines 4-
6. The device is removed from the 〖List〗_reduced (line 4), 
then the function increases the power of it (line 5), and the 
variable 〖Size〗_reduced is decremented (line 6). Similar to 
the previous function, a power adjustment could be at the limit 
between reaching or not reaching the target. In this scenario, 
the system could cause instability in this device, increasing 
and reducing its Intensity. So, at the first time that the Increase 
function is activated, the variable 〖Size〗_reduced stores 
the size of the 〖List〗_reduced (line 2). Every time the 
function is called, it checks if 〖Size〗_reduced is equal to 
Size(〖List〗_reduced) (line 4). If 〖Size〗_reduced is 
different from Size(〖List〗_reduced), this means that there 
was a reduction in the power of some device in the meantime, 
and the mechanism no longer increases the power of any 
device. 
 

 
  
 
4.3. SREM-EE 
SREM-EE (Smart Residential Energy Management for 
Emergency Events) is the second proposed mechanism. It 
aims to reduce user demand during emergency grid events. 
Emergency events can occur to avoid overload or for any 
other reason that the reduction of power consumption in a 
large area is required. 
 SREM-EE is an alternative to the Direct Load Control 
(DLC) program [26,27]. In the DLC, the utility has control 
over a user's device and can turn off this device if necessary 
[28]. In this type of program, a contract should be established 
between the consumer and the utility to regulate the maximum 
number of interventions and the maximum period for these 
interventions. The customer is rewarded with discounts on the 
energy bill when participating in the program. In American 
models [29], the discount is proportional to the power of the 
equipment under the control of the utility. 
 In SREM-EE, instead of the utility controlling the user's 
electrical loads, it sends demand reduction messages to these 
customers. Hence, in emergency events on the grid, the 
energy company sends a message with a percentage of load 
reduction to the customer, who is obliged to answer the 
request. The way the user will fulfill the order is transparent 
to the energy company. Unlike the SREM-BS, the SREM-EE 
program allows the energy company to have a more direct 
influence on the user's consumption pattern. 
 In the emergency mechanism, the user performs two 
configurations in the system: classification of devices and 
comfort parameters. In the first configuration, the user 
classifies the house devices according to the categories 
described in Subsection 4.1. This configuration is slightly 
different from SREM-BS since SREM-EE works in the four 
device groups. The comfort parameter configuration is 
identical to SREM-BS, described in Subsection 4.2. 
 The emergency period begins when the user receives a 
message from the utility device. This message is called 

emergency message and contains a percentage value, called 
reduction percentage. The calculation of the emergency target 
uses this percentage value as shown in the Eq. 4. 
 
Trg_emer= D_current  x P_emergency     (4) 
 
 Target Trg_emer is the demand goal during the 
emergency period, D_current is the demand at the beginning 
of the emergency event, and P_emergency corresponds to the 
reduction percentage received in the emergency message. 
 Upon receiving the reduction percentage, the SREM-EE 
algorithm seeks to respect the comfort conditions established 
by the user, but they are not a limiting factor in reaching the 
target. The main idea is to deal with critical situations in 
which the user would remain without the service if no demand 
control is performed. So, the power demand must be reduced, 
and the user will receive discounts on the energy bill for 
joining the program. 
 
 

 
Fig. 4. Flowchart of the steps of SREM-EE. 
 
 
4.3.1. SREM-EE Module 
The flowchart of the SREM-EE, illustrated in Fig. 4, is similar 
to that of SREM-BS, described in Subsection 4.2. The 
contrast between both is being highlighted in Fig. 4 The first 
difference between the mechanisms is the period of operation, 
which is now emergency. The other difference is about the 
new logic of SREM-EE that must be more aggressive and 
assertive. Upon receiving a message from the concessionaire 
indicating an emergency event, the proposed manager 
guarantees demand below a certain target, according to the 
Algorithm 4. At the end of the emergency event, the 
normalization stage begins, which is initiated by a 
normalization message from the utility. 
 As shown in Algorithm 4, the SREM-EE mechanism 
receives the following inputs: the target Trg_ emer (Eq. 4) and 
the period waited after regulating the adjustable devices,  
T_A.  
 The heuristic emergency algorithm acts on the four load 
groups (adjustable, flexible, dispensable, and indispensable). 
Hence, in line 3, the energy demands of each group are 
updated. 〖Demand〗_Flexible is the total demand of the 
flexible devices. 〖Demand〗_Dispensable is the total 
demand of the dispensable devices. 〖Demand〗
_Indispensable is the total demand of the indispensable 
devices.  
 As it is an emergency event on the power grid, it is 
important to reach the target in a short time. Hence, the next 
step is to reduce the power of the devices classified as 
adjustable to the minimum (line 6). The variable 〖Counter
〗_Adjustable makes sure that this step is performed only 
once (lines 5-7). The HVAC system belongs to the adjustable 
group, so the mechanism waits the period T_A to stabilize the 
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demand of the HVAC system. If demand remains above 
target, it goes to the second step. The algorithm verifies if it 
is possible to reach the target by rescheduling the flexible 
devices (lines 9-15).  
 Up to now, the emergency model is operating similarly to 
the economic model. Acting in the first two groups and 
respecting the user's comfort. However, if the demand 
remains above the target, the mechanism becomes more 
severe. On the third step, it analyzes the possibility of 
reaching the target by turning off the dispensable devices 
(lines 16-23). 
 

 
  
 
 In the fourth step to reach the target, the HVAC system is 
turned off (lines 24-25). The HVAC system is the most 
powerful equipment in the house and its temperature 
adjustments take time to stabilize. In the fifth step, the system 
seeks to reach the target by turning off Indispensable (lines 
26-33). If the target is not reached, the algorithm evolves and 
increases the number of action groups. If necessary, all 
manageable equipment in the house can be turned off (line 
35). However, the idea is to avoid turning off indispensable 
devices as much as possible. 
Upon reaching the target, the rewire function is checked to 
verify if it is possible to turn on some devices (line 39). Hence, 
the function Rewire orders the devices by the energy power 
attribute, prioritizing the Indispensable. 
 
 
5. Energy and Communication Network Simulator 
(ECNS) 
 
The proposed mechanism was validated through simulation. 
The use of simulators in the study of smart grids is necessary 
for several aspects. An environment created with real 
equipment for testing and research is limited, compared to the 
flexibility of a simulator, and requires a high financial 

investment. Also, the simulation tools facilitate the research, 
the evolution of the system, and allow a faster analysis of the 
network. 
 The proposed mechanism is a control system for 
household electrical devices, so it is necessary to implement 
the control logic, the response in the electrical network, and 
the exchange of messages between network elements. In other 
words, the simulation program must simulate both the 
electrical grid and the telecommunications network. 
However, no widely used software simulates both networks 
and provides flexibility for the necessary modeling of these 
algorithms. 
 Li and Zhang validated his proposal by developing the 
integration of the eQuest tool, to simulate the electrical part, 
and MatLab, to implement the demand response logic [7]. 
Inspired by this integration, we propose and develop the 
Energy and Communication Network Simulator (ECNS). 
ECNS is a simulation tool that uses Network Simulator 3 (NS-
3) [30] to evaluate the telecommunication network and 
EnergyPlus (E+) [9] for the electrical system.  
 NS-3 is a discrete event simulator for communications 
networks. It is well-known software widely used for 
simulating telecommunications networks [31-33]. All DSM 
control logic of ECNS is implemented on NS-3, which allows 
a modular development of new mechanisms. 
 E+ is a computer program distributed by the United States 
Department of Energy, developed for thermal load simulation 
and energy analysis of buildings. Its application in research 
and evaluation of real cases is widespread in the academic 
literature, as in [34-36]. During the selection of the simulator 
for the electrical system, the use of eQuest [37] was 
considered, but E+ demonstrated much superior performance 
and had more adequate parameters for validating these 
mechanisms. The E+ receives a text file as input with the 
description of the building, type of material, internal loads, 
systems to be calculated, and returns a series of files as output, 
including a report with the variables requested by the input 
file. It also receives a file with regional climate history to be 
simulated as input. 
 
5.1. Integration between NS-3 and EnergyPlus 
E+ is a simulator that receives as input an Input Data File 
(IDF) and returns as output a CSV file. Periodically, the 
functions of the NS-3 application modules trigger the 
operation in E+ through Python scripts and receive the output, 
which is treated also in Python providing useful information 
for NS-3.  
 Fig. 5 presents the architecture of the integration scheme 
between NS-3 and E+, whose components are: 

• NS-3 Initialization: This component has a script 
developed to initialize NS-3. The simulation input 
parameters are defined, as well as the house devices and 
their usage pattern; 
• NS-3 Core: This component represents the NS-3 

simulator. After being triggered by the NS-3 
Initialization Component, the simulator core begins to 
run (arrow 1), simulating the programmed events. When 
the control algorithm changes the behavior of some 
equipment or requires some monitoring data, an updated 
IDF file is created for E+ simulation (arrow 2); 
• Generation of IDF files: Component written in Python, 

which handles the data received from NS-3, generates 
the IDF file (which describes the simulation scenario), 
and triggers the execution of E+ (arrow 3); 
• Execution of E+: This component represents the E+ 

Simulator. The component is executed, receiving the IDF 
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file and EPW (Climate file) as input, and returns a CSV 
file as output (arrows 4);  
• CSV File Parser: NS-3 triggers the CSV File Parser 

component (arrow 5), which extracts energy demand 
information from the CSV file and returns it to NS-3 
(arrow 6). 
 

 The E+ program is used to run simulations for long 
periods since its main purpose is the dimensioning of building 
systems. It is used for planning energy efficiency projects, for 
dimensioning ventilation systems, air conditioning systems, 
among others. The program has a minimum execution time 
limitation. It is possible to simulate 1 day, with 60 time-steps 
per hour, that is, a day with minute-by-minute measurement 
details. Scheduling loads for the whole day is already 
established in the IDF file. When there is a demand response 
event that changes the scheduling of loads, a new IDF is 
generated and executed, generating a new CSV with demand 
information per minute. 

 
Fig. 5. Integration of NS-3 with E+. 
 
5.2 Simulating the control logic in NS-3 
We developed three modules in NS-3 to model the control 
logic of a DSM mechanism, namely Device, Smart meter, and 
Manager. As a modular simulator, the modules can be 
modified at any time, allowing, for instance, the 
implementation of different DSM control logics. 
 
5.2.1 Device Module 
The Device module represents the household appliances. Tab. 
1 shows its configuration attributes, and Fig. 6 illustrates its 
operation sequence. 
 
Table 1. Description of Device module attributes. 

Attribute Description 

Name Device name 
Wattage Average device power (W) 
Type Adjustable, Flexible, Dispensable, 

Indispensable 
Call time Time the device will be turned on 
Operating Time Device operating time 
Intensity Attribute intended for adjustable devices 
Seed Call time schedule randomness 

 
 Appliances can be switched on at exactly the specified 
time or randomly within 15 minutes of the specified time. For 
this last purpose, an attribute called Seed was created, which 
stores the seed of the random function. If the seed is zero, the 
simulator will respect the configured time. If the seed is an 
integer greater than zero, it will draw a time to start. The use 
of the same seed in more than one simulation round 
guarantees the use of the same hour of operation. 
 According to the flowchart in Fig. 6, the operation steps 
of the Device module work as follows: 
 

• First, the module schedules the appliance's operating 
hours; 
• The device then establishes the connection to the 

Manager module. It sends this information to the 
manager: Name, Type, Energy, Time to turn on, Time to 
turn off, Status Intensity and Intensity; 
• The device waits for the Manager module to send a 

message. The messages can be one of the following 
types: 

o Status - Manager module requests status. In this 
case, the device responds with its Status (on or 
off), current power, the value of the variable 
Intensity, and Intensity status (minimum, 
maximum, or intermediate). Intensity fields are 
only for devices in the adjustable group; 

o Turn off - Message for requesting shutdown. 
The Device module responds to the turn off 
message stating the shutdown time to be 
changed in the E+ file; 

o Turn on - Message for rewiring a specific 
device. The Device module responds by 
informing the rewire time. This time is used to 
change the E+ file;  

o Intensity - Message sent by the manager to 
change the adjustable device's Intensity, which 
in turn responds confirming the change. The 
change is then recorded in the E+ file; 

o Normalize - Message received after the end of 
emergency or peak period. The device confirms 
the status after the normalization of the 
operation. This response is obtained in the E+ 
IDF file. 

 
 

 
Fig. 6. Flowchart of operation of the Device module. 
 
 
5.2.2. Smart Meter Module 
The second module developed on the NS-3 is the Smart 
Meter. Tab. 2 shows its configuration attributes, and Fig. 7 
illustrates its sequence of operation. 
 
Table 2. Description of Smart Meter module attributes. 

Attribute Description 
Day Simulation Day. Used in the treatment 

of E+ CSV 
Month Simulation Day. Used for E + CSV 

treatment 
Operation mode With or without emergency event 

during the day 
Reduction 
percentage 

Reduction percentage of the emergency 
signal 

Emergency event 
time 

Time when the emergency signal will 
be sent 

Seed Emergency event time schedule 
randomness 
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Fig. 7. Flowchart of the Smart Meter module. 
 
Based on Fig. 7, the Smart Meter module works as follows: 

• In the case of an emergency signal (for the SREM-E 
simulation), the Smart Meter starts scheduling the 
emergency signal by the Signal Schedule component, 
simulating an emergency message received from the 
utility; 
• Then it establishes a connection with the Manager 

module; 
• Smart Meter waits for a message from the Manager 

requesting the Demand; 
• Upon receiving a message from the Manager, it triggers 

the Python script to handle the CSV file (generated 
previously by the Manager module) and send an energy 
demand message for that moment.  

 
5.2.3. Manager module 
The third module is the Manager, which is the most complex 
module because it implements the DSM control logic and 
performs the integration between NS-3 and E+. Tab. 3 shows 
its configuration attributes and Fig. 8 illustrates its operation 
steps. 
 First, the Manager connects with all the devices and the 
smart meter. Then, the Manager triggers a Python script 
inputting a list of devices, powers, and operating status. This 
script creates and runs an input file for E+, thus generating the 
output CSV file. After these steps, it sends a message 
requesting status to devices and demand to the Smart Meter.  
 The next steps depend on the operating mode. If it is 
normal, which means the non-peak and non-emergency 
period, the module sends messages requesting status for each 
device every 10 minutes. This is represented in the flowchart 
as Operation Mode Case 1. Operation Mode Case 2 refers to 
emergency events. In the SREM-EE operation mode, the 
emergency period starts when the Manager receives an 
emergency message with a reduction percentage. If it is not 
Operation Mode Case 1 or 2, then the simulator understands 
the beginning of the Billing Saving mode. As a consequence, 
Operation Case 2 triggers SREM-EE and Case 3 triggers 
SREM-BS. Other DSM algorithms can be implemented 
replacing SREM-BS.  
During the SREM-BS or SREM-EE operation, if any device 
has a change in schedule or Intensity, a message is sent to this 
device and the IDF file of E+ is updated. 
 
Table 3. Description of Manager module attributes. 

Attribute  Description 
Day Day that will be used in the E+ simulation 
Month Month that will be used in the E+ 

simulation 
Operation 
mode 

Without DSM, SREM-BS, SREM-EE or 
Comparative DSM (described on Section 
6) 

Peak economy Percentage of savings during peak hours 
Intermediate 
economy 

Percentage of savings during intermediate 
hours 

 
Fig. 8. Flowchart of the Manager module. 
 
 
6. Results and Discussion 
 
The proposed models were validated through simulation. For 
this purpose, we developed the ECNS described in Section 5. 
The first analysis aims to ensure the reliability of the 
simulator. Then, the performance of SREM-BS and SREM-
EE are analyzed in relevant residential scenarios according to 
the Brazilian standards. We also implement a mechanism 
from Li and Zhang to compare with the SREM-BS [7]. 
 
6.1. Simulation tool validation 
The simulation tool was validated through two tests. The first 
test verified the behavior of the electrical system by 
comparing simulated consumption with the theoretical 
formulation.  Tab. 4 shows the consumption of some 
household appliances.  
 The results obtained with simulations were compared with 
the electrical consumption calculated by the theoretical 
formula defined in Eq. 5, where C is the consumption, 
P_average is the average power, and T_hours corresponds to 
the time in hours. 
 
C= P_average  x T_hours    (5) 
 
 The simulation results were good. The obtained results 
corresponded to the value expected by the formula. The 
refrigerator power curve varies throughout the day, but the 
simulation program has limitations. Therefore, instead of 
varying the refrigerator power throughout the day, we used 
the average power during the 24 hours, as shown in Tab. 5. 
 The second experiment verified the compliance of 
message passing between the elements of the communication 
network. We performed this analysis by examining the NS-3 
logs. In this respect, the messages exchanged in the simulation 
were following the logic of the proposed mechanisms. 
 
Table 4. Consumption test for validation of the electrical 
system. 

Appliances Average 
electrical 
power 
(W) 

Usage 
time 
(h) 

Consumption 
(Wh) 

Refrigerator 73 24 1752 
Water filter 6 24 144 
Refrigerator + 
Water filter 

79 24 1896 
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6.2 Simulation scenarios 
The analysis of the DSM models considers four residential 
simulation scenarios [38]. Usage habits were based on the 
public usage report called Procel [39]. The climatic file used 
in the E+ simulation was from the city of Niteroi, Rio de 
Janeiro, Brazil [40].  
 Some electrical devices have a power curve that varies 
throughout the day, however, due to the limitations of the 
simulation programs, the average operating power of each 
equipment was used as provided by the Brazilian Labeling 
Program, from Inmetro institute. 
 Tab. 5 shows the data considered for each energy family 
profile. The first profile considers a family that has energy-

efficient equipment and low energy consumption. The second 
profile, on the other hand, contemplates the same 
consumption pattern but using energy-inefficient equipment. 
The third and fourth profiles consider families that have high 
energy consumption, with efficient and inefficient equipment, 
respectively.  
 For profiles 1 and 2, the HVAC system works between 24 
and 26 C. For profiles 3 and 4, the HVAC system works 
between 22 and 24 C. It is important to note that the 
consumption of HVAC systems was dimensioned by E+, and 
these consumption are illustrated in Tab. 5 to give a notion of 
the expected consumption for each profile. 

 
 
Table 5. Classification and consumption of household appliances for each profile (Hours × Watts) 

Appliances Classification Daily average usage per profile 
Profile 1 Profile 2 Profile 3 Profile 4 

Refrigerator  Indispensable 24x51 24x73 24x51 24x73 
Washing machine Flexible 1x270 1x350 1x270 1x350 
Microwave Indispensable 0.1x800 0.1x800 0.25x800 0.25x800 
Water filter Dispensable 24x6 24x6 24x6 24x6 
Vacuum Cleaner Dispensable 2x876 2x876 2x876 2x876 
Automatic electric iron  Indispensable 1x156 1x156 1x156 1x156 
Computer Indispensable 2x120 2x120 5x120 5x120 
TV Indispensable 2x100 2x100 5x100 5x100 
Single Room Lighting Adjustable 1x20 1x100 4x20 4x100 
Double Room Lighting Adjustable 1x20 1x100 4x20 4x100 
Living room lighting Adjustable 2x80 2x400 4x80 4x400 
Dining room lighting Adjustable 1x80 1x400 4x80 4x400 
Bathroom lighting Adjustable 1x40 1x200 3x40 3x200 
Kitchen lighting Adjustable 1x40 1x200 3x40 3x200 
Service area lighting Adjustable 1x40 1x200 3x40 3x200 
External lighting Adjustable 0.5x280 0.5x1400 2x280 2x1400 
HVAC system Adjustable 9x618 9x618 9x1149 9x1149 
Electric shower Adjustable 0.67x3700 0.67x5500 2x3700 2x5500 

 
 
 In E+, the simulation models a house with three thermal 
zones: a double bedroom with 20 m², a single bedroom with 
12 m², and the rest of the house with 45 m², as shown in Fig. 
9. The dimensions used for the house in E+ are an adaptation 
of the house simulated in [41]. 
 
6.3. SREM-BS results and analysis 
The main objective of SREM-BS is to adjust the demand of 
the house to reach the percentage of consumption savings, 
configured by the user, during peak and intermediate hours. 
So, the SREM-BS model was analyzed and compared with 
one of the mechanisms presented in [7]. In this article, their 
mechanism was called Comparative DSM. It works similarly 
to SREM-BS, however, it only works in the thermostat 
control of air conditioning units. Note that the SREM-BS acts 
on any device that has variable power control or through 
scheduling loads at peak hours. 
 In SREM-BS, the variation of four parameters will be 
analyzed: α, Intensity, percentage of savings, and profiles. 
The parameter α is related to the calibration of the prediction 
mechanism. Intensity is the comfort parameter of adjustable 
devices. Percentage of savings is related to how much energy 
the user wants to save during peak hours. Profiles are the four 
simulation scenarios described in Tab. 5. 
 
6.3.1. Calibration of the demand prediction mechanism 
The first analysis involves only our mechanism to calibrate 
the α value used in the target calculation as shown in Eq. 3, in 
Section 4.2. The α is used to update the demand forecast in 

SREM-BS mechanism. The α defines the weight of the 
current average demand in the forecast update. The lower the 
α, the greater the historical weight in the update and the lower 
the current demand weight. 
 

  
Fig. 9. House plan used in simulations. 
 
 
 To evaluate α, the mean quadratic error between forecast 
and demand is calculated as shown in Eq. 6. This analysis uses 
only profile 4 because this profile has the highest 
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consumption, so it presents greater deviations when there is a 
forecast error. The α values used in the test were: 0.1, 0.3, 0.5, 
0.7, 0.9 and 1.0. 
 
𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟	 = 		√((𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝐷𝑒𝑚𝑎𝑛𝑑)²})/
𝐷𝑒𝑚𝑎𝑛𝑑         (6) 
 
 Fig. 10 shows the error percentage average of the 
estimator with the α variation, for 20 runs for each α value. 
The standard deviation is shown at the top of each bar. Note 
that α > 0.5 has the lowest error percentages. In the interval 
0.5 < α <1, the error is random. So, to simplify the analysis 
we decided to use α = 1, which means disregarding the 
historical calculation of the demand forecast. With α = 1, the 
consumption forecast for each hour of the day is equal to the 
consumption of the previous day. This is because the usage 
time of the devices is turned on and off in a home is usually 
random. In a factory, for instance, the result could be 
different, as there is a determined operating time for each 
equipment. In this way, the demand curve is more stable, and 
the history has a greater weight (small α values) in the demand 
forecast. 

Fig. 10. Average quadratic error of demand forecast in the analysis of α. 
 
 
6.3.2. Impact of Intensity variation 
The second parameter evaluated is Intensity. Intensity is a 
parameter related to user comfort, as explained in Section 4. 
In this analysis, α =1 and we also use profile 4. Since it has 
the highest consumption, it also represents the best 
opportunity for energy savings. The percentage of savings 
used here is 5%, as it is a low percentage. The purpose of this 
analysis is to verify the behavior of the mechanism with the 
variation of the Intensity, without other restrictions of the 
system. 
 The Intensity varies in the integer range of 5 to 1. Fig. 11 
shows the energy demand curve without DSM, with the 
Comparative DSM model, and with the SREM-BS. However, 
the objective is to analyze the mechanisms quantitatively. 
Therefore, we identify the percentage of savings achieved in 
a consolidated graph of the data, shown in Fig. 12. 
 SREM-BS runs during peak hours, so there are greater 
savings at this time compared to the total savings for the day. 
As expected, the lower the Intensity, the greater the savings, 
as can be seen in the graphic of the Fig. 12. For Intensity 5, 
the devices operate at maximum power, and the only 
technique used is load rescheduling, as described in 
Subsection 4.2. Only one device was rescheduled in this case, 
which was the washing machine. In this scenario, the user 
received an alert message stating that the savings energy 
percentage has not been reached. 

 
Fig. 11. Demand graph of SREM-BS over time varying the Intensity. 
 
 
 The lower the value of the Intensity variable, the greater 
the percentage of savings obtained. The SREM-BS achieved 
savings of 18% and the DSM Comparative saved up to 9%, 
despite the percentage of the 5% percentage pre-configured in 
the system. This occurred due to the anti-oscillation 
mechanism, described in Section 4. The algorithm reduces the 
power of the adjustable devices if the demand is above the 
target or increases the power if the demand is below the target. 
However, the power of a device may fluctuate between 
increasing and decreasing. When this happens, the 
mechanism no longer increases the Intensity, until the end of 
the peak period. As the savings target is variable, the anti-
oscillation mechanism was activated at the beginning of the 
peak period, not allowing an increase in power if demand 
were below the target in the following hours. However, the 
comfort limits of each equipment are configurable by the user. 
Therefore, these greater savings should not have a major 
impact on user comfort.  
 
 

 
Fig. 12. SREM-BS efficiency by varying the Intensity. 
 
 
6.3.3. Impact of the percentage of savings variation 
The third experiment analyzes the variation in the percentage 
of savings. The percentage of savings ranges from 10% to 
90%. We use α, profile 4, and Intensity=1, as the last two 
parameters represent greater savings potential. 
 Fig. 13 shows the results of this experiment. The savings 
obtained are directly proportional to the configured 
percentage of savings by the customer. It increases until the 
maximum limit is reached, that is, the limit of the user's 
comfort parameters, as described in Subsection 4.2.1.  
Therefore, peak hour savings remain at 40%, even if the 
setting is 90%, as can be seen in the graphic b) in Fig. 13. The 
system sends alert messages to the customer in the case where 
energy demand is greater than the savings target. 
 In this scenario, SREM-BS offers much greater savings 
than DSM Comparative. When the saving rate set by the user 
is higher than 10%, the effect of the anti-oscillation 
mechanism is not so evident. For saving rates higher than 
10%, the proposed mechanism gets closer to the user saving 
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demand, without interfering with user comfort, being more 
efficient than DSM Comparative. For the configured 
parameters, the comparative DSM savings limit is 11% for 
this scenario. 
 
6.3.3. Impact on different profiles 
In this subsection, we evaluated the four residence profiles 
(see Tab. 5). The idea is to check the percentage of energy 
savings during the day and at peak periods considering each 
profile. The analysis uses α =1, Intensity=1 and a target of 
30% of energy savings. During the tests, some of the profiles 
did not reach the 30% savings target. Then, as a way to stress 
the mechanisms, we chose this target value. 
 

 
Fig. 13. SREM-BS efficiency by varying the percentage of savings set by 
customer. 
 
 
 Fig. 14 shows the percentage of energy savings a) during 
the day and b) at peak periods. Note that the higher the energy 
consumption for a profile (3 and 4), the greater the energy 
savings achieved by SREM-BS. Saving capacity for profiles 
1 and 2 is around 25% on-peak hours, respecting user comfort 
parameters. So, they did not reach the target, and the system 
sent alert messages to these customers. Profiles 3 and 4 
achieved the desired savings percentage just by varying the 
power of the adjustable devices. 
 SREM-EE outperformed Comparative DSM across all 
user profiles. For profiles 2 and 4, the savings made by our 
model were twice as large. The best performance of 
Comparative DSM was 20% for profile 3 at peak times, while 
the best results for SREM-EE were 34% for profiles 3 and 4. 
  

 
Fig. 14. SREM-BS efficiency for different profiles. 
 
 
 Impact on reducing consumption with the implementation 
To conclude the analysis of the SREM-BS, we analyzed the 
impact on reducing consumption with its implementation on 
20% of the Brazilian population. Based on [42] (IBGE, 2019), 
we classify Brazilian families within the four profiles used in 
this work. Tab. 6 shows the classification of families in 
profiles according to their income. The percentage of savings 
corresponds to the result obtained in Subsection 6.3.4. 
 
Table 6. Percentage of savings by profile of Brazilian 
families. 

Profile Family Income 
(equivalent in 
dollar) 

Percentage 
of Families 

Percentage 
of Savings 

1 Up to US$ 539.53 42.50 0.12 

2 More than US$ 
539.53 to R$ 
1079.06 

30.50 0.15 

3 More than US$ 
1079.06 to R$ 
2697.66 

20.40 0.20 

4 More than US$ 
2697.66 

6.60 0.23 

 
 Based on the public data from the Ministry of Mines and 
Energy of Brazil [4] (EPE, 2020), Tab. 7 presents the 2020 
annual energy consumption balance for each region of Brazil. 
The economy column is a multiplication of consumption by 
the percentage of the population that participates in the 
program (20%) and by the weighted average of the percentage 
of savings in Tab. 6. 
 
Table 7. Residential consumption and economy by Brazilian 
region. 

Region of Brazil Consumption 
(Twh) 

Economy 
(Twh) 

North 9.489 0.289 
North East 29.078 0.888 
Southeast 68.413 2.089 
South 22.871 0.698 
Midwest 12.720 0.388 
Total 142.571 4.354 

 
 Fig. 15 illustrates the energy saved for the participation of 
20% of the population. The Southeast has the greatest 
potential for savings, as it is the region with the highest energy 
consumption. The total energy saved represents almost 50% 
of the energy consumed by the North region. So, the 
implementation of the SREM-BS can generate great savings 
in the expansion of the electricity grid and offer a more 
intelligent use of residential electricity. 
 
 

 
Fig. 15. SREM-BS - Residential energy savings by region. 
 
 
6.4. SREM-EE results and analysis 
The main objective of SREM-EE is to adjust residential 
demand during emergency events, guaranteeing that the 
demand does not exceed the target. In this scenario, we 
analyze the variation of three parameters: Intensity, 
percentage of reduction, and profiles. The emergency target 
is calculated based on the current demand, as described in 
Subsection 4.3. So, there is no α in this model. In these tests, 
the emergency period happens between 9:20 pm and 10:20 
pm. 
 We use two metrics to evaluate the performance of the 
mechanisms: Severity and Error. Severity is described by Eq. 
7. It indicates the reduction deviation, that is, how much the 
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mechanism has reduced the energy demand more than 
necessary. The error is described by Eq. 8. It represents how 
far the mechanism has exceeded the limit of energy demand 
during the emergency period. In other words, if at any point 
the mechanism does not respect the target. Demands above 
the target in the convergence period were disregarded. 
 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	 =

	*

!!"#$%&#_()*"!+,+-.+/01

!!"#$%&#_()*
	 , 𝑖𝑓		𝑇𝑟𝑔_𝑒𝑚𝑒𝑟 >	𝐷#$%&'(%_!*+

	
,-._/0/-"!+,+-.+/01

,-._/0/-
		 , 𝑖𝑓		𝑇𝑟𝑔_𝑒𝑚𝑒𝑟	 < 	𝐷#$%&'(%_!*+

    (7) 

 

𝐸𝑟𝑟𝑜𝑟	 =

	6

!!"#$%&#_()*"!+,+-.+/01

!!"#$%&#_()*
	 , 𝑖𝑓		𝐷/0/-./123 > 	𝑇𝑟𝑔_𝑒𝑚𝑒𝑟

	
																		0																					, 𝑖𝑓		𝐷/0/-./123 	< 	𝑇𝑟𝑔_𝑒𝑚𝑒𝑟

    (8)	

 
 
D_(without_DSM) is the demand without using DSM. 
D_emergency is the demand using SREM-EE. Trg_emer is 
the demand target during the emergency event. 
 
 
 
6.4.1. Impact of Intensity Variation 
In the first analysis of SREM-EE, we vary the Intensity 
chosen by the consumer, the reduction percentage is set to 
5%, and we use profile 4. Fig. 16 presents five graphics for 
each value of Intensity, each representing the demand of 
energy consumption over time. 
 The first action of SREM-EE is to reduce the intensities 
to the minimum set by the consumer. The lower the Intensity, 
the greater the demand reduction.  As the SREM-EE operates 
only during the emergency event, outside of this period the 
energy demand of the SREM-EE and “without DSM” is 
usually the same. However, for the Intensity 5 graphic, the 
SREM-EE curve is greater than the “without DSM” curve 
after the end of the emergency event. This is caused by load 
rescheduling, which was necessary due to the impossibility of 
readjusting the device's intensity during the emergency event.  
 
 

 
Fig. 16. SREM-EE by varying the Intensity. 
 
 
 Fig. 17 shows the severity graph for Intensity variation. 
For Intensity 1, there was a high deviation in demand 
reduction, reducing on average 30% more than necessary. 
This deviation occurs during the regulation of the Adjustable.  
In this step, the Intensity of the adjustable is regulated to the 

minimum allowed by the user. Therefore, this deviation does 
not have a major impact on user comfort. 
 The values of the error (Eq. 8) in these tests are equal to 
zero. After the convergence period, there was no record of any 
demand above the target. Severity corresponds to how far the 
demand was below the target. The Error corresponds to how 
much the demand was above the target. That is, large Severity 
values are linked to Errors closer to zero. 
 

 
Fig. 17. SREM-EE - Severity by Intensity graph. 
 
 
6.4.2. Impact of the percentage of reduction 
In the second analysis, the percentage of reduction varied was 
varied (10%, 30%, 50%, 70% and 90%), with Intensity 1 and 
profile 4. Fig. 18 shows the results of the variation in the 
reduction percentage. 
 This test analyzed the evolution of the load reduction 
groups. On the 50%, 70% and 90% charts, demand was above 
target for a period. This occurred during the convergence 
period, as the mechanism has an action delay due to HVAC 
adjustment. Analyzing the experiment data, the maximum 
convergence period was seven minutes. In other words, after 
receiving the emergency message, SREM-EE took up to 
seven minutes to reach its target. 
 In all cases, SREM-EE was able to guarantee demand 
below the target. For a reduction of 10% and 30%, the target 
was reached by decreasing the power of the adjustable 
devices. For 50%, there was load rescheduling. That can be 
seen with the increase in demand after the end of the 
emergency period. Also, the HVAC system was shut down.  
For 70% and 90%, after trying to reduce the power, there is a 
reduction so great that the algorithm is forced to turn off the 
entire house. And then restart the devices that can be switched 
on again, respecting the target. 
 
  

 
Fig. 18. SREM-EE by varying the percentage of savings. 
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 Fig. 19 shows the severity graph for the variation in the 
reduction percentage. There were deviations of up to 35% in 
the reduction of demand. For the 10% reduction graphic, the 
deviation occurs during the regulation of the Adjustable.  In 
this step, the Intensity of the adjustable is regulated to the 
minimum allowed by the user. Therefore, this deviation does 
not have a major impact on user comfort. For 70% and 90% 
reduction requests, there were large percentage deviations, 
but these deviations do not represent a large amount of 
energy. Analyzing their curves in Fig. 18, demand is very 
close to the target.The values of the error (Eq. 8) in these tests 
are equal to zero. 
 
6.4.3. Impact of different consumer profiles 
The third analysis of the SREM-EE is performed on the four 
residence consumer profiles, with a reduction request of 30% 
and Intensity=5. Fig. 20 shows the energy demand curves for 
each of the profiles. 
 All profiles respected the reduction target during the 
emergency period. To achieve this objective, profile 1 shut 
down the HVAC system to reach the target, while profile 2 
reached the target with adjustable Intensity reduction and load 
rescheduling. Profiles 3 and 4, reached the target only with 
the reduction of Intensity of the adjustable. 
 Fig. 21 shows the severity values for each profile. For 
profile 3, there was a large percentage deviation, but these 
deviations do not represent a large amount of energy. 
Analyzing its curves in Fig. 20, demand is very close to the 
target. Also, profile 3 achieved the target by reducing the 
power of the adjustable devices, respecting the user's comfort 
parameters. In other words, this deviation does not cause great 
discomfort to the user. 
 

 
Fig. 19. Severity of SREM-EE according to the percentage of savings. 
 
 

 
Fig. 20. Energy demand curves of profiles. 
 
 

 Once again, the error values in this experiment are zero. 
After the convergence period, no demand exceeded the target. 
 
 

 
Fig. 21. SREM-EE - Severity by profile graph. 
 
 
 Impact on demand reduction with the implementation 
To calculate the impact on demand reduction with the 
implementation of the SREM-EE, we used a scenario of 1000 
houses. The distribution of user-profiles corresponded to the 
proportion shown in Tab. 7. The total power demand of these 
houses during emergency hours was 2354 kW. The 
percentage of reduction sent by the utility to the participants 
was 30%. 
 Tab. 8 and Fig. 22 show the reduction in demand achieved 
for different percentages of population participation in the 
program (10, 15, 20, 25, and 30% - membership). The SREM-
EE guarantees reduced demand below the target. Therefore, 
the demand reduction can vary between the target (30%) and 
the power reduction made by the SREM-EE, considering the 
severity percentage of each profile as shown in Fig. 21. The 
third column of the table represents the percentage of 
reduction in total demand. 
 
Table 8. Demand reduction by the percentage of population 
membership. 

Membership (%) Target - SREM-
EE (kW) 

Demand 
reduction (%) 

10 71-107 3-5 
15 106-161 5-7 
20 141-215 6-9 
25 176-268 8-11 
30 212-322 9-14 

 
 
 As shown in Fig. 22, the higher the percentage of the 
population affiliated with the program, the greater the power 
reduction demand the SREM-EE achieves. With a 30% 
membership, we reached a power reduction of 322 kW. 
 The SREM-EE proved to be an excellent tool for reducing 
energy demand. It reached the target in a maximum of seven 
minutes. And was able to reduce until 14% of the total energy 
demand, with only the participation of 30% of the houses in a 
region. 
 This work presents two efficient DSM mechanisms that 
respect users’ comfort parameters. They perform saving 
actions automatically, allowing users to save energy without 
major changes in their habits. Its heuristic logic depends on 
low computational power. In this way, making the system 
cheaper and easier to deploy on a large scale. These 
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mechanisms are powerful tools for utilities. They allow the 
reduction of energy consumption during peak hours and the 
demand reduction during emergency network events. The 
SREM-BS allows its users to save energy and benefit from 
the use of variable energy charging. And the SREM-EE users 
receive a discount on their bills to reduce their demands 
during emergencies. 
 

 
Fig. 22. SREM-EE - Demand reduction by the percentage of population 
membership. 
 
 
 Most DSM in literature proposals save energy only by 
adjusting the HVAC system or by rescheduling the home 
appliances. Our models use both strategies, adjusting the 
HVAC system, and rescheduling loads at the same time. In 
addition, it also regulates the power variation of some devices, 
dynamically adapting the service to different user profiles.  
Another important issue for DSM programs is the population 
adoption to the program. DSM programs that cause 
discomfort or uncertainty will not be hired by consumers. 
Hence, we classified devices according to their impact on user 
habits. The idea is to ensure that DSM will not be a disturbing 
routine and incentivizing a higher number of clients to adhere 
to the system. With the proposed programs, even a more 
modest user can achieve satisfactory savings. 
 We also developed the ECNS, a simulator to analyze 
different DSM control logic algorithms. This simulator is the 
result of the integration of the E+, an energy system simulator, 
and the NS-3, a communications network simulator. ECNS 
was used in the simulations of the SREM-BS and SREM-EE. 
It simplifies the evaluation of new mechanisms, considering 
the power system characteristics, the control logic, and the 
communication network scenario.  
 
 
7. Conclusion 
 

Demand Side Management (DSM) mechanisms are 
fundamental for residential energy consumption automation, 
not only for the balance generation and demand of energy, but 
also because they present an excellent opportunity to save 
costs and provide more efficient energy use. 
 We proposed two demand-side management mechanisms 
for residential users, SREM-BS (for billing savings) and 
SREM-EE (for emergency events). To test the mechanisms, 
we developed a simulator for electrical and 
telecommunications systems, the ECNS. 
 About the development of the simulator, the E+ and NS-
3 integration was a success. And the ECNS proved to be an 
excellent tool to simulate the scenarios studied. Its downside 
is that it only works on Linux operating systems. 
 The SREM-BS showed excellent performance in saving 
different user profiles, achieving energy savings of up to 40%. 
We also compared SREM-BS with other proposal [7] and our 
program outperforms the Li and Zhang mechanism, often 
saving twice without causing higher discomfort to the user. 
Our emergency model, SREM-EE also performed well in our 
tests. It reached the target in a maximum of seven minutes and 
kept demand below the target during the emergency period. It 
was tested in different profiles, and with different percentages 
of reduction. We showed that it was able to reduce residential 
energy demand even in the most critical cases, with a 90% 
reduction in energy.  
 We analyzed the implementation of SREM-BS in the 
Brazilian scenario, Subsection 6.3.5. With 20% of the 
population joining the program, the total energy saved 
represents almost 50% of the energy consumed by the North 
region. Therefore, it represents an excellent opportunity to 
reduce grid expansion and to reduce expenses with power 
generation. 
 For SREM-EE, we evaluated a scenario of 1000 houses 
with the participation of 30% of users, Subsection 6.4.4. For 
the 30% reduction target, we achieved a total demand 
reduction of 14% within a maximum time of seven minutes. 
Therefore, proving the mechanism's ability to guarantee 
demand reduction during emergency events.   
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