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Abstract 
 

Deep learning requires a large amount of data, and enhanced processing of the data is particularly important. This study 
aims to investigate the enhancement of the dataset from the perspective of the underlying data distribution and solve the 
problem of unbalanced data samples. In this study, a novel approach called the single-sample sampling variant 
autoencoder (S3VAE) was proposed to generate data which were then compared. Experimental results demonstrate that, 
under the same data discard rate, the data generated by the S3VAE architecture exhibit a test accuracy closer to that of the 
original data, which proves the ability of the S3VAE architecture to generate results closer to the original data. 
Furthermore, the reconstruction abilities of C-VAE and S3VAE were compared using two public datasets and conducted 
five different discard rate experiments. As observed, the test accuracy of S3VAE is higher than that of C-VAE in all 
cases. With an increase in the data discard rate, the advantage of S3VAE becomes more pronounced. When the data 
discard rate is 97.5%, the test accuracy of S3VAE is 2.7% higher than that of C-VAE. These results confirm that the 
method has a significant positive effect on data enhancement and can be effectively used in practical scenarios. Moreover, 
this method can be extended to most advanced variant autoencoders. 
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1. Introduction 
 
With the introduction of efficient neural networks such as 
LeNet[1], AlexNet [2], and ResNet [3], research scholars 
have progressively focused on network structure in the 
previous decade. They proposed novel strategies to improve 
the network structure and hence increase model accuracy. 
However, in addition to network topology, the dataset used 
for model training can have a considerable impact on 
prediction accuracy [4,5]. When using the CIFAR-10 dataset 
for model evaluation after training, depending solely on its 
test set may result in inferior real-world performance of the 
final model, and the actual performance of the model is 
frequently lower than its performance in the experimental 
setting [6]. 

Three factors contribute to degradation in recognition 
accuracy: the generalization, adaptation gap, and distribution 
gaps. Theoretical analysis, supported by experiments in the 
study of Recht et al., suggests that the generalization and 
adaptation gaps have a relatively minor effect on the results. 
Consequently, the main factor responsible for decreased 
model accuracy during the testing phase is the distribution 
gap. In practical applications of the model, the model can 
continuously fit only the training dataset. This limitation 
causes difficulty in addressing the distribution gap between 
the test datasets, regardless of how well the model is 
designed. Therefore, data augmentation emerges as the key 
solution to this problem. Historical studies have traditionally 

assessed the effect of data augmentation through a series of 
comparative experiments, which consistently indicate that 
the classification model obtained by training with data 
augmentation is more accurate than the baseline model. In 
terms of experimental results, data augmentation techniques 
indeed improve the experimental results. Nevertheless, some 
methods of augmenting data may cause particular dataset 
distributions to be overfit, leading to models that 
underperform in real-world scenarios. This problem can be 
solved by controlling the underlying pixel distribution of the 
image data. If this distribution can be effectively controlled, 
then the distribution gap between different test datasets can 
be managed. However, modeling the underlying pixel 
distribution of image data is highly intricate. From the 
perspective of dataset production, manually manipulating the 
data to fit the underlying pixel distribution of the original 
test set is difficult. Early data enhancement techniques 
encompassed numerous manual image processing techniques 
[7-10]. These methods included geometric transformations 
such as flipping, rotating, cropping, and random erasing, as 
well as pixel operations like noise injection, color space 
transformations, and image mixing. These data enhancement 
techniques considerably augment the size of the deep 
learning training dataset. This increase in diversity and 
capacity of the original training dataset enhances the 
generalization ability and robustness of the deep learning 
model, which prevents overfitting in practical applications. 
However, these data enhancement techniques, which are 
influenced by human factors, may occasionally produce  
adversarial examples [11]. Adversarial samples are formed 
by introducing perturbations to the original dataset. These 
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perturbations are often imperceptible for the human eye or 
have a minimal effect on human recognition. However, they 
can easily interfere with the model and lead to incorrect 
judgments by the machine. Therefore, simple manual image 
processing techniques not only fail to improve the 
generalization ability of the recognition network but also 
may affect the robustness of the network in some cases [12]. 

This study broadens this view by rebuilding the original 
dataset. The substantial body of literature on deep generative 
models, such as the variation autoencoder (VAE) [13-26] 
and generative adversarial network [27-32], is cited 
numerous times. These models use hidden variables in 
various ways to regulate the production of images and their 
underlying pixel distribution. In this approach, they address 
the distribution gap between datasets indirectly. This paper, 
in particular, proposes a novel technique to VAEs known as 
the variable self-encoder. It uses a single-sample sampling 
training method, which means that each VAE training uses 
only one sample. The generated model can, to some extent, 
adjust the distribution gap between datasets and performs 
well in subsequent data augmentation tasks.  
 
 
2. State of the art 
 
Neural networks are the foundation of some contemporary 
data augmentation approaches. Wang et al. [33] employed a 
small neural network named “Small Net” to select the most 
successful data augmentation strategies for a given dataset, 
and their method was dubbed “Neural Augmentation”. 
Cubuk et al. [34] suggested a reinforcement learning search 
strategy and data “Auto Augmentation”. There are also 
approaches based on generative models. To accomplish 
effective data enhancement, Antoniou et al. [35] presented 
“DAGAN” (Data Augmentation GAN), which combined 
principles from CGAN [36] and used an UResNet generator 
structure. Recht et al. [37] constructed a new test set in the 
same way they created the original dataset and tested it with 
a variety of models. On this new test set, their experimental 
results revealed a drop in recognition accuracy for image 
classification networks. Despite their success in data 
improvement tasks, these models nevertheless face several 
challenges: 1) Model complexity: The intricacy of these 
approaches makes them challenging to employ in real-world 
circumstances. In some circumstances, the time necessary 
for data improvement may surpass the time required for the 
recognition network to train. 2) Lack of explanation: These 
models frequently fail to provide a thorough explanation of 
why their strategies produce effective data improvement 
results. 

The primary goal of model development is clearly not to 
simply replicate the dataset. The model's purpose is to learn 
similar distributions from the original dataset. According to 
Hou et al. [25], images created by the ordinary variant self-
encoder (plain VAE, P-VAE) are greatly fuzzy due to the 
intrinsic constraints of pixel-to-pixel reconstruction errors. 
The precise formula is as follows: 
 

        (1) 
 

Among them, represents reconstruction loss,  
represents the posterior distribution of the hidden variable Z 

under the given input data X, represents the 
probability distribution of input data X given the hidden 
variable Z. 

The equation cannot account for the data's spatial 
connectedness and perceptibility. To capture information 
that cannot be conveyed by the reconstruction error, Hou et 
al. substituted the P-VAE reconstruction error loss function 
with a feature perceptual loss. This adjustment resulted in 
superior results and a significant improvement in the model's 
generating ability. 

Hou et al. concentrated on the VAE approach to 
reproducing datasets. P-VAE just reduces the reconstruction 
error, according to their findings. Such a narrow focus, 
however, would result in a data improvement network that 
effectively functions as a “copy and paste” method. From 
this vantage point, we can see that the issue arises during the 
optimization of the loss function. The following is the P-
VAE loss function: 
 

       (2) 
 

        (3) 
 

Among them, represents KL loss, represents 
Kullback-Leibler divergence, represents the 
posterior distribution of the hidden variable z given the input 
data X,  represents the prior distribution of hidden 

variable Z, represents the loss function of the 
variational autoencoder, represents reconstruction loss. 

If we over-optimize the , P-VAE will continue to 
generate data that is very similar to the input photos. In this 
case, the model learns the original dataset's surface 
distribution rather than investigating the underlying 
distribution. Given these factors, we argue that improving 
the model's ability to interpolate the potential space is 
essential for improving its generative performance. The 
model's capacity to interpolate the potential space results in 
a more thorough study of the potential distribution based on 
the original dataset, which leads to increased generative 
ability. 

To overcome the challenges raised by the probalitity 
generative model outlined above, several broad kinds of 
techniques can be applied. 
1) KL annealing at a low cost: The KL cost annealing [38] 
method is simple to utilize. At the start of training, the KL 
term is multiplied by a weighting factor of 0, giving 

 additional time to learn for encoding information 
from X into Z. As training proceeds, the weighing factor is 
eventually increased to 1. This strategy is generally paired 
with word dropout, which is a standard method for 
weakening the decoder.  
2�Free Bits: The idea of Free Bits is also simple: each 
dimension of the KL term is allowed to “reserve a little 
space” for allowing more information to be encoded into the 
latent variable. Specifically, if the KL value in a dimension 
is too small, then it remains untouched until it increases 
beyond a threshold before optimization. This process leads 
to the loss function: 
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        (4) 

 
Among them,  Represented in parameter  and  

Find maximum value on.  represents the 
expectation on the data distribution .  
represents the expectation on the posterior distribution 

 of the hidden variable Z given the input data X. 
 represents the conditional probability distribution p 

of input data X, given the hidden variable . 
 represents the hidden variable Z under the 

given input data X.  represents a posterior 

distribution and  represents a prior distribution.  
represents a non-negative threshold. 

The entire KL can be controlled without breaking it down 
into each dimension. However, this process may result in 
very few dimensions being actively involved, with the vast 
majority of the dimensions of Z not containing information 
about X. An advantage of the Free Bits method is its 
simplicity. One disadvantage is that the threshold � needs 
continuous adjustment. 
3) Normalizing flow: Various variants of the normalizing 
flow concept exist [13], including autoregressive Flow and 
inverse autoregressive flow. The core idea involves starting 
with a latent variable sampled from a simple distribution and 
then increasing its flexibility by iterating a sequence of 
reversible transformations. Most of these methods aim to 
improve the posterior distribution given that direct Gaussian 
modeling often lacks accuracy in addressing realistic 
problems. 
4) CNN decoder: CNNs are worth considering. If only 
traditional CNNs are used, then the contextual capacity may 
be limited. Thus, a dilated CNN decoder can be used [39]. 
The width of the dilated CNN decoder can be adjusted, 
which allows it to approximate various models, from the 
simple bag-of-words model to the most complex LSTM. The 
most suitable configuration can be determined by 
experimenting, and this method tends to perform well. 
5) Additional loss: The introduction of additional losses [40], 
such as bag-of-words loss, can be valuable. This approach 
effectively increases the weight of reconstruction, which 
encourages the model to focus more on optimizing 
reconstruction terms rather than the KL divergence. It is also 
highly effective in preventing KL divergence from vanishing. 

Our work is designed with the principle of simplicity in 
mind and aims to explore the fundamental reasons for the 
effectiveness of data enhancement to shape our data 
enhancement model. We use a probability generative model 
and propose a novel training method for variant self-
encoders. This method involves improving the number of 
samples and direct manipulation within the hidden space. As 
a result, 1) it helps mitigate the distortion of generated 
images to a certain extent and effectively prevents KL-
vanishing; 2) it requires minimal changes to the code while 
allowing us to target the pixel distribution of images; and 3) 
this method has yielded positive results in pest identification 
projects we have led. However, this data enhancement task 
can be time consuming. The specific details of our work are 
discussed in Section 3. 
 

 
3. Methodology 
 
3.1 Improvement method 
The three disadvantages of S3 are as follows: a. Assumption 
correctness: The main difficulty in S3 is ensuring that the 
single photo extracted from the training set x is suitably 
representative. b. Overfitting risk: Given that the network is 
trained with only one image, the risk of overfitting is 
substantial in the case of S3. c. Generalization ability 
collapse: Because of the significant loss in training data, the 
model trained with S3 lacks generalization capability. The 
essence of problem 1 is to select a representative training 
sample from a huge quantity of image data. 

 

 
Fig. 1.  Representative and nonrepresentative samples.  
Note: Image (a) features a hairless cat, and image (e) showcases a pig 
mastiff, each belonging to a particular breed of cat and dog. The 
remaining six images depict more common cats and dogs. When using 
S3 to sample from a training set comprising these images, we should 
obviously refrain from selecting training samples (a) and (e) to satisfy 
the assumptions of S3. 
 

 
Fig. 2.  Confusion caused by a non-representative sample 
 

The hairless cat is on the left in Fig.2, and the deerhound 
is on the right. Given its significant resemblance to the 
deerhound, the hairless cat is not typical of the cat group. 
This resemblance could easily lead to classification errors in 
an image recognition network. We believe that choosing a 
representative image is as simple as selecting images from 
the same class that have similar qualities to the majority of 
images in that class. Fig.1 depicts representative and non-
representative samples. Numerous picture samples satisfy 
such constraints for a specific type of image dataset, making 
S3 applicable to practically all images in that dataset. 
Because the picture collection belongs to the same class, the 
image samples in it automatically share common 
characteristics. 

In S3 of problem 2, we use Gaussian noise to disturb the 
propagation stream before we output the mean and variance 
of the VAE to reduce the danger of overfitting. Fig.3 depicts 
the network structure. This method successfully reduces 
model overfitting. Notably, the Gaussian noise layer is 
important not just during backpropagation but also during 
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testing. With this dual feature, the VAE can learn how to introduce noise for better generating results.

 
Fig. 3.  Gaussian noise-based S3VAE
 

Fig. 4.  Gaps in the distribution of samples in the hidden space 

In the hidden space, the sample set consists of numerous 
Gaussian distributions that must all converge into a single 
Gaussian distribution during coding. The mean and variance 
of a Gaussian distribution define it. The variance dictates the 
size of the distribution, whereas the mean specifies where 
the center lies in the hidden space. When many Gaussian 
distributions converge into one, a gap in the hidden space 
appears, as illustrated in Fig. 4 All distributions cannot be 
spread out in this gap. Because the hidden space lacks a 
comparable dataset, sampling in this place may produce 
unfavorable results. Furthermore, if the sampled distribution 
substantially fuses with the encoded distribution, the 
previously noted problem of inferential collapse may occur. 
We examine the experimental advantages of single-sample 
sampling, which overcomes this difficulty. Single-sample 
sampling VAE (S3VAE) works reasonably well despite its 
fundamentally simplistic approach. It has various advantages, 
including reducing the VAE's posterior crash problem and 
enabling excellent data improvement. The Experiments 
section contains detailed information about the experiments, 
network structure, and training parameters. 
 
3.2 Experimental design 
S3VAE is a simple optimization that improves all VAE 
architectures. The first set of tests tries to qualitatively 
demonstrate the method's usefulness in addressing the 
sample imbalance problem, while the second set aims to 
numerically demonstrate how the strategy can improve VAE. 
 

3.2.1 Experiment 1 
In Table 1, we validate the proposed method using two 
publicly available datasets: one is the CIFAR dataset, which 
is a simple 32�32 pixel multiclassification dataset; the 
other is the PlantVillage dataset, which is a more complex 
256�256 pixel multiclassification dataset. These datasets 
are originally balanced. However, our objective is to verify 
the effectiveness of the proposed method in addressing 
unbalanced dataset. For this purpose, we intentionally 
unbalance one of the classes by removing some data from it. 
The deleted data are referred to as “discarded data” while the 
data that remain after this removal and the data generated to 
compensate for the discarded data are termed “generated 
data”. 
 
Table. 1. Statistical information on the dataset 

Dateset Resolution Class 
Training image per class 

Min Mean Max 
CIFAR 32�32 10 5000 5000 500 
PlantVillage 256�256 10 500 5000 500 

 
We do a variety of experiments. The first set makes use of 

the entire balanced dataset before any data is removed. In the 
second set, we run experiments on the dataset after it has 
been cleaned up. The generated dataset is used in a third 
series of tests. In this set, 60%, 80%, and 90% of the data for 
each dataset category are removed at random. The 
PlantVillage dataset, for example, may yield only 50 photos 
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for training while the validation set data remains constant. 
We discover more optimum discard ratios to apply to the 
CIFAR dataset based on the experimental results with the 
PlantVillage dataset, specifically 90%, 95%, and 97.5%. To 
demonstrate the diversity of the created data, we reproduce 
the leftover data after elimination in a fourth series of tests. 
For example, if we eliminate 90% of the data in the 
PlantVillage dataset, the training set for a category will 
consist of only 50 photos. Then we rerun the process and 
add 50 more photographs to the training set. This collection 
of studies compares duplicated data to created data, which is 
the topic of the third set of experiments. 

The four datasets given before are required for our 
experimental strategy. Following that, we use an evaluation 
model to evaluate these datasets based on evaluation criteria. 
The main contrast is between the third set of experiments 
and the other groups. If the third set of experiments 
outperforms the second, the generated data are correct. 
Similarly, if the third set of experiments outperforms the 
fourth set, then the collected data are diverse. Section 4 
contains a more detailed analysis of the experimental data. 

 
3.2.2 Experiment 2 
This series of studies' experimental results and ideas are very 
similar to those in Experiment 1. However, in these trials, 
we are more concerned with comparing S3VAE to other 
VAEs. For this comparison, we used the conditional VAE 
(C-VAE) as the basic model. Fig.5 depicts the fundamental 
model architecture. It is called “the basic model 
architecture” because we use it to demonstrate the 
universality of the single-sample sampling approach.  

S3VAE's capacity to address unbalanced datasets is 
proved by comparing its accuracy to C-VAE in validation 
studies done under the same experimental settings. S3VAE's 
core architecture should be the same as C-VAE's. If the 
basic architecture differs, then any comparison between the 
two will not provide a clear indication of whether the VAE 
benefits from the single-sample sampling strategy. Fig.6 
depicts the basic model design of S3VAE. 

Notably, our primary focus is on data enhancement for 
unbalanced datasets, not the expansion of balanced datasets. 
This task requires the generative model targeting precise 
generation of individual species, with the ability to control a 
variable for generating a certain class of images. C-VAE is 
well suited for this task compared with other VAEs. Thus, 
our choice of infrastructure is C-VAE. However, the choice 
of the comparison model (C-VAE) does not significantly 
affect the conclusions of the experiments. Earlier in our 
experiments, we explored or constructed various VAEs. For 
example, we experimented with different VAE network 
architectures by altering factors such as the weighted value 
of reconstruction error and KL divergence error. We 
observed that VAE-like models generate ambiguity when the 
KL divergence error disappears during the optimization 
process. Thus, we tried increasing the weight of the KL 
divergence error in the loss function. We also experimented 
with changes in the number of encoding and decoding layers 
and specific parameters. In practice, these infrastructure 
parameters do not fundamentally affect our analysis of VAE. 

These VAEs serve as comparison models in our 
experiments, and the VAEs that incorporate our methods 
outperform VAEs with the original structure. The choice of 
C-VAE as our representative model is justified for several 
reasons: 1. C-VAE exhibits some structural differences 
compared with the typical VAE. 2. C-VAE has been 

employed to deal with some problems, and we have 
identified common defects (including the theoretical defects 
mentioned earlier and the generation of unsatisfactory 
images) that are relevant to other VAEs. 3. C-VAE excels in 
generating certain types of images given that it is designed 
for targeted image generation. If our model is superior to C-
VAE, then it implies superiority over most VAEs. Our 
familiarity with C-VAE selection is based on our experience 
conducting experiments. 

 

 
Fig. 5.  Basic model architecture of C-VAE 
 
 

 
Fig. 6.  Basic model architecture of S3VAE. 
 
 
3.3 Evaluation indicator 
The evaluation model employed is ResNet-18. The 
convergence of this model is used as an evaluation criterion 
but is not described in detail in this study. The model 
structure is shown in Fig.7. 

For all experiments, the validation set used is from the 
original balanced dataset, and accuracy on the validation set 
serves as an evaluation metric, as shown in the Table 2. 
However, given that these experiments involve unbalanced 
datasets, recall and precision are also used as evaluation 
metrics. Therefore, we consider accuracy on the validation 
set, recall, and precision on the training set as criteria for 
assessing the performance of the model, all of which pertain 
to positive samples. We consider the classes that do not 
undergo the discard operation as positive samples.  
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Table 2. Evaluation indicator parameters 
TP The true category is positive, and the category  

predicted by the model is also positive 

FP The predicted category is positive, 
but the true category is negative 

FN The predicted category is negative, 
but the true category is positive 

TN The true category is negative,  
and the predicted category is also negative 

Accuracy Performance accuracy on the validation set 

Precision Proportion of samples with a true positive  
category among those predicted as positive 

Recall Proportion of samples successfully  
predicted as true positives by the model 

 Weighted ratio of precision to recall 
 

To provide a clearer characterization of the experimental 
results, we assign higher weight to the recall rate, which 
makes low precision rates more pronounced. Thus, we set 
the weight as =1.5. We also normalize the evaluation 
metrics, excluding precision, to make the comparison results 
more intuitive. 
 

       (5) 
 

        (6) 
 

        (7) 
 

        (8) 
 

In our model training method, we used a decaying 
learning rate algorithm and an early stopping strategy. In 
Experiment 1, the early stopping criterion was based on 
monitoring the accuracy of the validation set. Meanwhile, in 
Experiment 2, it was determined by the number of combined 
samples, which corresponds to the number of combined 
images from a single sample generated by S3VAE.

 

 
Fig. 7. Network structure of Resnet-18.  
Note: BN stands for batch normalization, and GAP stands for global average pooling. 
 
Table 3.Training-related parameters 

Parameters Learning rate Momentum Decay rate Epoch  
Early stopping 
strategy for 
monitoring targets 

Early 
stopping 
parameters 

Number of batches OR 
sample combinations 

Value 0.0001 0.9 0.001 200 Validation set 
accuracy 0.01 64 

 
Experiment 2 cannot be designed purely on the basis of a 

specific network architecture or a predetermined set of 
parameters to demonstrate the superiority of our strategy. As 
seen in the existing network architecture, this method may 

introduce an element of chance. To avoid the influence of 
experimental chance, we systematically altered the network 
architecture and associated essential parameters.  

bF

b

Accuracy = TP +TN
TP +TN + FP + FN

Recall = TP
TP + FN

Precision = TP
TP + FP

F β = 1+ β 2

1
Precision

+ β 2

Recall
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Given that the Gaussian noise layer is a critical 
component of our technique, we ran experiments to see how 
changing the settings of this layer affected the findings. We 
also changed the weighting of the loss function to see if our 
proposed method might outperform the techniques described 
by other researchers in Section 2.Tables 3 and 4 indicate 
parameter settings. 
 

Table 4. List of related parameters of the network 
architecture 
Parameters Symbolic 

representation 
 Number of coding and decoding layers L 
 Gaussian noise layer variance � 
 Datasets (resolution) / 
 Data discard rate (%) / 
Models / 
Ratio of reconstruction error to KL dispersion 
error K 

Parameters Symbolic 
representation 

 
Given the randomization of data removal, all discard 

procedures were performed five times to guarantee that the 
experimental results were consistent despite the randomness 
of the removal. This experience demonstrated that the 
randomization of the deleted data had no effect on the 
experimental results. To acquire the final experimental 
results, the average of the five experiments was calculated. 
Given the extremely low probability of chance influencing 

the optimization process, we feel that repeating the 
experiment five times effectively neutralized the influence of 
chance on the outcomes. 
 
 
4. Result Analysis and Discussion 
 
In this section, we analyze the experimental results of 
Experiments 1 and 2. 
 
4.1 Experimental Result (I) 
To ensure that the photos created by the algorithms under 
consideration accurately represented the target classes, we 
classed them using a deep learning model trained on the 
original dataset. We confirmed that the projected classes 
corresponded to the target classes. We used the ResNet-18 
model in this work to ensure that the accuracy of the third 
set of tests was equal to or greater than that of the second set; 
otherwise, the data collected did not represent the intended 
classes. The experimental results showed that as the 
percentage of deleted data increased, accuracy on the 
unbalanced dataset declined dramatically. The model barely 
learned any characteristics from the dataset as a result of this 
drop. However, when the second set of data was generated, 
the third set of experimental results indicated a considerable 
improvement over the second set. As a result, the approach 
produced a dataset containing the needed features. These 
features were learned by the model, which enhanced image 
accuracy.Fig.8 depicts the results. 
 

 
Fig. 8.  Relevant training processes 
 Fig.8 shows the training process for the first experiment. 

We focus on the yellow training curve, which represents the 
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accuracy of the generated data. The generated data's 
diversity is validated by comparing it to the replicated 
dataset. If the third set of experiments' accuracy is not lower 
than the fourth set's, the generated data effectively expands 
the underlying distribution of the training set. Experiment 
results reveal that when the discard rate increases, the 
dataset becomes increasingly imbalanced. At this stage, the 
benefit of creating data becomes more obvious, considerably 
alleviating the sample imbalance. When comparing the 
findings of the second and third sets of experiments, this 
observation becomes clear. The diversity of the generated 
samples becomes critical in addressing the sample imbalance 
problem at a discard rate of 90% (for the PlantVillage 
dataset) and similarly in the CIFAR dataset. The third set of 
experiments outperforms the fourth, indicating that the 
generated data broadens the underlying distribution of the 
training set. The experimental results are shown in Tables 5 
and 6. 

To ensure that the photos created by the algorithms under 
consideration accurately represented the target classes, we 
classed them using a deep learning model trained on the 
original dataset. We confirmed that the projected classes 
corresponded to the target classes. We used the ResNet-18 
model in this work to ensure that the accuracy of the third 
set of tests was equal to or greater than that of the second set; 
otherwise, the data collected did not represent the intended 
classes. The experimental results showed that as the 

percentage of deleted data increased, accuracy on the 
unbalanced dataset declined dramatically. The model barely 
learned any characteristics from the dataset as a result of this 
drop. However, when the second set of data was generated, 
the third set of experimental results indicated a considerable 
improvement over the second set. As a result, the approach 
produced a dataset containing the needed features. These 
features were learned by the model, which enhanced image 
accuracy. 

The diversity of the generated data is verified by 
comparing it with the replicated dataset. If the accuracy of 
the third set of experiments is not lower than that of the 
fourth set, then the generated data effectively expand the 
underlying distribution of the training set. The results of the 
experiments show that, as the discard rate increases, the 
dataset becomes more unbalanced. At this point, the 
advantage of generating data becomes more pronounced, 
which significantly alleviates the sample imbalance of the 
sample. This observation is evident when comparing the 
results of the second and third sets of experiments. At a 
discard rate of 90% (for the Plant-Village dataset) and 
similarly in the CIFAR dataset, the diversity of the generated 
samples becomes crucial in addressing the sample imbalance 
problem. The third set of experiments outperforms the fourth 
set, which confirms that the generated data expand the 
underlying distribution of the training set.  

 
Table 5. Experimental results for the PlantVillage dataset 
Dataset Data discard rate Experimental group number Accuracy  
PlantVillage 0% 1 0.917 97.643% 
PlantVillage 60% 2 0.861 84.754% 
PlantVillage 60% 3 0.889 89.451% 
PlantVillage 60% 4 0.870 85.467% 
PlantVillage 80% 2 0.613 75.164% 
PlantVillage 80% 3 0.832 79.156% 
PlantVillage 80% 4 0.772 75.364% 
PlantVillage 90% 2 0.553 68.458% 
PlantVillage 90% 3 0.765 73.487% 
PlantVillage 90% 4 0.618 70.947% 
 
Table 6. Experimental results for the CIFAR dataset 
Dataset Data discard rate Experimental group number Accuracy  
CIFAR 0% 1 0.957 96.762% 
CIFAR 90% 2 0.836 88.648% 
CIFAR 90% 3 0.821 93.154% 
CIFAR 90% 4 0.801 86.876% 
CIFAR 95% 2 0.590 69.157% 
CIFAR 95% 3 0.759 76.364% 
CIFAR 95% 4 0.581 72.875% 
CIFAR 97.5% 2 0.555 65.645% 
CIFAR 97.5% 3 0.720 70.432% 
CIFAR 97.5% 4 0.545 65.871% 
 
4.2 Experimental Reulst (II) 
Considering the complexity of the experimental results, we 
have selected two representative tables to present the 
conclusions. The superiority of S3VAE over C-VAE is 

evident in each set of comparative experiments, but the 
details will not be presented. Table 7 shows the experimental 
results.  

 
Table 7. Experimental results for different data discard rates in Experiment 2 
Model Dataset (resolution) Data discard rate L K � Accuracy  
S3VAE CIFAR (32×32) 60% 5 0.1 0.1 0.889 89.451% 
C-VAE CIFAR (32×32) 60% 5 0.1 / 0.876 90.367% 
S3VAE CIFAR (32×32) 80% 5 0.1 0.1 0.832 79.156% 
C-VAE CIFAR (32×32) 80% 5 0.1 / 0.823 83.348% 
S3VAE CIFAR (32×32) 90% 5 0.1 0.1 0.765 73.487% 
C-VAE CIFAR (32×32) 90% 5 0.1 / 0.742 76.346% 
S3VAE PlantVillage (256×256) 90% 5 0.1 0.1 0.821 93.154% 
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C-VAE PlantVillage (256×256) 90% 5 0.1 / 0.831 82.647% 
S3VAE PlantVillage (256×256) 95% 5 0.1 0.1 0.759 76.364% 
C-VAE PlantVillage (256×256) 95% 5 0.1 / 0.716 69.648% 
S3VAE PlantVillage (256×256) 97.5% 5 0.1 0.1 0.720 70.432% 
C-VAE PlantVillage (256×256) 97.5% 5 0.1 / 0.693 61.248% 
 
4.3 Experiments on real-world networks 
Two generation situations are worth exploring: blurring and 
ghosting of the C-VAE generation in small batches. To 
highlight the comparison, we have isolated some samples. 
However, this problem does not occur with the single-
sample sampling VAE, as shown in Fig.9.Similarly, the C-
VAE does not perform as effective as the single-sample 
sampling VAE in large batch generation, as shown in 
Fig.10.We test S3VAE on the CIFAR10 dataset to ensure 
accuracy. The results are shown in Fig.11. 

The generated images are clear and detailed, with some 
noise points introduced by the Gaussian noise layer. Unlike 
traditional adversarial samples, these noise points are part of 
the model training and do not cause the same issues. As a 
result, overfitting and data enhancement are effectively 
prevented. 

 

 
      (a)                             (b)                           (c) 

Fig. 9.  Experimental results of single sample sampling. 
Note:(a) Small batch sample image generated by C-VAE, which 
exhibits ghosting. (b) Small batch sample image, which is also 
generated by C-VAE. (c) S3VAE generation results. 
 

 
(a)                      (b)                      (c) 

Fig. 10.  Generate experimental results in large quantities.  
Note:(a) Partial sample screenshot of the PlantVillage dataset, (b) 
S3VAE generation results, and (c) C-VAE generation results. 
 
 

 
Fig. 11.  Effect of S3VAE generation in the vehicle category of the 
CIFAR10 dataset 
 
 
5. Conclusions 
 
As the demand for artificial intelligence technology rises in a 
variety of industries, getting better results with less data has 
become a critical challenge. The dataset used for model 
training influences prediction accuracy. Addressing the 
difficulty of dataset imbalance has become a key area for 
academics in this setting. The purpose of this study is to 
investigate the usage of the single-sampling method to 
improve the traditional VAE. On two available datasets, we 
assess and compare models with various sampling 
approaches. The investigation yielded the following 
conclusions: 
(1)C-VAE outperforms S3VAE in creating a huge volume of 
data in the PlantVillage and CIFAR public datasets. S3VAE 
eliminates ghosting and blurriness issues encountered in C-
VAE small batch generation. 
(2) We notice a considerable decline in the accuracy of 
imbalanced datasets as the discard rate increases while 
altering data discard rates to replicate sample imbalances. 
Surprisingly, S3VAE's accuracy on the verification set is 
higher than C-VAE's at the same discard rate. 
(3) When compared to C-VAE, data generated by S3VAE 
utilizing the fundamental architecture is more diverse and 
accurate. It also outperforms the test set in terms of precision 
in comparative experiments. 

The hidden space distribution following picture coding is 
properly scrambled and sampled in this work. This single-
sample sampling method improves data processing and 
simplifies the time-consuming initialization activities that 
are common in most generative models. It ensures the 
algorithm's efficiency in a variety of sectors. We will further 
improve the S3VAE framework, reduce the number of 
parameters, and present a data augmentation technique with 
lower operating costs in future work. We will also undertake 
comparative verification on additional public datasets in 
order to provide data support to scholars in other domains. 
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