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Abstract 
 

A Cauchy-Gaussian particle swarm optimization (PSO) algorithm was proposed to improve the low convergence speed 
and local optimization problem of unmanned aerial vehicle (UAV) path planning based on the traditional PSO algorithm 
in the inspection task. The inspection environment of an agricultural UAV was preinspected by a radar sensor, and a 
flight mission environment model was established. Moreover, adaptive inertia weight and Cauchy-Gaussian mutation 
operator were introduced to adjust the PSO algorithm, balance the global–local convergence speed, and optimize the local 
extreme value problem. The track length cost, obstacle collision cost, and elevation cost of the agricultural UAV were 
comprehensively analyzed, and the fitness function of the agricultural UAV track planning was proposed. Results show 
that the convergence time of the PSO algorithm optimized by the Cauchy-Gaussian mutation operator is 3.46 s shorter 
than that of the traditional PSO algorithm. The path length of the PSO algorithm optimized by the Cauchy-Gaussian 
mutation operator is shorter than that of the traditional PSO algorithm by 12.6735% (6.173 km). The proposed algorithm 
has stronger robustness and better environmental adaptability than other algorithms. This study provides a good reference 
for the inspection of agricultural UAVs. 
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1. Introduction 
 
Given the advantages of convenient operation, flexible 
operation, and real-time accuracy, unmanned aerial vehicles 
(UAVs) have recently been widely promoted in production 
and life. Despite their late development in China, UAVs 
have attracted extensive attention from all walks of life with 
the rapid development of the economy, science, and 
technology. Moreover, a series of effective application 
studies has been conducted. Nowadays, UAVs are widely 
used in the military field and show high application value in 
agriculture and forestry development [1]. In general, UAVs 
can control the spraying equipment through ground remote 
control or navigation flight control when completing the 
agricultural tasks of spraying operations and providing 
strong support for agricultural operations. Agricultural 
inspection is an important part of modern agriculture 
development. Introducing UAVs into agricultural inspection 
can effectively meet the operational requirements of 
agricultural inspection with high efficiency and low cost [2]. 
The UAV technology promoted in agricultural inspection is 
based on network information technology. Based on 
efficient, convenient, and intelligent research and 
development, the application value of UAVs in agricultural 
inspection is significantly enhanced [3]. Given the vast 
territory of China, the characteristics and planting methods 
of crops vary in different regions. Moreover, the traditional 
ground equipment application has certain limitations. The 
popularization of agricultural inspection UAVs can reduce 
the workload of farmers and promote the reconstruction of 
the modern agricultural system, thereby contributing to the 

mechanization development of agriculture and improving 
the overall level of agricultural development in China [4]. 

Agricultural UAVs have several functions. In pest 
control, agricultural UAVs can accurately spray pesticides 
on farmland and effectively control the occurrence and 
spread of pests and diseases [5]. Compared with traditional 
manual spraying, using UAVs for spraying pesticides allows 
accurate application and reduces pesticide use and 
environmental pollution. In fertilization management, 
agricultural UAVs can achieve precise fertilization, perform 
fixed-point quantitative fertilization according to the needs 
of different farmlands, improve crop nutrient utilization 
efficiency, and increase yield and save costs [6]. 
Agricultural UAVs are equipped with aerial photography 
and sensor technology to monitor farmland growth, soil 
moisture, diseases, and pests in real time. Farmers can know 
the health status of farmland in time and make reasonable 
agricultural management decisions through data collection 
and analysis [7]. 
 
 
2. State of the art  
 
Smart agriculture cloud is an agricultural information 
platform based on cloud computing technology, which 
integrates sensors, the Internet of Things, and artificial 
intelligence into the cloud platform to realize real-time 
monitoring and management of agricultural production. 
Smart agriculture cloud platforms can provide analysis, 
prediction, and decision support for agricultural production 
data, help farmers master agricultural production, and 
improve agricultural production efficiency and quality. In 
agricultural production, monitoring and inspecting crop 
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diseases and insect pests often depend on manpower, and the 
contradiction of insufficient human resources is increasingly 
prominent. With the continuous development of agricultural 
aviation and agricultural technology, agricultural UAVs 
have been widely used in modern agricultural production 
and management. UAVs have become an inevitable choice 
to monitor, fertilize, and apply pesticides to plants accurately 
[8–10]. UAV path planning is a hot research topic at present. 
However, it has some problems, such as poor manual 
operability and high operating cost. Whether the path 
planning of agricultural UAVs is reasonable directly affects 
the success or failure of the mission. In mountainous 
orchards, farmland, and other complex terrain environments, 
UAVs often face different threat areas and obstacles, such as 
wind shear areas, base station towers, forest shelterbelts, 
agricultural facilities, and buildings [11]. Therefore, 
reasonable and safe flight path planning is necessary to 
improve obstacle avoidance performance and reduce flight 
costs. 

Scholars in China and foreign countries have proposed 
various autonomous flight path planning algorithms for 
UAVs, which can be divided into traditional classical 
algorithms and swarm intelligence algorithms. Traditional 
classical algorithms include the Dijkstra algorithm [12], A* 
algorithm [13], artificial potential field method [14], and 
simulated annealing algorithm [15]. Vijayakumar et al. 
(2019) proposed an improved A* algorithm for UAV path 
planning to enhance the efficiency of path planning and the 
accuracy of determining the shortest path to some extent 
[16]. Xu et al. (2018) improved the artificial potential field 
method and applied it to UAV path planning to solve the 
problems of excessive randomness of search range and low 
convergence speed [17]. Swarm intelligence algorithms 
include genetic algorithm [18], particle swarm optimization 
(PSO) [19], Bat algorithm [20], artificial bee colony (ABC) 
algorithm [21], and ant colony optimization [22]. Compared 
with the traditional algorithm, the swarm intelligence 
algorithm can solve large-scale complex programming 
problems with nonlinearity, multipeaks, multivalleys, and 
nonconvexity without centralized control and a global model. 
Wu et al. (2018) reduced the search space by integrating 
constraints and search algorithm, and the global optimal 
UAV path planning scheme based on PSO was obtained [23]. 
Mozaffari et al. (2019) proposed a trajectory planning model 
for UAVs based on the constraints of trajectory length and 
trajectory angle, and the improved ABC algorithm was 
adopted to determine the trajectory planning scheme [24]. 
Wu et al. (2018) proposed an improved ABC algorithm 
using the K-means clustering method. The experimental 
results showed that the improved ABC algorithm has better 
convergence speed and search accuracy than the traditional 
ABC algorithm in solving the UAV path planning problem 
[25]. Mofid et al. (2018) proposed an improved UAV path 
planning method based on an ant colony algorithm to 
determine an efficient agricultural UAV path [26]. As an 
intelligent bionic algorithm, PSO possesses simple rules, fast 
convergence, and easy implementation. However, it easily 
falls into the dilemma of local optimization and slow 
convergence in the late iteration. Scholars have improved the 
shortcomings of PSO. Wu et al. (2017) used chaotic 
mapping to enhance the initial distribution of particles, and 
an adaptive linear acceleration coefficient was set to obtain 
an improved solution [27]. Singh et al. (2018) proposed 
nonlinear weights to optimize the PSO algorithm, and an 
adaptive update strategy was introduced to balance the 
abilities to investigate and develop complex optimization 

problems [28]. Lyu et al. (2016) proposed an ACMPSO 
algorithm based on adaptive change, and exponential inertia 
weight and Cauchy change step adjustment strategy were 
adopted to improve the convergence speed and local 
optimization ability of the algorithm [29]. John et al. (2017) 
introduced the broken-line slope inertia factor, which can 
flexibly adjust the slope as needed and shorten the three-
dimensional trajectory length of the UAV, to solve the 
unsatisfactory trajectory planning problem caused by the 
fixed inertia factor of standard particle swarm [30]. Aiming 
at the problem that the algorithm optimization algorithm 
easily falls into a local optimum, Yang et al. (2018) used the 
Cauchy-Gauss mutation strategy to mutate the current 
optimal individual; this strategy has a good reference value 
for the local problem optimization [31]. 

In summary, studies of agricultural UAV path planning 
are few. UAV flight path planning can ensure the smooth 
completion of the flight mission and determine the optimal 
space flight path for the same mission. The comprehensive 
and rapid acquisition of information by agricultural UAVs is 
the premise and foundation for realizing intelligent, dynamic, 
and efficient management and protection of forest resources. 
Before a UAV performs the agricultural inspection task, it 
can avoid the surrounding obstacles and consume minimal 
operation time and energy after fully grasping the position 
information of the surrounding environment. Millimeter-
wave radar sensors, possessing strong environmental 
adaptability and detection ability, can improve flight safety 
and reliability. On the basis of the standard PSO algorithm, 
the adaptive inertia weight factor and the fused Cauchy-
Gaussian mutation operator are introduced to adjust the 
convergence speed of particles in the global–local search 
process. For the complex and changeable environment of the 
forest, sensor equipment is used to precheck the 
environmental targets, and a three-dimensional environment 
model of the UAV mission is established. Moreover, the 
trajectory objective function is formed by analyzing the 
constraints of a safe UAV flight. The simulation results 
demonstrate that the improved algorithm has strong 
robustness and adaptability in the three-dimensional 
environment space. 

The rest of this study is organized as follows. Section 2 
gives the relevant background, including a statement of the 
smart agriculture problem and a brief introduction to 
agricultural UAVs. Section 3 presents the performance 
constraints of agricultural UAV. Section 4 describes the 
algorithm design, Section 5 describes the algorithm 
simulation and analysis, and finally, the conclusions are 
summarized in Section 6. 
 
 
3. Performance constraints of agricultural UAV 
 
3.1 Performance constraints 
The transportation of agricultural inspection UAVs should 
be considered from different aspects. On the basis of the 
aspects of performance constraints and mission requirements 
of agricultural inspection UAVs, this study established a 
path planning model under multiconstraint conditions. The 
transportation task area of the agricultural UAV was set as a 
space environment with length, width, and height of x, y, 
and z, respectively. 

(1) Longest path constraint 
An important factor for evaluating path planning is the 

length of the planned path. The shorter the planned path is, 
the better it is. Therefore, the transportation distance of the 
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logistics UAV shall not be greater than the longest path. 
 indicates the position of the UAV at the ith point 

in the three-dimensional rectangular coordinate system. The 
constraint is as follows: 

 

         (1) 

 
                                     (2) 

 
where  is the longest path of the UAV. 

(2) Maximum cargo weight constraint 
The weight that the logistics UAV can carry is limited, 

and the total weight comprises the UAV weight and cargo 
weight. The weight of the logistics UAV is constant. A 
limitation for the cargo weight exists. The upper bound 
constraint is: 

 
                                (3) 

 
                                       (4) 

 
where m is the weight of the logistics UAV, n is the weight 
of the goods, and   is the maximum cargo weight. 

(3) Flight height constraint 
The logistics UAV is affected by its performance and 

cargo during flight. Its flying height should be limited 
between the minimum and maximum flying heights. The 
flight height constraint is as follows: 

 
                                 (5) 

 
where  is the minimum flying height, and is the 
maximum flying height. 

(4) Pitch angle constraint 
The vertical rotation angle of the logistics UAV in the 

continuous flight process is limited to ensure the overall 
safety of logistics UAV transportation. Moreover, realizing 
revolutionary large-angle rotation is impossible [27]. The 
constraints are as follows: 

 

             (6) 

 
where b is the maximum pitch angle. 
 
3.2 Threat environment model 
In general, the central coordinate of a mountain in the 
planning area is assumed to be , and x, y, and z 
represent the latitude, longitude, and altitude, respectively. A 
planning area set is as follows: 
 

          (7) 
 

where   is the longitude range,   is 

the latitude range, and   is the altitude range. 
(1) Mountain threat model 
In the actual mission flight environment, the UAV must 

hide its body through the terrain environment. However, it 

collides easily with the mountain because of the maximum 
flying height limitation, leading to destruction [32]. In this 
study, mountain is defined by an exponential function, and 
its mathematical model is as follows: 

 

    (8) 

 
Where  is the elevation value at the point in 

the map,  is the mountain center coordinate at this 
point,   is the coordinate of the ith mountain center, 

and are the reduction rates of the ith mountain along 
the X axis and the Y axis, respectively, and is terrain 
parameter. 

(2) Radar threat model 
Enemy detection radar is one of the main threat sources 

for UAVs. The closer the UAV is to the radar, the higher the 
probability of being detected is, and the greater the threat is 
to the UAV [33]. In this study, radar detection range is 
defined by a function expression. Its mathematical model is 
as follows: 

 
           (9) 

 
where is the elevation value of the radar detection 
range,   is the radar center coordinates,   is the 
coordinate of the ith radar center, is the radar detection 
performance coefficient, and is the maximum radar 
detection range. 
 
 
4. Algorithm design 
 
4.1 Standard PSO algorithm 
In the PSO algorithm, a population comprising m particles in 
N-dimensional space exists. The search information of 
particles is recorded from population iteration. In the 
iterative process of the algorithm, the velocity updating 
Formula (10) and the position updating Formula (11) are 
recorded as follows: 

 
         (10) 

 
                                      (11) 

 
where k is the number of iterations of the population search.   

and  are the velocity vector and position vector of 
the ith particle in the nth dimension in the iteration, 

is the individual extreme value of the ith particle in 

the nth dimension in the nth iteration,  is the global 
extreme value of the population in the d dimension in the kth 
iteration,  and  are the social weight and cognitive 

weight, respectively,  is the inertial weight, and  and 

are the random numbers in the interval [0,1], which can 
increase the randomness of search. 
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The value of inertia weight  plays an important role in 
particle velocity. A large  value improves the global search, 
weakens the ability to fall into the local extremum, and 
reduces the local optimization ability. In the algorithm 
search process, the algorithm tends to global search in the 
early stage, and the   value should be large. The algorithm 
tends to local search in the late stage, and the  value 
should be small. Therefore,  adopts a linear change 
strategy. The formula is shown in (12). 

 

                  (12) 

 
where  is the maximum number of iterations of 
population search. 
 
4.2 Improved standard PSO (PSO based on the Cauchy-
Gaussian mutation operator) 
 
4.2.1 Adaptive inertia weight 
The search process of the algorithm is also dynamic, and the 
global optimal position of the search is related to the number 
of iterations. The weight must be set according to the 
distance of the global optimal position and the number of 
iterations to balance the relationship between search speed 
and search accuracy. As a result, the inertia weight can fully 
adapt to the change in search iterations and improve the 
global search ability. Therefore, this study adopted the 
nonlinear dynamic inertia weight coefficient method. 
Formula (13) is as follows: 
 

       (13) 

 
where is the maximum  value,   is the minimum   

 value, is the real-time target of particles,   is the 
average value of particles, and  is the minimum value of 
particles. 
 
4.2.2 Fusion Cauchy-Gaussian mutation operator 
As an intelligent optimization algorithm, the Cauchy-
Gaussian mutation operator has a low central peak value of 
the Cauchy mutation. Thus, it can promote global search and 
improve population diversity. The random number range of 
Gaussian distribution is relatively small. This feature has 
great advantages in forcing particles to jump out of the local 
optimum and searches near the optimal solution. The 
Cauchy-Gaussian operator mutates the particles in the 
optimal position of the current iteration. The position 
formula after mutation is written in (14). 
 

    (14) 
 
where   is the position of the optimal individual 
after mutation,  is the position of the optimal 

individual in iteration, and  and  are 
the Cauchy-Gaussian mutation random number satisfying 
normal distribution and , respectively. in 
Formula (15) and  in Formula (16) are as follows: 

 

                                 (15) 

 
                               (16) 

 
where   is the maximum number of iterations in the 
algorithm, k represents the kth iteration, and  and  are 
the dynamic parameters in mutation. Influenced by the 
iterative process, the value of is usually large in the early 
stage of iteration to maintain the population diversity. 

During the local search, the Gaussian mutation operator 
mutates the current optimal particle to enhance the ability to 
search for the optimal solution, and the particle is forced to 
jump out of the local extremum. It is judged according to the 
historical optimal fitness change rate of the particle. The 
particle enters the local search when the historical optimal 
fitness change rate is less than the threshold for n 
consecutive generations. The judgment formula is as follows: 
 

                 (17) 

 
where  is the optimal particle fitness, and  is 
usually set to 0.0001. 
 
4.2.3 Optimization algorithm 
The specific process of improving PSO (optimizing PSO 
using the Cauchy-Gaussian mutation operator) is as follows, 
and the algorithm flowchart is shown in Fig. 4. 

Step 1: Initialize the parameters of the PSO optimized by 
the Cauchy-Gaussian mutation operator, including the 
maximum number of iterations (kmax), the number of 
particles (m), the position dimension (pointNum), inertia 
weight, social weight (c1), and cognitive weight (c2). 
Record the initial particle position and other parameters. 

Step 2: Calculate the fitness values of particles and 
record the fitness values, individual extreme values, and 
global optimal values of all particles. 

Step 3: In the iterative particle search process, carry out 
Cauchy variation on the optimal position of a contemporary 
single particle and update the particle position. 

Step 4: Judge whether the particle in the current iteration 
is trapped in the local optimum. Enter local search and carry 
out Gaussian variation on the particles trapped in the local 
optimum; otherwise, implement Step 5. 

Step 5: Update the fitness value, individual optimal value, 
and global optimal value of the particle. Then, update the 
inertia weight. 

Step 6: Determine whether the iteration termination 
condition is met. If so, terminate the loop; if not, repeat Step 
3. 
 
5. Algorithm simulation and analysis 
 
5.1 Simulation parameter setting 
The simulation experiment was conducted in the 
environment of Win10 64-bit operating system, Core i7 
5800H processor, and MATLAB R2014b with 16 GB RAM. 
In the modeling task space of 20 km × 20 km × 2000 m, the 
coordinates of the starting and ending points are [6,15,200] 
and [20,10,1000], respectively. The specific coordinate 
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parameters of the three-dimensional task space target are 
shown in Fig. 1. 

The symbolic obstacles causing an unreachable target 
and local minimum were set on the MATLAB simulation 
software to verify the effectiveness of the proposed PSO 
algorithm based on the improved Cauchy-Gaussian mutation 
operator. Simulation experiments were also conducted. The 
simulation environment is a 20 km × 20 km × 2 km area. 
The path planning experiment was conducted. The 
experimental parameters are listed in Table 1. 

 

 
Fig. 1.  Environment modeling 

 
 
Table 1. Experimental parameters
Parameter Value Parameter Value 
Number of particles (m) 100 Maximum number of iterations (kmax) 100 
Particle position dimension (pointNum) 3 Maximum inertia weight (max) 1.1 
Gaussian variation 0.0001 Inertia weight  1 
Particle velocity limit 0.2 Minimum inertia weight 0.4 
Pause interval 0.001 Cognitive weight 2.2 
Collision detection (flag) 1 Maximum social weight 1.8 
Random number (r1, r2) [0,1]  [0,1] 

     
5.2 Simulation result analysis 
MATLAB 2014b was used to display the three-dimensional 
trajectory of the UAV through a three-dimensional 
coordinate system and present the three-dimensional 
trajectory planning path of the agricultural UAV intuitively 
and accurately. Under the same conditions, the proposed 
PSO algorithm based on the Cauchy-Gaussian mutation 
operator was simulated and verified in the task space 
environment of 20 km × 20 km × 2 km. The convergence 
curve of the fitness function is shown in Fig. 2, and the path 
planning result is presented in Fig. 3. 
 

 
Fig. 2. Fitness function of the PSO algorithm based on the Cauchy-
Gaussian mutation operator  

 
Fig.3.  Path planning result of the PSO algorithm based on the Cauchy-
Gaussian mutation operator 
 

The traditional PSO algorithm was used in determining 
the optimal three-dimensional path of agricultural UAV in 
the same planning area of 20 km × 20 km × 2 km, threat 
model position, starting point, and target point coordinate 
position to verify the effectiveness of the proposed PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator. The convergence curve of the fitness function of 
the traditional PSO algorithm is shown in Fig. 4, and the 
path planning result is shown in Fig. 5. In Fig. 5, the red 
dotted line is the UAV path planning curve of the PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator, and the blue dotted line is the UAV path planning 
curve of the traditional PSO algorithm. 

The traditional PSO algorithm was used in determining 
the optimal three-dimensional path of agricultural UAV in 
the same planning area of 20 km × 20 km × 2 km, threat 
model position, starting point, and target point coordinate 

l
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position to verify the effectiveness of the proposed PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator. The convergence curve of the fitness function of 
the traditional PSO algorithm is shown in Fig. 4, and the 
path planning result is shown in Fig. 5. In Fig. 5, the red 
dotted line is the UAV path planning curve of the PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator, and the blue dotted line is the UAV path planning 
curve of the traditional PSO algorithm. 

 

 
Fig. 4.  Fitness function of the PSO algorithm 
 

 
Fig. 5.  Comparison of the path planning results of the PSO algorithm 
optimized by the Cauchy-Gaussian mutation operator and the traditional 
PSO algorithm 
 

The analysis of Fig. 5 indicates that flight path planning 
algorithms can form smooth curved paths during the flight 
from the starting point to the terminal point. In the flight 
path results of the PSO algorithm, the obstacle avoidance 
distance is relatively long, and the flight path curve 
fluctuates greatly. Overall, the flight path effect of the PSO 
algorithm is good, but the local optimization is imperfect. 
The PSO algorithm optimized by the improved Cauchy-
Gaussian mutation operator has better overall local effects 
than the PSO algorithm. As shown in Figs. 2 and 4, the 
number of iterations of the PSO algorithm is approximately 
45 times, which is stable near the optimal fitness value. The 
number of iterations of the PSO algorithm optimized by the 
improved Cauchy-Gaussian mutation operator is 
approximately 38 times, and the optimal fitness value is 
stable. 

The PSO algorithm optimized by the Cauchy-Gaussian 
mutation operator is superior to the PSO algorithm in the 
process of fast convergence and reaching the optimal fitness 
value. The comparison of Figs. 3 and 5 show that the 
proposed PSO algorithm optimized by the Cauchy-Gaussian 
mutation operator has a smooth curve curvature change, 
small fluctuation amplitude, and low flight path 
consumption cost. With a low threshold of fitness function 
and a high iterative convergence speed, the proposed PSO 
algorithm can find the optimal value faster than other 
algorithms. The comparison results of convergence time and 
UAV track length between the proposed PSO algorithm and 
the traditional PSO algorithm are shown in Table 2. 
 
Table. 2. Comparison results of the two 
algorithmsAlgorithm 
 Convergence 

time (s) 
Path 
length 
(km) 

Fitness 
function 

PSO algorithm 
optimized by the 
Cauchy-Gaussian 
mutation operator 

36.726 42.327 129.112 

Traditional PSO 
algorithm  

40.368 48.470 130.874 

 
   

Table 2 shows that the convergence time of the PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator is 3.46 s shorter than that of the traditional PSO 
algorithm, indicating a decrease of 9.021%. The path length 
is 6.173 km shorter than that of the traditional PSO 
algorithm, indicating a decrease of 12.6735% in the same 
experimental environment. The simulation results show that 
the PSO algorithm optimized by the Cauchy-Gaussian 
mutation operator not only effectively improves the search 
speed of agricultural UAV path planning but also shortens 
the path length. Moreover, the path searching efficiency and 
algorithm optimization of the proposed PSO algorithm 
optimized by the Cauchy-Gaussian mutation operator are 
superior to those of the traditional PSO. The comparison of 
the experimental results shows that the proposed PSO 
algorithm can effectively avoid threats and plan the optimal 
flight path in the three-dimensional path planning of UAVs. 
This process can successfully decrease search time and path 
length, thereby verifying the effectiveness and progress of 
the proposed PSO algorithm optimized by the Cauchy-
Gaussian mutation operator. 

 
 

6.  Conclusions 
 

The defects of the traditional PSO algorithm were analyzed, 
and the corresponding solution was proposed to improve the 
three-dimensional path planning of the logistics UAV. The 
traditional PSO algorithm was improved, and the Cauchy-
Gaussian mutation operator was used to solve the 
unreachable problem. When the UAV was in the local 
extremum, the Cauchy-Gaussian mutation operator strategy 
was taken to construct the virtual target point and solve the 
local minimum problem under the combined action of 
obstacle repulsion, target point gravity, and virtual target 
point gravity. The simulation results show that the optimal 
flight path can be effectively planned by optimizing the 
Cauchy-Gaussian mutation operator and improving the 
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traditional PSO algorithm. Thus, agricultural UAVs can 
avoid all obstacles and safely reach the target point. 

This study investigated the application of the PSO 
algorithm optimized by the Cauchy-Gaussian mutation 
operator in the path planning of agricultural UAVs. The 
millimeter-wave radar was used to predetect the 
environment. Thus, UAVs can perceive and adapt to the 
environment in advance, thereby enhancing the positioning 
accuracy of environmental targets and improving flight 
safety. The simulation results show that compared with the 
convergence value of the traditional PSO algorithm, the 
fitness standard difference of the proposed PSO algorithm is 
reduced by 1.346%. Thus, the proposed PSO algorithm has 
better robustness and higher convergence accuracy than the 
traditional PSO algorithm in the path planning process. 

Compared with the traditional PSO algorithm, the proposed 
PSO algorithm improves the time cost by 9.21% and 
enhances the timeliness of UAV operation. The results show 
that the proposed path planning method helps ensure the 
stability and safety of UAV trajectory planning. Given that 
the dynamic target of the agricultural UAV changes in the 
working environment, no dynamic target exists in the study 
environment. In future work, the obstacles of UAVs in 
dynamic environments will be further studied. 
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