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Abstract 
 

Conveyor belts are used in many industries, from food to mining and power generation. These conveyors consist of many 
subsystems, and these systems, like any mechanical system, are prone to failure. The failure of these systems can cause 
the conveyor to be stopped and repaired, and during this downtime, production is lost. Thermal cameras are the most 
using method to diagnose the faults in bearing that produce the heating than the healthy bearing. Acoustic gear and 
accelerometer are used to capture the idler sound and vibration to detect the current health of the idler. But, these 
diagnosis methods need an engineering presence near the belt and monitoring purposes. However, these sensors can be 
monitored by only a few idlers nearby, and the installation cost of these makes the monitoring system infeasible. A 
predictive maintenance framework and mathematical modelling of a belt conveyor have been proposed to identify the 
faults before the severe damage of the belt. The experimental results showed that the in-belt monitor could identify a 
faulty bearing even before failure occurred. This allows all the defective bearings to be identified and the needed stock 
can be purchased ahead of a planned outage, and all the faulty bearings can be replaced. One large, scheduled outage can 
be organized to replace all defective bearings and bearings showing signs of failure soon, reducing the number of short 
power failures that punctuate the conveyor feed. This form of monitoring is insufficient for estimating the remaining 
service life of the faulty bearings. 
 
Keywords: Conveyor belts, Signal processing, Fourier Transform, Bearing, fault Monitoring, Wavelet. 
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1. Introduction 
 
Food processing, mining, and even the production of 
electricity all make use of conveyor belts (Yassa, 2019). 
These conveyors have many moving parts, and just like any 
other mechanical system, they can break down. The 
conveyor may need to be shut down and repaired if these 
systems fail, resulting in lost production time (Boudane, 
2017).  
 The belt is typically one of the most expensive parts of a 
conveyor system. Approximately one third of the total cost 
of installation is attributable to the cost of the belt. When the 
supporting idlers become seized or have difficulty rotating, 
belts are more likely to become damaged (Boudane, 2017). 
The belt and driving unit are subjected to additional strain 
and stress as a result of the idlers becoming frozen. Belts 
degrade when they are dragged over a stationary idler, and 
belts have been known to tear and even rip in two, in which 
case the two ends of the rip need to be reattached in order to 
form a continuous loop again (Meshgin-Kelk, 2017). Belts 
have also been known to wear out over time. Belts that have 
been damaged can be very expensive to repair (Boudane, 
2017).  
 Idler bearings get dirty and eventually fail, which can 
cause the idler to seize up (Luo, (2019). ). Conveyors can 
range in length from a few hundred meters to several 
kilometers, with potentially thousands of bearings spread out 

along its length (Jankowska, 2022). It's possible for the 
bearings in any of these idlers to fail, and if the problem isn't 
caught in time, it can cause serious enough damage to the 
belt that large chunks of the belt will need to be removed 
and replaced (Luo, 2019). 
 A bearing has the fundamental frequency of the inner-
outer- and rolling elements. There are numerous ways in 
which a bearing can fail, and these different faults can 
present themselves at the fundamental frequencies within the 
bearing (Nandi, 2017). These changes in the frequency 
spectrum are widely used to identify faults in bearings and 
other mechanical equipment. Several components in a 
bearing can fail, each having a different outcome on the 
frequency spectrum, and for this reason, different bearing 
fault cases will be tested on the conveyor test bench. There 
will be five bearing conditions:  
 
• Healthy bearing: Since idlers have no bearing faults, it is 

also important to include this as one of the bearing 
conditions (Nandi, 2017). This also serves as a baseline 
to compare the faulty bearing signals. Knowing the 
baseline can help identify the deviations of faulty 
bearings, which can be used to identify better and 
classify faults.  

• Outer raceway: Pits forming on the surfaces of bearing 
raceways are very common bearing faults that occur and 
can lead to taking failure-inner raceway (Nandi, 2017).  

• Rolling element. A small pit is created on the surface of 
the rolling element. These pits, although small, also 
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impact the raceways and can lead to similar failure 
(Bindu, 2018).  

• Contamination: Bearings become contaminated with dust 
and dirt, which can lead to the acceleration of bearing 
failure (Fu, 2019, November). When failing bearings are 
replaced, it will be beneficial to know which bearings, 
although not damaged yet, are contaminated. 
Contaminated bearings may not show significant signs 
of failure, but one may want to replace them as a 
preventative measure. For this reason, bearings are 
contaminated with fine sand and are tested in the hope 
that they may also be identified and classified (Fu, 2019, 
November).  
 

 A method for early bearing failure detection will allow 
the faulty bearings to be detected before the idlers seize and 
start to damage the belt (Hassan, 2018). An automated idler 
monitoring system is desired to monitor the conditions of all 
the idler's bearings and notify an operator when a faulty 
bearing is detected (Fu, 2019, November). This system 
needs to be financially feasible but accurate enough to be 
trusted to identify any faulty bearings.  
 Conveyors play an important role in the operation of the 
mining and power generation industry (Thomson, 2016). 
Conveyors continuously feed the power generation plants 
with the needed quantities of coal over long distances 
(Hassanzadeh, 2019). Conveyors can deliver their payloads 
continuously, and the volumes can be regulated to fit the 
need of the process it is feeding. Conveyors play a vital role 
in the smooth operation of all applicable industries, and  
(Cruz, 2008) continuous monitoring of these conveyors 
ensures that they stay operational and work optimally 
(Thomson, 2016).  
 Constant exposure to the filth and dangers of a 
conveyor's working environment can be harmful to human 
health. Conveyors in factories often result in extremely loud 
environments, and workers also risk breathing in harmful 
particles (Pandarakone, 2018 ). The amount of time an 
inspector must spend in these conditions will be drastically 
decreased with the implementation of an automated 
monitoring system (Krishna, 2013). 
 Today, Western Sahara boasts the world's longest 
operating conveyor system. The combined conveyor system 
is just over 100 km in length and has been in operation for 
more than 30 years (Pandarakone, 2018 ). Phosphate is 
transported from the mines to the coast via conveyor belts; 
in the aerial photograph, the white line of the conveyor can 
be seen where some of the phosphate has been blown off. 
Durable rubber reinforced with steel cords is used to make 
belts that move heavy loads like stone, coal, and ore  
(Pandarakone, 2018 ) 
 By giving the belt a quarter turn on the bottom section of 
the conveyor, you can make it so that it wears evenly across 
all of its exposed surfaces, rather than just on one side, as is 
the case with the conveyor belts that we are used to seeing 
today (Tsypkin, 2017). The Turnover Conveyor Belt System 
was initially more sturdy than its untwisted counterparts, but 
the advent of modern belts that are made of multiple layers 
of material has rendered the twist obsolete (Tsypkin, 2017). 
The most extended conveyor system in use today is in 
Western Sahara. The combination of conveyors has a total 
length of just over 100 km and has been in use for over 30 
years (Pandarakone, 2018 ). The conveyor belts transport 
phosphate from the mines to the coast, and as some of the 
phosphates are blown from the belts, it leaves a distinct 
white line of the conveyor in the aerial view (Ishikawa, 

2013). Belts used to transport bulk materials like stone, coal, 
and ore are made from rugged rubber reinforced with steel 
cords (Pandarakone, 2018 ). 
 Along the length of conveyors, there can be hundreds, if 
not thousands, of idlers. The belt is carried from one end to 
the other by means of these idlers. In most cases, a broken 
belt is caused by a faulty set of idlers (Bruno, 2015). As the 
bearings wear, the idler's smooth rotations are hampered, 
and in extreme cases, the entire idler can seize. When the 
bearings wear out, the idlers can't rotate freely, increasing 
the friction between the idler and the belt. The shell of the 
idler and the belt's surface both wear down due to the 
friction between the two. In extreme cases, the idler can 
completely freeze, causing the belt to drag its load over the 
immobile idler. There is belt damage due to the damaged 
and seized idlers (Al-Ahmar, 2019) 
Seals are used to protect the bearings from the environment, 
keeping dust and mud away from the bearings to increase 
the usable life. Bearings contaminated with dust or dirt tend 
to seize or fail catastrophically (Bruno, 2015). The seizure or 
failure of a bearing can cause an entire idler to seize, and 
then it will start to scrape or rub against the belt, causing 
unnecessary friction on the belt (Luong, 2020). This excess 
friction places additional strain on the power unit, and the 
belt may also rip, tear, or catch fire under these excessive 
friction forces, leading to the standstill of the conveyor. 
 The rest of the paper is organized into four sections: 
section (2) discusses different causes of conveyor belt 
failure, focusing on idler failure. Section (3) consists of a 
predictive maintenance framework and mathematical 
modelling of the belt conveyor. The following section (4) 
discusses the development of an in-belt idler monitoring 
system and test-bed environment. Finally, the following 
sections will show this paper's different results and 
conclusion.   
 
 
2. Possible failures in a conveyor belt 
 
Like every mechanical system, something is bound to wear 
and fail at some stage during the operation of the conveyor. 
There are plenty of individual components that make up a 
conveyor system, and each one of them can fail or lead to 
subsystems failing (Herndler, 2011). The conveyor can still 
operate and deliver the payload even when certain 
components fail - like the idlers (Jankowska, 2022). If these 
components are not fixed, they can lead to the failure of 
subsystems or other components critical to the conveyor's 
operation - like the belt.  
 The bearings in the drive unit, head and tail pulleys are 
subjected to enormous stresses. The bearings can fail and 
lead to catastrophic failure of the conveyor. Reports show 
that the bearings became so hot that the grease inside caught 
fire (Herndler, 2011). The gears inside the drive unit are also 
under large cyclic loads. Various condition monitoring 
methods have been implemented on these critical 
components for preventative maintenance against 
catastrophic failure (Pereira, 2009).  
 The belt of the conveyor system is an expensive 
component (Cruz, 2008). For nylon or polyester embedded 
belts, the cost of the belt is about one third the installation 
cost of the entire system and can be even more expensive if 
the belt is reinforced with a steel cord (Herndler, 2011). The 
cost of maintenance can be reduced by avoiding belt 
damage. There are a few ways to mess up the belt (Yetgin, 
2019). A belt's supporting structure, or carcass, can weaken 
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if it is subjected to excessive stress, such as when heavy 
rocks are placed on the belt or when material accumulates on 
the idlers (Pandarakone, 2018 ). These defects increase the 
risk of the belt tearing or even breaking. For the conveyor to 
stop so the belt can be reattached or repaired, 
 Along the length of conveyors, there can be hundreds, if 
not thousands, of idlers. The belt is carried from one end to 
the other by means of these idlers. In most cases, a broken 
belt is caused by a faulty set of idlers (Pandarakone, 2018 ). 
As the bearings wear, the idler's smooth rotations are 
hampered, and in extreme cases, the entire idler can seize. 
When the bearings wear out, the idlers can't rotate freely, 
increasing the friction between the idler and the belt. The 
shell of the idler and the belt's surface both wear down due 
to the friction between the two. In extreme cases, the idler 
can completely freeze, causing the belt to drag its load over 
the immobile idler. There is belt damage due to the damaged 
and seized idlers (Thomson, 2016). 
 Although the idlers are not as complex as the drive unit, 
the head and tail pulley or the tensioning mechanism, they 
are crucial to a conveyor's smooth operation. There is a very 

large number of idlers along the length of a conveyor 
(Ishikawa, 2013). For general engineering practice, the 
spacing, in imperial units, of the idlers based on the belt 
width and the payload weight can be found in (Table 1). The 
table was found in an idler selection procedure (Navarro, 
2020) Note the table is in imperial units. 
 According to the data in the Table 1, the number of idler-
assemblies required per kilometre ranges from 925 to 2,049, 
with the exact number requiring knowledge of both the belt 
width and the payload mass. (Xu, 2020). Three top idlers 
form a trough to support the payload, while one or two 
bottom idlers hold up the empty returning belt in each idler 
assembly (Krishna, 2013). It is assumed that each assembly 
has four idlers, or eight bearings, with three on top 
supporting the payload and one on the bottom supporting the 
empty returning belt (Xu, 2020). That ranges from 7,400 to 
16,392 bearings per km. In the mining and power generation 
industries, it's not uncommon for conveyors to stretch for 
several kilometers. Any one of those bearings could fail, 
causing serious damage to the belt, so careful inspection and 
monitoring are essential (Ishikawa, 2013). 

 
Table 1. Suggested idler spacing (feet) in engineering practice (Navarro, 2020) 
Belt width [inch]  
 

Number of toughing Idlers 
Weight of Material Handled, [Lbs. Per Cu. Ft] 

Number of return Idlers 

30 50 75 100 150 200 
14 5.5 5.0 5.0 5.0 4.5 4.5 10.0 
16 5.5 5.0 5.0 5.0 4.5 4.5 10.0 
18 5.5 5.0 5.0 5.0 4.5 4.5 10.0 
20 5.5 5.0 5.0 5.0 4.5 4.5 10.0 
24 5.0 4.5 4.5 4.0 4.0 4.0 10.0 
30 5.0 4.5 4.5 4.0 4.0 4.0 10.0 
36 5.0 4.5 4.0 4.0 3.5 3.5 10.0 
42 4.5 4.5 4.0 3.5 3.0 3.0 10.0 
48 4.5 4.0 4.0 3.5 3.0 3.0 10.0 
54 4.5 4.0 3.5 3.5 3.0 3.0 10.0 
60 4.0 4.0 3.5 3.0 3.0 3.0 10.0 
66 4.0 4.0 3.5 3.0 3.0 3.0 10.0 
72 4.0 3.5 3.5 3.0 2.5 2.5 8.0 
84 3.5 3.5 3.0 2.5 2.5 2.0 8.0 
96 3.5 3.5 3.0 2.5 2.0 2.0 8.0 
 
 
 Subsystems that do not require constant human 
involvement or assistance, such as the drive unit, head and 
tail pulley, and even the belt surface and internal structure, 
are monitored using a variety of condition monitoring 
systems (Misra, 2015). When a problem is detected, the 
system automatically notifies a human operator. A system is 
required to monitor all of the idler bearings and alert an 
operator of any possible failures, just as is the case with the 
other subsystems in the conveyor. A feasibility study 
conducted by Eskom indicates the need for a system to keep 
tabs on the conveyor belts' idlers (Misra, 2015) though it 
must be economically viable. The cost of the monitoring 
equipment must be reasonable, and workers who check on 
and swap out the idlers should be compensated fairly. 
 
 
3. Framework For Condition-Based Maintenance And 
Computational Mathematics Of Belt Conveyor 
 
Idlers' condition monitoring on a belt conveyor is assumed 
to involve timely roller detection, decision making, and a 
subsequent assessment interval. Here, a framework is 
proposed for fault preservation in belt conveyors, and Figure 
(1) provides an illustration of its application toward the 
system's accurate predictive maintenance. The proposed 
framework consists of different phases starting from rea-

time capturing belt features, throughput, and the belt 
material specifications from the instrumental system used 
for monitoring the input data for identifying the number of 
bearing failures and Current conditions of roller bearings 
and conveyor belt (Al-Hashedi, 2021). The output from the 
framework showed the idler roller and bearing failure mode 
for in-service inspection by engineers.     
 

Fig. 1. Proposed framework of Decision-making structure for 
Maintenance the belt. 
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 There are relationships between the algorithm, 
reliability, and the amount of working time that has already 
been attained. These relationships are necessary for the 
calculation of the failure percentage, which takes into 
account the population of identical bearings operating under 
the same symptoms (Refer to Equation (1) in (Hui, 2017). 
The accumulated density function for the failure of the roll 
bearings is depicted in Equation (1); 
 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒!"(𝑇) = 1 − 𝐵#(𝑇) = 1 −

𝑒𝑥𝑝 1−0.10536$%!('))
%"#,%

7
*+/-

8                       (1) 

 
 Where 𝐹𝑎𝑖𝑙𝑢𝑟𝑒!"(𝑇) is failure time in specific time; 𝐵#is 
the rate of bearing; 𝐿*+,/ is the 𝐿*+rating life of idlers roll 
bearing, and the length of operational time (Hui, 2017).  
The value of 𝐿0(𝑇) can be calculated as follows in Equation 
(2); 
 

𝐿0(𝑇) = ∑ ;#1&
#1%

<2
34*

5
𝑡3                    (2) 

 
 Where 𝑅𝐹3is the radial force to 𝑖!6the level of throughput 
of belt conveyor on a central bearing point; 𝑡3 is the sum-up 
of the operational time at 𝑖!6the level of throughput; 𝑅𝐹/is 
the radial force value to features and material of design 
capacity of belt (Hui, 2017).  
 Furthermore, an error calculation term 𝜀(𝑇)is presented 
in the hypothetical calculation of failure percentage 
occurrence between two following assessments of idler 
bearings 𝑇3 . So, the failure ratio can be calculated from 
Equation (3) as follows (Yetgin, 2019):  
 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒!"(𝑇3) = ∫ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒!"(𝑇3)𝑑𝑡

3
!&7*

+ 𝜀(𝑇37*)             (3) 
 
 From substituting Equation (1) into Equation (4), the 
constant throughput is formatted as follows for belt velocity, 
 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 !` "(𝑇3) = 𝑒𝑥𝑝C−0.01 6%!('&(")
%"#,%

7
"#
)
D −

𝑒𝑥𝑝C−0.01 6%!('&)
%"#,%

7
"#
)
D                                       (4) 

 
 With the recognition of impreciseness of conventional  
𝐿*+bearing fault and lifetime calculation (Equation (7) in []) 
is presented in our framework to modify the imprecision of 
consistency estimation of error term 𝜀(𝑇)   as follows in 
Equation (5) (Chen, 2010, March). 
 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒!"(𝑇3) = ∫ 𝑓!3(𝑥)

89
':('7*) 𝑑𝑡                                 (5) 

 
 Where, 𝑓!3(𝑥)  is the current belt monitoring frequency 
value relative to the time 𝑇3. 
 
 
4. In-Belt Idler Monitoring System  
 
For very early fault detection, one can focus on the first 
stage of bearing failure. Monitoring the ultrasonic vibrations 
will give a very early insight into a bearing’s health. Due to 
the high frequency range being measured, the sensors and 
data acquisition equipment required to do so are typically 
dearer. More readily available equipment can measure at the 

lower frequencies and monitor the bearing fault or defect 
frequencies. This will be more financially viable but will 
only indicate later stage failure. Faulty idlers will be 
replaced when it is in the later stages of failure as it makes 
no sense to replace a bearing when there is still significant 
life left. It would be beneficial to identify a faulty bearing 
when it is in the initial stages of failure, but identifying the 
bearing in the third stage of failure should give the operators 
enough time to evaluate the severity of the failing bearing.  
Before starting the experiments, the inherent risks posed by 
this effect were tested with a simple experiment. This was 
done to see if the vibrations could be measured through all 
the elastomeric belt at varying distances from the starting 
point.  
 

 
Fig. 2. Transmissibility test bench. 
 
 
 Figure 2 depicts the experiment conducted on a modest 
scale to explore the transmissibility of the fault. The 
significant components are labelled in the Figure: 
• The tremor was generated by a hydraulic actuator. A 

range of 0-1000 Hz was scanned for frequencies. 
Because failure occurs at these lower frequencies only in 
the later stages, it is more important to characterize them 
accurately than higher or ultrasonic frequencies.  

• An accelerometer was used to measure the vibration 
signal generated from the hydraulic actuator. The input 
sensor was fixed to the underside of the belt on its 
centerline, where the hydraulic actuator connected to the 
belt. This represented the source of the vibrations that 
are induced by the idler.  

• The belt's central line above the sensor's output was used 
to measure vibrations. The sensor for the practical 
application should go here. We started by putting the 
sensor right where it would be needed, over the origin 
and backed off the light with every fifty millimeters. 
This was accomplished as far as 400mm from the origin 
and the typical distance between two idlers is 800 mm. 
The sensors will assign the measured signal to the next 
idler when it's halfway between the two. This is why 
tests were limited to 400mm.  

• The effects of a load on the belt were crudely simulated 
by adding weight to the system. As a result of the uneven 
distribution of force, the concentrated weight was not 
representative of typical loads. Simply to the left of the 
farthest measuring point is where the weight was 
positioned. The belt was attached at one end to a 
stationary pole. Free belt length measured 800mm.  

• The conveyor belt used is a sample cut from a steel cord 
reinforced rubber belt. Fenner produces this belt for the 
materials handling industry. This industry is where this 
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monitoring method is aimed, and this type of belt will be 
used in the tests for this reason.  
 

 The transmissibility at a certain distance from the 
sourcewas calculated by comparing the input or source 
vibration to the measured output vibration. The time signals 
of both accelerometers were analyzed in the frequency 
domain. A Fast Fourier transform (FFT) was done on the 
measured signals. The two sensors were connected to the 
same data logger so that both signs had the same sampling 
frequency. Each value of the two signals that corresponded 
to the same frequency was used to determine the 
transmissibility in the frequency domain  
 The transmissibility for the entire frequency range and 
all nine measured distances was calculated. Figure 3 shows 
the gradient filled contour plot of the transmissibility of 
vibrations through the belt.  
 

 
Fig. 3. Transmissibility of vibrations through the belt. 
 
 As seen in Figure 3, the transmissibility of the vibrations 
is very good, close to the source for a wide range of 
frequencies. In the region on the belt from 0mm to 50mm 
and at a frequency of 0 Hz to 500 Hz, there is a yellow-
orange and red region, which corresponds to 100% 
transmissibility and higher. The sensor is still close enough 
to the source that the dynamics of the belt does not influence 
the transmissibility too much. At higher frequencies, the 
transmissibility reduces quite dramatically. It is also seen 
that at some positions on the belt, transmissibility is more 
significant than 100% - red regions. This can be due to the 
belt resonating at its natural frequencies. The resonating belt 
can help amplify the underlying bearing frequencies if the 
bearing frequencies correspond with the belt's natural 
frequencies and these induced vibrations are large enough to 
excite the belt. However, sections of the belt attenuate the 
source vibrations - blue and green sections. If a sensor is 
measuring these regions at those frequencies, the bearing 
vibrations may be difficult to capture.  
 Referring to Figure 4, which only shows the regions with 
the transmissibility of 75% and higher, it can be seen that up 
to 50mm away from the source, the transmissibility of 
vibrations up to 400Hz is well above 75%. This region, 
indicated with the bounding box, has transmissibility of 
100% and higher. It is comforting to know that sensor 
reading in this region will not be attenuated close to the 
source when tests are done on the moving conveyor.  
 Figure 5 shows the regions that have transmissibility of 
50% and higher. It is shown that at a distance of 100mm, the 
transmissibility is higher than 50% for vibrations up to about 
760Hz. The transmissibility is also well above 50% for 
frequencies up to 280Hz for distances up to 300mm away 
from the source. Still, sections within this range show the 
transmissibility below 50% - shown as the white voids in the 

contour plot. This is due to the mode shapes of the belt at 
different frequencies that have an attenuating effect on the 
transmissibility.  
 The belt has mode shapes at some frequencies where 
troughs and peaks in the wave magnitude can be seen in the 
abovementioned figures. These mode shapes change as the 
frequencies do and explain why, at some frequencies, the 
transmissibility can be very high at some point on the belt 
and be very low just a short distance away. 
 

 
Fig. 4. 75% Transmissibility and higher. 
 

 
Fig. 5. 50% Transmission rate or higher. 
 
 Take 150Hz in as an example; at 50mm, 150mm, 
250mm and 350mm, the transmissibility is below 100% 
(yellow-orange region) but can be as low as 25% or even in 
between lower (dark blue). From the contour plots, it can be 
seen that the vibrations are, as expected, attenuated more at 
high frequencies far from the source. 
 This experiment was done to investigate the magnitude 
of the attenuation effect of the steel-reinforced rubber belt on 
a vibration signal, possibly from an idler bearing, and what 
influence it would have on the capabilities of measuring said 
signal. From the experiment, it can be expected that the 
vibration signals from an idler bearing can be measured with 
little loss to the signal strength, close to the source over a 
wide range of frequencies, and still clearly at low 
frequencies far from the source. The measuring equipment 
should measure bearing vibrations as it approaches the idler 
and even as it passes and moves away. The next concern is 
measuring the bearing vibrations as the sensor moves 
towards and away from the idler. A conveyor test bench was 
built to investigate this (Yassa, 2019). 
 
 
5. Process For Gathering Information 
 
Conveyor idler vibrations were tracked using a custom-built 
data logger. A prototype was built with a 16 MHz Arduino 
Micro and the sampling rates were as high as 600 Hz with 
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12-bit resolution up to a ± 16g range. A new data logger was 
built with a microcontroller to improve on the specifications. 
The data logger reached sampling frequencies of up to 1 kHz 
with 16-bit resolution up to a range of ±16g. The logger has 
a built-in anti-aliasing filter. 
 The Arduino reads the accelerometer's data, writes it to a 
micro SD card, and transmits it via Bluetooth. 
Accelerometer data and a timestamp can be recorded on an 
SD micro card (up to 64 Gb) with the help of the logger's SD 
card module. The Bluetooth capabilities allow the data to be 
streamed live over 10m away. The Bluetooth also allows for 
settings to be changed without connecting a laptop to the 
logger. The filename and the acceleration range can be set, 
and the live stream capabilities can be toggled on or off with 
a cell phone and a serial communication application. A 
sampling frequency of 1 kHz is achieved if the live stream is 
switched off. The settings are text-based and can be changed 
easily with any Bluetooth enabled device. The data logger 
has a 2000 mAh Lithium-polymer battery built-in. This 
enables continuous data logging for over 50 hours. The 
battery can be charged with a cell phone charger. A 
protective aluminum case was machined to protect all the 
components within, and a Perspex cover allows the status 
indicator lights to be still visible. The overall cost of this 
data logger is under R2000. This is considerably less than 
the cost of a DTS Slice Micro and should be more 
financially feasible. 
 An LSM6DS33 accelerometer was used, which came in 
a separate system package. It is an accelerometer and a 
gyroscope with three degrees of freedom, each on a separate 
microchip that is smaller than 23mm x 14mm x 2.5mm and 
costs less than R300. Using an Inter-Integrated Circuit 
protocol, the data logger can communicate with the 
accelerometer. The sensor has a 16-bit resolution and can 
measure up to 16g at a frequency of up to 6.6 kHz. The 
sampling frequency is limited to around 1 kHz by the 
microcontroller and the combination of all other components 
and features.  
 
 
6. Sample Data Preparation 
 
Bearing problems manifest themselves in a frequency 
analysis at varying rates. Idler bearings have a few potential 
weak points. The inner and outer ring, or raceway, of the 
bearing can crack or pit, leading to the failure of the bearing. 
The rolling element, whether it’s a ball or roller bearing, can 
pit and can cause damage to the inner and outer raceways, 
leading to the failure of the bearing. There is a correlation 
between the frequency of failure and the type of bearing 
element it is. As a fault progresses, the magnitude of the 
associated frequency is expected to increase. It is 
challenging to identify any obvious changes or differences in 
the signals. Intelligent systems (or artificial intelligence as it 
is also known) are widely used to recognize a change in 
these features that might indicate a faulty idler or any other 
potential faults within the bearing. These intelligent systems 
are used to see that, when trained correctly, they can be very 
accurate and consistent in identifying and classifying 
features like those associated with faulty bearings. The 
accelerometer data is first pre-processed to extract the 
bearing features to be used to identify and classify the 
bearing condition.  
 
 
7. Features Extracting From Each Idler's Signal 

 
The accelerometer continuously measures vibrations as it 
travels over the idler and around the pulleys. When the 
sensor is in the vicinity of the idler, it captures the vibrations 
of the bearings in the idler better than when it is at a distance 
from the idler. Extracting the section of the signal when the 
sensor is close to the idler and examining it should produce 
better and more precise results.  
 Figure 6 shows the vibration signal measured for 
multiple sensors passes over the idler. The sensor measures 
the gravitational acceleration of the Earth, which is why the 
signal has a +1g offset when the sensor is on the top part of 
the conveyor. A -1g offset when the sensor is upside down 
when it is on the bottom of the conveyor. This swing 
between the returning and the forward passes is used as a 
trigger because that is when the sensor moves to the top of 
the conveyor and is in the proximity of the idler. A moving 
average is applied to the signal, and a trigger value on the 
rising and falling edge is used to extract the portion of the 
signal close to the idler.    
 

 
Fig. 6. Vibration signal of multiple idler passes. 
 
 
 Figure 7 shows an extracted signal of a single idler pass. 
With the triggers, the section of the vibration signal is 
removed when the sensor is on top of the belt and close to 
the bearing. The signal used to identify the underlying 
bearing frequencies is extracted from halfway between the 
tail pulley and the idler to halfway between the idler and the 
driven pulley. This is done so that the bearing signal 
extraction is done after the dynamics between the belt and 
pulley have had enough time to die out and before the 
approaching pulley affects the signal. The extracted signal 
should contain the bearing vibrations with minimal 
inclusions of the other components in the system. This 
section of the vibration signal that includes the bearing 
signal will be used, after some pre-processing, by artificial 
intelligence to identify and classify the bearing condition. 
Each pass of the idler will be used as a separate dataset. The 
large spike in the middle of the signal is caused by the 
sudden change in the vertical direction of the sensor as it 
passes the idler - negative vertical acceleration.  
 A noticeable belt hop is present between the pulleys and 
the idler and can be seen as the higher amplitude waves in 
the signal. The belt hop is included in the plain bearing 
signal. Still, it is at a much higher frequency than the 
fundamental bearing fault and should not influence the 
frequencies that are important for identifying the bearing 
conditions. 
 Together with the acceleration, the timestamp of each 
data point is also logged. The time between each data point 
is not the same but may differ by a few microseconds. This 
is caused by the microcontroller sending a request to the 
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sensor for its acceleration data and waiting for a response 
with the value. This happens hundreds of times a second, 
and small-time differences do occur. All the data sets have 
been sampled under, but close to, 1000 Hz. All the data sets 
have been resampled with software to 1024 Hz to keep it 
constant over the entire data range. Because all the data 
samples are resampling to the same frequency, they can be 
analyzed in the frequency domain with the same sampling 
frequency throughout. 
 

 
Fig. 7. Vibration signal of a single Idler pass. 
 
 
 It is easier to identify the underlying frequencies of a 
time signal by using a Fourier Transform (FT). The 
underlying frequencies can be determined and used to 
analyze the different bearing elements’ health with a Fourier 
transform of the time signal. As each idler is monitored on 
its own, each idler’s signal needs to be analyzed. A time-
domain localization can be used to focus on each idler 
individually. A Short-Time Fourier Transform (STFT) can 
be used, seeing that a small window of the signal is analyzed 
at a time with a Fourier transform. This has a limited 
frequency resolution as a fixed window size is used. The 
window size can be changed, but it is fixed for the entire 
signal. 
 A method that uses variable sized windows is called a 
wavelet transform (WT) and has been used successfully to 
process bearing frequencies for fault identification and 
classifying. This is a more flexible method for representing a 
signal in the time-frequency domain. Long time windows 
are used to get a more acceptable low-frequency resolution, 
and a short time window is used to get high-frequency 
information. Precise frequency information at both low- and 
high frequencies can be obtained using wavelet transforms, 
making it ideal for analyzing irregular data patterns.  
 A wavelet package decomposition is performed on all 
the bearing time domain data sets using quadrature mirror 
filters as low- and high-pass filters. These filters have been 
used before with success to process bearing frequencies for 
fault identification and classifying.  
 Two decompositions of the signal are obtained by 
applying a level 1 wavelet decomposition on the signal. 
These two decomposed signals are in the time domain, but 
one contains the low- and the other the high-frequency 
components of the signal. The low-frequency component of 
the signal is known as the approximation, and the high-
frequency component is known as the detail. Following 
Figure 8 shows the level 1 wavelet decomposition on a 
bearing signal. 
 A level 2 wavelet package decomposition is where the 
approximation (low-frequencies) and the detail (high-
frequencies) signals of the first level of the decomposition 
are decomposed again. Now the original signal can be 

decomposed into four signals. Figure 9 shows the level 2 
wavelet decomposition done on a bearing signal.  
 

 
Fig. 8. Wavelet package decomposition at Level 1. 
 
 
 Higher-level wavelet package decompositions can be 
done on the original signal. Figure 10 shows a level 3 
wavelet package decomposition done on a bearing signal. 
The higher level decompositions divide the original signal 
into more signals that distinguish the base signal and the 
underlying vibration signals even better from one another. 
 If the different fundamental bearing frequencies can be 
captured in their frequency bands, it should ease identifying 
and classifying the bearing faults. For this reason, it was 
decided to apply a level 7 wavelet package decomposition as 
it should capture small-signal wavelets, small enough to 
capture each fundamental fault frequency in its wavelet. 
 Frequency analysis is done on each wavelet to determine 
the underlying frequency data. 
 It will be challenging to use all the data points of the 
entire frequency spectrum of all the wavelet packages as 
inputs for the intelligent system as there will be too much. 
An energy value representing each of the wavelets' 
frequency spectrums is calculated to reduce the number of 
inputs to the intelligent system. By using the energy values 
of the wavelets, the number of information for the intelligent 
systems is reduced. However, the energy values are still 
good representations of the frequency spectrum that, in 
essence, build up the original signal. 
 
 
8. Experimental Results 
 
The inner raceway was fixed, and a belt speed of 1m/s was 
maintained with as few variations as possible throughout the 
test using a variable speed drive. The idler speed was 
monitored as well with a hand-held tachometer. Figure 11 
shows the fast Fourier transform, or FFT, of a vibration 
signal measured with the accelerometer when both bearings 
in the idler were healthy. The three fundamental frequencies 
are also indicated in the Figure. The fundamental frequency 
produced by the outer raceway was calculated to be 18.97 
Hz and was measured on the FFT to be 18.63 Hz, a 1.8% 
difference. The fundamental frequency corresponding to the 
inner raceway was calculated as 27.68 Hz and measured at 
26.79 Hz, a 3.2% difference. The fundamental frequency of 
the rolling element was calculated as 48.51 Hz and was 
measured at 47.63 Hz, a 1.8% difference. From this, it can 
be seen that the accelerometer measured vibration signals 
produced by the bearing that corresponded to the calculated 
fundamental frequencies. A total of 16 vibration signals 
were measured of a healthy bearing in the idler. 
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Fig. 9. Bearing signal at level 2 using WPD. 
 
 

 
Fig. 10. Bearing signal at level 3 using WPD. 
 
 A bearing with an inner raceway defect was installed 
into the idler, and the accelerometer was fixed to the shaft 
closest to the faulty bearing. Figure 12 shows the FFT 
comparison of the healthy bearing and the bearing with an 
inner raceway fault. The moving average of the FFT is also 
used and is also shown. Only five data points before and five 

data points were used to calculate the moving average as it 
still kept the general shape of the frequency spectrum.  
 As the rolling element impacted the inner race fault, it 
increased the magnitude of the inner raceway fundamental 
frequency in the frequency spectrum - it impacted the fault 
at that specific frequency. A total of 12 datasets were 
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measured on the shaft of the idler when a bearing with an 
inner raceway defect was installed. 
 A bearing with an outer raceway defect was installed 
into the idler where the previous faulty bearing was. The 
accelerometer was fixed to the shaft closest to the faulty 
bearing. Figure 13 shows the FFT comparison of the healthy 
bearing and the bearing with an outer raceway fault. The 
moving averages of the FFTs are also used and are also 
shown. The same moving average was used throughout all 
the tests; only five data points before and five data points 
were used to calculate the moving average. 
 

 
Fig. 11. On the shaft, the FFT of a healthy bearing was measured. 
 

 
Fig. 12. Shaft FFT of an inner raceway fault. 
 
 The evaluation of the intrinsic raceway failure predicted 
that the fundamental frequency of the outer raceway would 
increase in magnitude. The frequency associated with the 
bearing fault increased in magnitude, but not in frequency, 
as it did when the internal raceway deficiency was 
introduced. The force of the bearing surfaces on the faulty 
bearing can be paired with this growth at the same rate. With 
only a small margin of error, the calculated fault frequency 
bands matched the evaluated basic frequencies of the 
signals. When a defective bearing was placed on the idler's 
shaft, fourteen sets of measurements were taken. 

 
Fig. 13. Displacement FFT of a shaft-mounted outer raceway fault. 

 
Fig. 14. Measured FFT of a fault in a rolling element taken from the 
shaft. 
 
 Instead of replacing the idler's original bearing, which 
had a flaw in its outer raceway, a new bearing with a defect 
in its rolling element was installed. The accelerometer was 
fastened onto the shaft near the failed bearing. In Figure 14, 
we can see an FFT comparison between a normal bearing 
and a bearing with a fault in its rolling element. The FFTs' 
moving averages are also employed and displayed. The idler 
now has a tainted bearing in the same spot as the faulty 
bearing, which was caused by a faulty rolling element. The 
accelerometer was fastened onto the shaft near the failed 
bearing. FFT analysis of a healthy and tainted bearing is 
displayed in Figure 15. The FFTs' moving averages are also 
employed and displayed. 
 To better understand the differences between the signals, 
we present a typical moving average of each of the five 
bearing conditions in Figure 16. The frequency spectrums of 
various bearing conditions differ from one another. They 
helped differentiate between different medical states 
 

 
Fig. 15. Shaft-mounted FFT analysis of a contaminated bearing. 
 

 
Fig. 16. Averages of shaft bearing conditions. 
 
 Despite the fact that only one signal per bearing fault is 
displayed, 72 data sets were obtained for this case, of which 
36 were used for training and the remaining 36 were used to 
test the identification and classification process. The number 
of test sets is tabulated in the results table for each case. 
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 Figure 17 depicts how the percentage contribution of 
each wavelet to the signal was used to normalise the energy 
levels of the wavelets. Using an intelligent system, the 
various energy distributions were used to identify and 
classify bearing faults. Only the first thirteen levels are 
displayed, as the remaining energy bands are insignificant in 
comparison to the low-frequency bands. Observably, some 
frequency bands are dominated by the fundamental 
frequency present in that frequency range. 
 

 
Fig. 17. WPD of shaft bearing defects. 
 
 The FFT of a normal bearing signal is displayed in 
Figure 18. The FFT's moving average is also demonstrated 
and used. Over the course of all of the trials, we used a 
simple moving average. The majority of the noise was 
removed using only the five reference points before and after 
the data being analyzed.  
 

 
Fig. 18. FFT near a healthy bearing. 
 
 Figure 19 shows an inner raceway fault bearing's near 
FFT. Also included is a healthy bearing's FFT. Moving FFT 
averages are shown. As expected from previous tests, Figure 
19 shows that the faulty bearing had a higher inner raceway 
fundamental frequency than the healthy bearing. Outer race 
and rolling element fundamental frequencies changed little. 
394 bearing inner raceway fault datasets were recorded. The 
faulty bearing was replaced with one with an artificial outer 
raceway fault.  
 

 
Fig. 19. FFT of a faulty inner raceway bearing. 

 Figure 20 shows an outer raceway fault bearing's near 
FFT. Also included is a healthy bearing's FFT. Moving FFT 
averages are shown. Outer raceway fundamental frequency 
increased clearly.  
 

 
Fig. 20.  FFT of a faulty bearing's outer raceway. 
 
 Both the outer raceway fundamental frequency and the 
inner raceway fundamental frequency were augmented. The 
fundamental frequency of the outer raceway was seen to 
increase by an order of magnitude. A total of 535 datasets 
recorded the bearing with an external raceway fault. The 
faulty bearing was removed and replaced with a bearing with 
an artificially induced rolling element fault. The five 
different bearing conditions are shown as moving averages 
in Figure 21. The frequency spectrum of each bearing 
condition clearly has a different shape, and this difference 
was used to categories the bearing states. 
 

 
Fig. 21. Near-bearing moving averages of bearing conditions. 
 

9. Conclusion And Future Recommendations 
 
Unfortunately, the high cost of a reliable conveyor idler 
monitoring system makes it impractical for many 
establishments. There are a number of methods for keeping 
tabs on or inspecting idlers, but one that works well with an 
online system is the utilization of vibrations. With this 
system, we can check products thoroughly while spending 
less on labour. Vibrations were found to be a highly accurate 
method of detecting damaged idlers when the accelerometer 
was placed on top of the revolving belt. Although installing 
one accelerometer for every three or more idlers will help, a 
large number of accelerometers will still be needed to track 
all of the conveyor's tremors.  
 It was investigated if an accelerometer could be fastened 
to the moving belt rather than each individual idler bearing. 
The accelerometer measured the vibration levels of each 
idler as it travelled the length of the conveyor. The tests 
demonstrated that an accelerometer, irrespective of its 
position or payload, could be used to effectively detect and 
classify idler bearing failures. The defective bearing was 
identified by the custom data acquisition system that was 
mounted on the moving conveyor belt. A support vector 
machine and wavelet package decomposition were used in 
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the early stages of the process to achieve this level of 
accuracy. 
 The results indicate that the in-belt monitor can identify 
a faulty bearing long before the bearing completely fails. 
That way, we can identify all the defective bearings, plan for 
their suitable alternative in advance of an upcoming outage, 
and solve the issue inside one fell swoop. As a result, the 
conveyor feed will be interrupted for shorter periods of time 
than usual, and a solitary, longer outage can be planned all 
through which all broken or impending damaged bearings 
can be supplanted. It is impossible to predict what long the 
damaged bearings will remain ineffective using our current 
method of monitoring. This is a fantastic improvement that 
will greatly aid in contingency planning during power 
outages. 
 As future recommendations, more investigation is 
required into the non-linearity in the on-belt measurement 
device and the effect of belt speed different variants on 
evaluated fundamental frequencies. The sensor's resonant 

frequency is obviously altered due to the system's non-
linearity. Understanding the dynamics of the system is 
crucial for analyzing the based on the measured signals and 
discovering why the anticipation frequencies show up at 
subharmonic or super harmonic questions and issues when 
the sensor is positioned on top of the belt need to 
investigated further. 
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