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Abstract 
 

Accurately calculating the distribution characteristics of the real operating power curve of wind turbines is a prerequisite 
for evaluating the operating performance of these turbines. To construct a high-precision calculation model for this real 
power curve, a method for modeling and uncertainty analysis was developed based on the improved sparrow search 
algorithm (ISSA) and least square support vector machine (LSSVM). ISSA was used to optimize the penalty factor and 
kernel function width of the LSSVM, the modeling accuracy of LSSVM was improved, and the real power curve model 
based on ISSA-LSSVM was constructed. The error distribution characteristics between the calculated value of the ISSA–
LSSVM model and the real value of power curve were then analyzed. The probability density function of error 
distribution characteristics was calculated using the non-parametric kernel density estimation (NPKDE) method. Based 
on the calculated function, the confidence intervals at different confidence levels were calculated, and the uncertainty 
distribution range of the true power curve of the wind turbine was quantitatively analyzed. Results show that the 
calculation accuracy of the ISSA-LSSVM model in the real power curve modeling of wind turbines is higher than that of 
the PSO-LSSVM, PSO-BP, LSSVM, and LSTM models. The NPKDE method can accurately calculate the uncertainty 
distribution characteristics of the calculation errors of the proposed power curve model. This study provides a certain 
reference for the high-precision modeling of the real power curve of wind turbines. 
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1. Introduction 
 
The operating environment of in-service wind turbines often 
differs significantly from their designed environment, 
leading to discrepancies between their real and designed 
power curves. These discrepancies introduce challenges in 
analyzing the operating state, predicting the power output, 
and optimizing the control of these wind turbines [1-3]. 
Therefore, accurately constructing real power curve models 
for in-service wind turbines is a key issue in optimizing their 
operation. Scholars all over the world have conducted an 
extensive modeling and uncertainty analysis of wind turbine 
real power curves and achieved notable results that provide a 
foundation for further study in this area [4-6]. 

The modeling and uncertainty analysis of wind turbine 
power curves are often based on various machine learning 
methods to achieve an accurate mapping between the 
operating environment and output power of wind turbines. 
For example, local-regression-based power curve modeling 
takes wind speed, wind direction, air density, and pitch angle 
as input data to construct the power curve, and several 
examples have demonstrated the effectiveness of this 
approach [7]. Monotonic-regression-based power curve 
modeling can effectively remove the influence of data noise 
on modeling accuracy, and previous studies show that this 
approach outperforms other models in terms of accuracy [8]. 
In analyzing the uncertainty of wind turbine power curve 
models, normal statistical methods are typically used to 

examine the distribution characteristics of model calculation 
errors [9]. However, the model calculation errors are 
influenced by meteorological factors, modeling methods, 
and turbine operation characteristics, resulting in deviations 
from normal distribution. Thus, developing accurate 
uncertainty analysis methods remains a focus of power curve 
modeling research [10]. 

The existing power curve modeling methods for wind 
turbines mainly consider the mapping relationship between 
wind speed and power curve and often use normal 
distribution, quantile regression, and Gaussian regression to 
calculate the uncertainty of power curve models. However, 
due to the coupling of multiple factors, wind turbine power 
curve models exhibit high nonlinearity between dependent 
and independent variables, and the model calculation errors 
do not follow certain distribution characteristics, hence 
posing significant challenges for accurately modeling wind 
turbine power curves.  

Scholars have extensively investigated nonlinear 
modeling methods for wind turbine power curves and the 
uncertainty distribution characteristics of model calculation 
errors [12-13]. However, several issues remain in the 
calculation accuracy of wind turbine power curve models 
and the quantitative analysis of model uncertainty, which 
lead to deviations from real power curves. Therefore, 
constructing high-precision nonlinear models for wind 
turbine power curves and quantitatively analyzing the 
distribution characteristics of model calculation errors 
remain urgent problems that need to be solved. 
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To address these gaps, this study proposes ISSA-
LSSVM, a real power curve modeling method for wind 
turbines based on the improved sparrow search algorithm 
(ISSA) and the least squares support vector machine 
(LSSVM) model. This method optimizes the penalty factor 
and kernel function width of LSSVM by using ISSA to 
improve its modeling accuracy. A power curve model based 
on ISSA–LSSVM is also constructed, based on which the 
non-parametric kernel density estimation (NPKDE) method 
is used to calculate the probability density function of the 
error distribution. The uncertainty range of the real power 
curve of wind turbines is also quantitatively analyzed to 
formulate a new strategy for the high-precision modeling of 
wind turbine power curves. 
 
 
2. State of the art  
 
The nonlinear modeling and uncertainty analysis of wind 
turbine power curves have received much scholarly interest. 
For instance, Han et al. [14] proposed a wind–power curve 
fitting method for wind turbines based on generalized least 
squares and analyzed the uncertainty distribution 
characteristics of the power curve model by using the normal 
distribution model. However, this method only considers the 
influence of wind speed on the power curve and ignores the 
influence of other factors. Li et al. [15] used full longitudinal 
filtering and segmented filtering to remove the abnormal 
points from the operating data and enhance the accuracy of 
the constructed power curve. However, they did not analyze 
any methods for the modeling and uncertainty analysis of 
power curves. Cao et al. [16] used higher-order polynomials 
and logistic functions to model wind–power curves and 
analyzed the distribution characteristics of model calculation 
errors by using the normal distribution method, but their 
modeling accuracy needs to be further improved. Alessandro 
et al. [17] constructed a wind turbine power curve using a 
multivariate polynomial regression method that accounts for 
wake effects, thus further improving its modeling accuracy. 
However, this method does not consider model uncertainty 
or the influence of wind direction, pitch angle, and other 
factors on the power curve. Yves et al. [18] built a wind 
turbine power curve model that fully considers 
environmental factors and the operation characteristics of 
wind turbines and then analyzed the distribution 
characteristics of the model calculation errors via quantile 
regression. However, the quantile regression method could 
not accurately describe the distribution characteristics of 
errors. 

The statistical method is commonly used in the nonlinear 
modeling of wind turbine power curves. Yan et al. [19] built 
a power curve model for wind turbines using statistical 
methods and analyzed model uncertainty by using a quantile 
regression method. However, they only considered the 
influence of wind speed, wind direction, and pitch angle on 
power curve modeling and ignored the other potential 
influencing factors. Yun et al. [20] used Weibull distribution 
parameters and Monte Carlo simulation methods to construct 
a wind turbine power curve model. They analyzed the 
uncertainty distribution characteristics of the model using 
normal distribution methods and verified the model accuracy 
through numerical examples. However, the normal 
distribution method cannot easily achieve an accurate 
description of the uncertainty distribution characteristics of 
model calculation errors. Rogers et al. [21] used the 
heteroscedasticity Gaussian process (GP) to build a wind 

turbine power curve model and analyzed the uncertainty of 
this model, but the calculation accuracy of the model needs 
to be further improved. Bull et al. [22] used a probabilistic 
regression model to construct a wind turbine power curve 
that effectively eliminates the influence of noise on 
modeling accuracy. However, their approach lacks an 
analysis of model uncertainty. Fu et al. [23] proposed a wind 
turbine power curve modeling method based on correlation 
vector information entropy and analyzed the uncertainty 
distribution characteristics of the model using the quantile 
regression method. They verified the feasibility of this 
method through examples, but they did not comprehensively 
analyze the influencing factors of the power curve. Ravi et al. 
[24] proposed a power curve modeling method and 
uncertainty analysis method based on the GP and analyzed 
the wind turbine state that affects the accuracy of the power 
curve model. However, the GP cannot accurately describe 
the distribution characteristics of model calculation errors. 

The machine learning method is mainly used in the 
nonlinear modeling of wind turbine power curves. Mehrdad 
et al. [25] proposed a power curve modeling method for 
wind turbines based on the weighted equilibrium loss 
function and analyzed the uncertainty of the model using the 
normal distribution method but did not comprehensively 
consider the influencing factors of the power curve. 
Moreover, their normal distribution analysis did not 
accurately describe the uncertainty distribution 
characteristics of the model. Zha et al. [26] used the 
improved Transformer network to build a wind turbine 
power curve and verified the progressiveness of their power 
curve modeling method for wind turbines from the 
perspective of modeling error and its distribution 
characteristics. However, their modeling method did not 
consider the impact of the wind turbine parameters on power 
curve modeling. Gustavo et al. [27] combined GP regression, 
probability-kernel-based machine learning models, and 
standard logic functions to construct a power curve model 
for wind turbines, but they did not analyze the uncertainty of 
the model. Li et al. [28] integrated isolation forest, 
asymmetric fuzzy mean, radial basis function neural network 
(RBFNN), and meta-heuristic algorithm to construct a power 
curve model of wind turbine and analyzed the uncertainty 
distribution characteristics of the model by quantile. 
However, they ignored the influence of meteorological and 
geographical factors on the modeling accuracy of the power 
curve. Despina et al. [29] proposed a power curve modeling 
method for wind turbines based on RBFNNs and used 
statistical analysis to analyze the uncertainty distribution 
characteristics of the model. However, they did not analyze 
those factors that may influence the power curve model. 
Bartolome et al. [30] proposed a power curve modeling 
method for wind turbines and an uncertainty analysis 
method based on the GP and artificial neural network. 
However, they did not provide a detailed analysis of those 
factors that may influence the power curve modeling process. 

Previous studies have focused on modeling and 
uncertainty analysis methods for wind turbine power curves, 
but high-precision models for wind turbine power curves, 
especially precise uncertainty analysis methods for power 
curve models, remain lacking. This study then proposes a 
power curve modeling method for wind turbines based on 
the ISSA–LSSVM model. This method uses correlation 
analysis to identify the key factors affecting the power curve 
modeling of wind turbines and constructs a power curve 
model for wind turbines based on ISSA–LSSVM using these 
key factors as model inputs. A non-parametric kernel density 
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estimation method (NPKDE) is also used to quantitatively 
analyze the uncertainty distribution characteristics of the 
constructed power curve model. 

The rest of this study is organized as follows. Section 3 
provides a detailed introduction to the principles of sparrow 
search algorithm (SSA), LSSVM, and NPKDE method. 
Based on these principles, a power curve model for wind 
turbines is constructed based on the ISSA–LSSVM model. 
Section 4 verifies the accuracy and superiority of the ISSA-
LSSVM model in modeling wind turbine power curves by 
analyzing the error distribution characteristics between the 
calculated values of the ISSA–LSSVM model and the true 
values of wind turbine power within different wind speed 
zones. Section 5 summarizes the paper and presents relevant 
conclusions. 
 
 
3. Methodology  
 
3.1 Principle of SSA 
SSA is a new swarm intelligence optimization algorithm 
proposed in 2020 that was inspired by sparrows’ foraging 
and anti-predation behaviors [31-32]. The SSA has the 
advantages of high optimization ability, convergence speed, 
stability, and robustness and has been widely studied and 
applied in solving high-dimensional and complex 
optimization control problems. The mathematical model of 
SSA is expressed as follows: 

(1) Suppose that the population with N sparrows is 
, where i=1, 2, ..., N. The position and 

fitness value of the sparrow in the d-dimensional space can 
be described by Eqs. (1) and (2). 

 

                              (1) 

 

                              (2) 

 
where d represents the dimension of the optimization 
variable, N is the number of sparrow population, and fi is the 
fitness value of the sparrow. 

(2) In SSA, the producers with good fitness values will 
prioritize obtaining food during the search process. In 
addition, given that the producers are responsible for finding 
food for the entire sparrow population and providing 
foraging directions for all scroungers, they have a larger 
range of foraging searches than scroungers. During each 
iteration, the location update of the producers can be 
calculated using Eq. (3). 

 

        (3) 

 
(3) During foraging, scroungers continuously monitor 

producers. Upon detecting that the producers have located 

superior food sources, the scroungers will immediately leave 
their current position to compete with the producers for food. 
The successful scroungers immediately acquire the food of 
producers as described by Eq. (4). 

 

            (4) 

 
where xp is the optimal position occupied by the current 
producers, xworst represents the worst position of the current 
sparrow population, and A is the 1×d dimension vector, 
where each element in A is randomly assigned a value of 1 
or -1, and . When , the i-th scrounger with 
a lower fitness value has not obtained any food and is in a 
very hungry state. At this time, the i-th scrounger needs to 
fly to other places to forage for food in order to obtain 
energy. 

(4) In SSA, the number of sparrows where predators are 
found is generally assumed to account for 10% to 20% of the 
total population. A sparrow that finds a predator can update 
its position according to Eq. (5). 

 

              (5) 

 
where  is the global optimal position of the sparrow 
population,  is a step size control parameter, and  
follows a random number of normal distribution with a mean 
of 0 and variance of 1. K is the direction and step size 
control parameter of sparrow movement, and K is a random 
number between [-1, 1]. is the fitness value of a sparrow 
individual, and fg and fw are the global optimal and worst 
fitness values of the sparrow population, respectively. When 

, the sparrow is at the edge of population and is 

vulnerable to predators’ attacks. When , the sparrow 
in the middle of the population, discovers predators, and 
needs to approach other sparrows to reduce risk. ε is the 
smaller constant values to avoid zero in the denominator. 
 
3.2 ISSA based on multi-strategy fusion 
Although the basic SSA has strong global search ability and 
fast convergence speed in high-dimensional optimization 
problems, this method can easily fall into the local optimal 
solution in the late iteration. Therefore, the Sin chaos model, 
Cauchy variation, and hyperparameter adaptive adjustment 
are introduced to enhance the global optimization ability of 
SSA. 

(1) Initializing sparrow population using the Sin chaos 
model 

The initial distribution state of the sparrow population 
has a great influence on the optimal result of the population. 
The more dispersed the sparrow population is in the solution 
space, the more likely it is to reach the global optimal 
solution. In this study, the Sin chaotic model is used to 
initialize the sparrow population. The Sin chaotic model has 
an unlimited number of map folds with good chaotic 
characteristics and can improve the dispersion degree of the 
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initial population of sparrows. The Sin chaos model is 
shown in Eq. (6). 

 

                          (6) 

 
where  is a d dimension vector. 

(2) Cauchy mutation in the process of scrounger position 
updating 

During the search process, scroungers often forage 
around the best positioned producers, which may lead to the 
entire sparrow population falling into a local optimal 
solution. Therefore, Cauchy mutation is used to perturb the 
scroungers’ position update process, thereby expanding the 
scroungers’ search range and improving the ability of SSA 
to jump out of the local optimal solution. The Cauchy 
mutation strategy for the scrounger position updating 
process is shown in Eq. (7). 
 

                            (7) 
 
where Cauchy(0, 1) is the standard Cauchy distribution 
function, and  represents multiplication. 

(3) Hyperparameter adaptive adjustment of the 
producer’s position updating process 

The sparrow population is divided into producers and 
scroungers, with the producers obtaining food by searching 
the space and the scroungers searching for food based on the 
location of the producers. Therefore, the optimization 
capability of SSA is closely related to the producers’ search 
scope. To enhance the optimization ability of SSA, the 
search space of the producers should be increased. The 
hyperparameter adaptive adjustment strategy is introduced 
into the producer position updating Eq. (3) to increase the 
producer search space. The producer position updating 
formula with hyperparameter adaptive adjustment is shown 
in Eq. (8). 

 

           (8) 

 
where w0 is the initial weight value, and c is the adaptive 
factor, whose size can be set according to the actual 
problem. By selecting appropriate initial weights w0 and 
adaptive factor c, the search range of producers can be 
changed, and the search space of the producers can be 
increased. 
 
3.3 LSSVM algorithm principle 
To address the difficulty in solving inequality-constrained 
optimization in SVM, Suykens et al. [33] proposed the 
LSSVM optimization algorithm that converts the inequality 
constraints in the SVM algorithm into equality constraints 
and achieves the final objective function by solving a linear 
equation system, thereby reducing the difficulty of problem 
solving to a certain extent and increasing the solving speed. 

The goal of the SVM optimization algorithm is to find an 
optimal hyperplane Wx+b=0 so that the input samples can be 
correctly separated by the hyperplane. When there are M n-
dimensional training samples , , 
k=1, 2, 3, ..., M, the objective function and inequality 

constraints of the SVM algorithm are shown in Eqs. (9) and 
(10). 

                    (9) 

 
                        (10) 

 
Where is the relaxation variable that represents the 
loss function in the support vector, c is the penalty factor, W 
is the normal vector of the hyperplane, is the kernel 
function, and b is a constant term. 

The LSSVM optimization algorithm uses equality 
constraints instead of inequality constraints, and its objective 
functions and constraints are shown in Eqs. (11) and (12). 

 

               (11) 

 
                         (12) 

 
where γ is the punishment factor, and e is the square of the 
SVM loss function ζ, i.e., . Eqs. (11) and (12) are 
transformed by the Lagrange multiplier method. 
 

  (13) 

 
where , k=1, 2, ..., M, is a Lagrange multiplier. A set of 
linear equations is obtained by taking the partial derivatives 
of W, b, , and  and setting the derivatives equal to 0. 
The calculation formula of LSSVM optimization algorithm 
can be obtained by solving the linear equation (14). 
 

                        (14) 

where  is the kernel function, whose type 
determines the performance of the LSSVM optimization 
algorithm. The kernel functions commonly used in LSSVM 
optimization algorithms include the radial basis kernel 
function (RBF), exponential RBF, polynomial kernel 
function, and Sigmoid kernel function. Given that RBF has 
good performance in LSSVM regression fitting and 
prediction applications, this study chooses RBF as the kernel 
function of the LSSVM optimization algorithm. The RBF 
function is shown in Eq. (15). 
 

                      (15) 

 
3.4 Calculation model of ISSA–LSSVM 
When the penalty factor γ and kernel function width σ of the 
LSSVM algorithm are suitable, this algorithm shows good 
modeling accuracy. Otherwise, this algorithm falls into the 
local optimization solution, thus reducing the calculation 
accuracy of the power curve model. This study then uses the 
ISSA proposed in Sections 3.2 and 3.3 to optimize the 
penalty factor γ and kernel function width σ of the LSSVM 
algorithm. The construction process of the ISSA LSSVM 
model is shown in Fig. 1. 
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Fig. 1. ISSA–LSSVM model construction process 

 
The specific steps are as follows: 

Step 1: The parameter values of SSA are initialized, 
including the number of sparrow population, the number of 
producers, the number of scroungers, the maximum number 
of iterations, the dimension of optimization parameters, and 
the value range of optimization parameters. 

Step 2: The Sin chaotic model in Eq. (6) is used to 
initialize the spatial location of the sparrow population. 

Step 3: According to the position of individual sparrows, 
the power curve model based on LSSVM is constructed. 

Step 4: According to their power curve results, the 
calculation error of the power curve of each LSSVM model 
is calculated, and the calculation error is taken as the 
individual fitness value of the sparrow. The optimal fitness 
value and the corresponding individual position coordinate 
of sparrow are then saved. 

Step 5: Eq. (8) is used to update the producer position 
coordinates. 

Step 6: Eqs. (4) and (7) are used to the update scrounger 
position coordinates. 

Step 7: Eq. (5) is used to update the position coordinates 
of the predators. 

Step 8: According to the updated population location, the 
LSSVM model is reconstructed, and the power curves are 
calculated. According to the calculation results of the 
LSSVM model, the calculation errors of the power curves of 
these models are recalculated, and the position coordinate of 
the individual sparrow with the best fitness value is 
determined. 

Step 9: If the end condition is met, then the optimal 
sparrow position coordinate and fitness value are outputted. 
Otherwise, Step 4 is repeated. 
 
3.5 Non-parametric kernel density estimation 
Accurately calculating the distribution characteristics of the 
calculation error of the power curve model is a prerequisite 
for the uncertainty analysis of this model. Accordingly, this 
study uses the NPKDE method to calculate these distribution 
characteristics. NPKDE does not require prior assumptions 
about the distribution characteristics of the sample data and 
can directly calculate its probability density function from 
the sample data. In this method, the choice of kernel 
function will directly affect the quality of its probability 
density function estimation results. The Gaussian kernel 
function is the most commonly used kernel function in 
NPKDE. Therefore, this study chooses the Gaussian kernel 
function as the kernel function for NPKDE. 

The expression of the Gaussian kernel function is shown 
in Eq. (16). 

 

                (16) 

 
where g(x) is the Gaussian kernel function, μ is the mean, 
and σ is the standard deviation. 

The probability density distribution of NPKDE is shown 
in Eq. (17). 

 

                         (17) 

 
where N is the number of interval samples, h is the 
bandwidth coefficient, and is the i-th sample. 
 
3.6 Evaluation index of model error 
The root mean square error (RMSE) and mean absolute error 
(MAE) are commonly used to evaluate the calculation 
accuracy of power curve models. The formulas for 
calculating RMSE are shown in Eqs. (18) and (19). 
 

                        (18) 

 

                   (19) 

 
where RMSE is the root mean square error, N is the number 
of samples, Ptrue is the true value of the output power of wind 
turbines, Pfore is the calculated value of the power curve 
model of wind turbines, Pcap is the rated output power of 
wind turbines, and PRMSE is the ratio of the RMSE to the 
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rated output power. These values are usually expressed in 
percentages in practice. 

MAE truly reflects the error value between the output 
power of wind turbine sand the calculated value of the 
power curve model, and its calculation formula is shown in 
Eqs. (20) and (21). 

 

                     (20) 

 

                      (21) 

 
where MAE is the mean absolute error, and PMAE is the ratio 
of the MAE to the rated power of wind turbines. These 
values are usually expressed in percentages in practical 
applications. 
 
3.7 Confidence interval calculation method 
After calculating the probability density distribution of the 
calculation error of the power curve model using NPKDE, 
the confidence interval can be used to quantitatively 
calculate such distribution. The calculation error of the 
power curve model is computed as the difference between 
the model calculation value Pfore and the true power value 
Ptrue at a certain moment as shown in Eq. (22). 
 

                            (22) 
  

For the calculation error e of the power curve model, its 
confidence level is calculated using Eq. (23). 

 
                    (23) 

 
where the interval is the confidence interval with a 
confidence level of 1-θ,  is the lower limit of the 
confidence interval, and eup is the upper limit of the 
confidence interval. represents the 
probability that the calculated error value e of the power 
curve model falls into the interval , from which the 
confidence interval of the power curve model can be 
obtained as . 
 
 
4. Results analysis and discussion 
 
4.1 Data sources and correlation analysis of operating 
parameters 
The data used in this study are collected from a wind farm in 
a province in western China. The wind farm has 24 wind 
turbines, with each turbine having a capacity of 2 MW, and 
the time resolution of SCADA system data is 10 minutes. 
The data collection period is from 0:00 on May 5, 2020 to 
24:00 on July 31, 2021. The SCADA system data includes 
the state parameters of 24 wind turbines, such as power, 
wind speed, wind direction, generator speed, rotor speed, 
nacelle temperature, tower temperature, ambient 
temperature, gearbox oil temperature, and pitch angle. To 
investigate the impact of these parameters on the accuracy of 
wind turbine power curve modeling, the correlation between 

these parameters and the output power of the wind turbines 
is analyzed. Table 1 shows the correlation coefficients for 
the 106th wind turbine. 
 
Table 1. Correlation coefficients between the state 
parameters and output power of the 106th wind turbine 

State parameter Output 
power 

State parameter Output 
power 

Output power 1 Nacelle temperature -0.17 
Wind speed 0.91 Tower temperature -0.10 

Wind direction -0.23 Environmental 
temperature 

-0.14 

Generator speed 0.95 Gearbox oil 
temperature 

0.71 

Tower base cabinet 
temperature 

-0.06 Gearbox oil inlet 
temperature 

-0.07 

Nacelle cabinet 
temperature 

-0.18 Gearbox oil inlet 
pressure 

0.94 

State parameter Output 
power 

State parameter Output 
power 

Gearbox oil pump 
pressure 

0.70 Generator phase A 
stator winding 
temperature 

0.76 

Gearbox primary 
bearing 

temperature 

0.58 Generator phase B 
stator winding 
temperature 

0.74 

Gearbox secondary 
bearing 

temperature 

0.76 Generator phase C 
stator winding 
temperature 

0.74 

Gearbox third stage 
bearing 

temperature 

0.83 Generator water inlet 
temperature 

-0.37 

Generator bearing 
drive end 

temperature 

0.10 Angle of twisted 
cable 

-0.09 

Generator bearing 
non-driven end 

temperature 

0.30 Pitch angle 0.87 

 
Only five state parameters, namely, wind speed, 

generator speed, gearbox oil inlet pressure, gearbox third 
stage bearing temperature, and pitch angle, are strongly 
correlated with the output power of the wind turbine 
(correlation coefficient greater than 0.8). Therefore, when 
modeling the power curve of wind turbines, these state 
parameters are selected as input data of the power curve 
model to ensure that the wind turbine state parameters that 
affect the accuracy of power curve model are fully 
considered. 
 
4.2 Calculation and analysis of the power curve model 
According to Sections 3.1 to 3.4, the power curve model 
based on ISA-LSSVM is constructed, and the power curve 
of the 106th wind turbine is calculated and analyzed using 
this model. The power output of wind turbines varies greatly 
under different wind speeds. The 2 MW wind turbine 
selected in this study has output powers of 60 kW and 2000 
kW at wind speeds of 3 m/s and 12 m/s, respectively. 
Assume that the error between the actual output power of the 
wind turbine and the calculated power of the power curve 
model is 40 kW. If the wind speed is 12 m/s, then the 
calculation error is within an acceptable range. However, if 
the wind speed is 3 m/s, then the calculation error of the 
power curve model is relatively large. 

Therefore, this study divides the wind speed range of 3 
m/s–12 m/s into 9 wind speed zones at a 1 m/s interval. 
When the wind speed is between 12 m/s and 20 m/s, the 
wind turbine is at rated power output and is thus divided into 
1 zone. To verify the high computational accuracy of the 
ISSA-LSSVM power curve model constructed in different 
wind speed zones, this study selects three wind speed zones, 
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namely, 4 m/s-5 m/s, 8 m/s-9 m/s, and 12 m/s-20 m/s, for 
calculation and analysis. Figures 2 to 4 compare the 
calculated power of the ISSA-LSSVM power curve model 
(blue solid line) and the actual power of the wind turbine 
(red solid line) when the wind speed is 4 m/s-5 m/s, 8 m/s-9 
m/s, and 12 m/s-20 m/s, respectively. 

 

 
Fig. 2. Calculated power of the power curve model within the wind 
speed zone of 4 m/s-5 m/s 
 

 
Fig. 3. Calculated power of the power curve model within the wind 
speed zone of 8 m/s-9 m/s  
 

 
Fig. 4. Calculated power of the power curve model within the wind 
speed zone of 12 m/s-20 m/s 
 

Figures 2 to 4 show that the ISSA–LSSVM model can 
accurately calculate the power distribution characteristics of 
wind turbines in different wind speed zones, thereby proving 
that the constructed ISSA-LSSVM model can accurately 
describe the power curve distribution characteristics of wind 
turbines. Table 2 shows the calculated error values of the 
ISSA-LSSVM power curve model according to Section 3.6 
under the conditions of dividing and not dividing the wind 
speed range. In Table 2, the average value of the model 

calculation error is shown in the last row. Results in Table 2 
show that dividing the wind speed range can further reduce 
the calculation error of the ISSA-LSSVM model, thereby 
indicating that the method of dividing the wind speed zones 
first and then constructing the curve model of wind turbine 
power is reasonable and effective. 

 
Table 2. Calculation error of the ISSA-LSSVM model 
Wind speed 
zone (m/s) 

Type of 
error 

Wind speed 
range divided 

Wind speed range 
not divided 

3-4 
 1.17% 1.45% 

 1.42% 2.75% 

8-9 
 2.12% 3.06% 

 3.27% 4.02% 

12-20 
 1.16% 1.32% 

 1.51% 1.71% 

Mean error 
 1.48% 1.94% 

 2.07% 2.83% 
 
4.3 Comparative analysis of power curve models 
According to Section 4.2, dividing the wind speed range into 
wind speed zones can significantly improve the calculation 
accuracy of the ISSA-LSSVM power curve model. To 
further demonstrate the superiority of the proposed model, 
its calculation results are compared with those of the LSTM, 
LSSVM, PSO-BP, and PSO-LSSVM models. The training 
and testing sample sets used in the comparative analysis are 
the same as those used in Section 4.2. 

Figures 5 to 7 compare the calculated power of these 
power curve models in the 4 m/s-5 m/s, 8 m/s-9 m/s, and 12 
m/s–20 m/s wind speed zones, respectively. The red solid 
line denotes the real output power of the wind turbine, the 
black, blue, and yellow solid lines are the calculated power 
of the ISSA-LSSVM, PSO-LSSVM, and PSO-BP models, 
respectively, and the black and blue dashed lines are the 
calculated power of the LSSVM and LSTM models. These 
machine learning models can calculate the power curve 
distribution characteristics of wind turbines accurately, 
thereby indicating that using machine learning algorithms to 
build the power curve model of wind turbines is reasonable 
and feasible. 

 

 
Fig. 5. Comparative analysis of various power curve models in the 4 
m/s-5 m/s wind speed zone  
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Fig. 6. Comparative analysis of various power curve models in the 8 
m/s-9 m/s wind speed zone 
 

 
Fig. 7. Comparative analysis of various power curve models in the 12 
m/s-20 m/s wind speed zone 
 

Table 3 shows the calculation error values of different 
power curve models, with the last row showing the average 
value calculation error. The calculation errors of the ISSA-
LSSVM model are smaller than those of the other models 
across different wind speed zones, thereby confirming that 
the proposed model has good calculation accuracy. 

 
Table 3. Comparative analysis of power curve models 
Wind 
speed 
range 
(m/s) 

Type 
of 

error 

ISSA-
LSSVM 

PSO-
LSSVM 

PSO-
BP LSSVM LSTM 

3-4 
 1.17% 1.29% 1.36% 1.98% 2.22% 

 1.42% 1.58% 1.69% 6.79% 2.62% 

8-9 
 2.12% 2.34% 2.45% 2.24% 7.03% 

 3.27% 3.53% 3.64% 3.41% 8.60% 

12-20 
 1.16% 1.19% 1.22% 1.21% 2.29% 

 1.51% 1.59% 1.66% 1.63% 2.88% 
Mean 
value 

of 
error  

 1.48% 1.61% 1.68% 1.81% 3.85% 

 2.07% 2.23% 2.33% 3.94% 4.7% 

 
4.4 Uncertainty analysis of the power curve model 
There is always a difference between the calculated value of 
the power curve model and the true power value. Accurately 
calculating the error distribution characteristics of these 
values is a prerequisite for quantitatively analyzing the 
uncertainty of the power curve model. The NPKDE method 

introduced in Section 3.5 is used to calculate these 
distribution characteristics, and the results are shown in 
Figures 8 to 10. The black solid line denotes the probability 
density function of the calculation error of the power curve 
model obtained by the NPKDE method, the red dashed line 
is the probability density function of the calculation error of 
the power curve model obtained by the normal distribution 
method, and the histogram is the statistical histogram of the 
calculation error of the power curve model.  
 

 

Fig. 8. Calculation error distribution of the power curve model in the 4 
m/s-5 m/s wind speed zone 
 

 

Fig. 9. Calculation error distribution of the power curve model in the 8 
m/s-9 m/s wind speed zone 
 

 
Fig. 10. Calculation error distribution of the power curve model in the 
12 m/s-20 m/s wind speed zone 

 
Figures 8 to 10 show that the probability density 

distribution characteristics calculated by the NPKDE method 
can accurately describe the distribution characteristics of the 
calculation error of the power curve model. 
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The uncertainty distribution characteristics of the power 
curve model can be calculated following the procedures 
described in Section 3.7. Figures 11 to 13 show the 
uncertainty distribution characteristics of the power curve 
model under different wind speed zones and confidence 
levels. Most of the calculated values of the power curve 
models fall within the confidence interval corresponding to 
the confidence level, thereby proving that the NPKDE 
method introduced in Section 3.5 can accurately calculate 
the distribution characteristics of the calculation errors of 
these models. 

 

 
Fig. 11. Uncertainty distribution characteristics of the power curve 
model in the 4 m/s-5 m/s wind speed zone  

 

Fig. 12. Uncertainty distribution characteristics of the power curve 
model in the 8 m/s-9 m/s wind speed zone  

 

Fig. 13. Uncertainty distribution characteristics of the power curve 
model in the 12 m/s-20 m/s wind speed zone 
 

Table 4 shows the coverage of confidence intervals in 
different wind speed zones and at different confidence 
levels. Across these wind speed zones and confidence levels, 
the coverage of confidence intervals is greater than the 
corresponding confidence levels, which further proves that 

the NPKDE method introduced in Section 3.5 can accurately 
calculate the distribution characteristics of the calculation 
errors of the power curve model. 

 
Table 4. Confidence interval coverage 

Confidence level 
Wind speed zone 97.5% 95% 90% 85% 

4 m/s-5 m/s 99% 97% 92% 84% 
8 m/s-9 m/s 99% 99% 92% 82% 

12 m/s-20 m/s 98% 96% 93% 90% 
 

Figure 14 shows the power distribution characteristics of 
the wind turbine calculated by the ISA–LSSVM power 
curve model at a 97.5% confidence level. In Figure 14, the 
blue dots represent the power distribution calculated by the 
ISA–LSSVM power curve model, and the red dots represent 
the real power distribution of the wind turbine. The ISA-
LSSVM power curve model can accurately calculate the 
power distribution characteristics of the wind turbine, thus 
providing strong support for our analysis of wind turbine 
operating status. 
 

 
Fig. 14. Power distribution characteristics of the ISA-LSSVM model at 
a 97.5% confidence level 
 
 
5. Conclusion 
 
To accurately calculate the distribution characteristics of the 
real power curve of wind turbines and construct a high-
precision power curve calculation model, this study analyzes 
those factors that influence wind turbine power curve 
modeling, constructs a power curve model of wind turbines 
based on ISSA-LSSVM, and compares the calculation 
accuracy and uncertainty distribution characteristics of this 
power curve model with that of other models. The following 
conclusions are drawn from the results: 

(1) The state parameters that affect the output power of 
wind turbines mainly include wind speed, generator speed, 
gearbox oil inlet pressure, gearbox third stage bearing 
temperature, and pitch angle. 

(2) The wind speed is divided into different wind speed 
zones, and then the power curve modeling method can 
improve the precision of power curve modeling for wind 
turbines. 

(3) The power curve modeling precision based on the 
ISSA-LSSVM model is higher than that of the LSTM, 
LSSVM, PSO-BP, and PSO-LSSVM models. 

(4) The NPKDE method can accurately calculate the 
distribution characteristics of the calculation error of the 
power curve model for wind turbines. 
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In this study, a novel power curve modeling method for 
wind turbines was proposed, and its uncertainty was 
calculated. The results have a certain role in promoting the 
health management and analysis of wind turbine operating 
conditions. However, the precise modeling of the power 
curve of wind turbines is influenced by external environment 
and spatiotemporal factors. In the modeling process, this 
study only considers the impact of the external environment 
on the modeling accuracy of the power curve and ignores the 
impact of spatiotemporal factors. Future research should 
comprehensively consider the impact of the external 
environment and spatiotemporal factors on the modeling 
accuracy of the power curve to further improve its modeling 
accuracy. 
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