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Abstract 
 

Fault detection in seismic images is important in interpreting seismic changes because the faults confirm unexpected 
subsurface topographical changes. In the traditional approach, faults are manually detected from post-stack seismic data 
and identified as reflection discontinuities, which is a very tedious process. To increase efficiency and reduce time 
consumption, a number of automatic fault detection techniques have been developed, of which techniques based on deep 
learning have proven to be efficient. This work proposed a deep learning based method to generate a seismic attribute called 
fault probability to highlight fault zones in the 3D seismic images. Since the technique detects the faults directly from 
seismic volumes, pre-computed attributes such as those used in coherence or edge detection methods are not strictly 
necessary. The proposed technique is instigated in two stages— training and prediction. In the training stage, a CNN model 
is trained with real data taken from 7 annotated seismic volumes, in which every point is labeled as fault or no-fault. Then 
in the prediction stage, the trained network is used to calculate the fault probability at every location in the new seismic 
image volumes.  Both synthetic and real data sets are used to validate the proposed method. The obtained results proved 
that the proposed deep learning-based fault detection method outperforms some existing methods and also achieves 
effective performance compared to humans on an expert labelled seismic image dataset, much exactly predicting subtle 
faults which cannot annotate by an expert interpreter.  
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1. Introduction  
 
Detection and characterization of the faults in seismic images 
are very important in the interpretation of subsurface 
structures and in the assessment of reservoirs. These faults 
can act as a seal or conduit for the transport of oil and gas, and 
these fault zones are favorable regions for depositing 
hydrocarbons in carbonate rock structures [1,2]. But the 
process is crucial and time taking. In general, it takes weeks 
to months for an expert to hand-pick the discontinuities from 
raw seismic images of a typical seismic volume. In the 
standard fault detection techniques faults are identified as 
reflection discontinuities or abruptions by the expert 
interpreters and recognise the faults on 2D and 3D seismic 
images. It is extremely operator-intensive, depends heavily on 
the experience of the interpreter. These manually selected 
results are different for different experts, hence bias is 
unavoidable.  A group of seismic features which are helpful 
in seismic fault interpretation are proposed to highlight the 
seismic discontinuities. Seismic coherence is the eminent 
feature [1, 3], which can identify the seismic faults by 
measuring the similarity between seismic traces. Other type 
of attributes such as variance [4], curvature [5], and gradient 
[2], highlights the faults by finding dissimilarity between the 
seismic traces. Subsequently these attributes may be regarded 
as fault images since seismic reflection has been eliminated 
and discontinuities have been highlighted. 
 Various approaches have been developed to detect faults 
in seismic images, such as B. seismic coherence estimation, 
edge detection and ant tracking, etc. The extraction of 

coherence features from the seismic image volume [1,6,3] 
was a widely used technique. In [7], Admasu et al. detected 
the fault discontinuities using an automatic tracking 
algorithm, and Dorn et al. [8] proposed an automatic 
extraction of the faults. Most of these methods are 
deterministic and mainly suffer from two limitations. First 
off, these techniques are difficult to adapt to various 
discontinuities found in several seismic images. Coherence 
technology, for instance, is less susceptible to gradually 
changing faults. Second, these methods are unable to learn 
systematically from the experience of interpreters. Hence the 
results are greatly affected by the knowledge and experience 
of the interpreters.  
 In recent times, the advancements in machine learning 
algorithms have paved the way for the design of a range of 
techniques based on the convolutional neural 
networks(CNN), which enhances the seismic fault 
interpretation. Technologies of machine learning, particularly 
deep learning, are efficient at extracting features from the data 
that makes them ideal to learn from human experience [9-11]. 
Many effective deep learning techniques are proposed in the 
literature to handle big-data analysis. CNN is the mostly 
employed deep learning procedure and is highly effective in 
the areas of image detection and classification [12,13] .   Deep 
learning techniques can also be used for the seismic images 
processing and interpretation, seismic phase classification, 
data interpolation, in addition to geophysical feature 
extraction [14,16]. Various deep learning technologies are 
proposed for the automatic extraction of geophysical features 
for the fault detection in seismic images. In [17,18] deep 
learning is used with 2Ɗ and 3D synthetic tests to extract the 
geophysical features for the detection of seismic faults from a 
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pre-migrated data. In [19], A novel training method is 
proposed by Araya Polo et. al to train the deep neural network 
that can detect the faults from the natural seismic data. With 
the appropriate features and by using a synthetic seismic 
volume, Huang et al. [14] trained CNN to identify the faults. 
Several authors proposed pixel-wise classification methods to 
detect the faults with help of various seismic features and 
CNN [15,16].  In [17], Xiong et al. trained a fault 
classification CNN network with the training samples 
extracted from field seismic data. Di et al. proposed a 
multilayer perceptron procedure to detect the faults in 
multiple seismic feature zones [18]. In [20], Wu et al. 
proposed a synthetic seismic patch based trained CNN model 
which can detect the faults as well as can find the orientation 
of the faults.  
 This paper proposed a CNN model to detect geologic 
faults that exist in 3D seismic images. The network is trained 
to detect the faults present in the raw seismic images taken 
from 3D seismic volumes. The training dataset is created 
using real data acquired from seven annotated seismic 
volumes, while one volume is utilized for validation or 
testing. The ability of the proposed trained model to detect the 
faults is first tested with synthetic seismic images with 
artificial faults. Then this trained network is operated on 
another real seismic cube that it has not once seen earlier 
during training. Compared to the coherence detection the fault 
probability obtained by the proposed CNN model is better and 
highlights the seismic discontinuities well.  

 
 

2. Methodology 
 
This section describes the proposed algorithm to find the 
faults in seismic Images.  
 
2.1 Problem Formulation 
The detection of seismic defaults is formulated as a problem 
of image classification. Seismic image patch centred on a 
point O extracted from the seismic image volume is the input 
for the classification task. The output is a binary classification 
result as fault or no-fault for the central point. 2D slices with 
a dimension of 24×24 are extracted along the in-line, cross-
line, and time axes with respect to the centre point O in the 
3D seismic cube.  As depicted in Figure 1, those three slices 
combine to create the network's input data sample x of size 
24×24×3.  Similar to the standard RGB-colored image 
classification problem, the proposed CNN input has three 
channels. In the interim, point O is associated with a label y 
denoted as 1: fault or 0:no-fault specifying whether a fault 
exist or not. Each sample in the training dataset is denoted as 
(𝑥, 𝑦) which represents the input data 𝑥 associated with a 
label 𝑦. Manually picking results are considered as 
groundtruths.    
 By taking the input data sample x the CNN outputs the 
probability that centre point O contains a fault, is referred to 
as fault probability.  It is the broadly used phrase for the 
identification of seismic faults and it is an attribute that can 
highlights seismic image discontinuities [3,21]. In detail, the 
network assigns a probability of 𝑝(𝑌	 = 	𝑦|𝑥) to the centre 
point O of the sample (𝑥, 𝑦). For a group of 𝑛 number of 
samples {(𝑥! , 𝑦!), 𝑘	 = 	1,… , 𝑛} of the training dataset, the 
proposed network is trained to minimize the following 
objective funϲtion designed using cross-entropy  
 
𝐿	 = 	−	"

#
	∑ 𝑙𝑜𝑔	(𝑌	 = 	𝑦!|𝑥!	)	#

!$" 		                      (1)	
 

 

 
Fig. 1. Diagrammatic representation of the CNN input data 
 
 The training data set is formed with the faults detected by 
humans or by the auto-picking algorithms. This work 
classified real data of eight distinct 3D seismic images using 
a skeletonized-coherence-based auto-picking technique [22].  
Classification results in the labeling of all the points in the 
training cube as fault or no-fault. The threshold technique is 
used to label the points. The point with skeletonized-
coherence value greater than a predefined threshold is 
labelled as a fault, while the point with coherence value 
smaller than the predefined threshold is labelled as a no-fault. 
Figure.2 presents one of the training cubes and its annotation. 
The cube is taken from the GeoFrameTM reservoir 
characterization software [23]. The other real 3D seismic data 
cubes are obtained from the Saudi Aramco. For all the cubes 
the interval value for the vertical time sample is either 
0.002sec or 0.004 sec, and all of the cubes have identical 
inline and cross-line axes spatial grid size of 25 meters.  To 
demonstrate the proposed CNN’s adaptability and robustness, 
the same time sampling interval is maintained for real data. A 
network that has been successfully trained should be able to 
identify samples exactly provided that the trained dataset 
includes an adequate distribution of the samples. The network 
may fail to identify exactly the faults in seismic cubes if the 
sampling time interval is far away from the values in the 
trained datasets.  

 

 
(a)                                        (b) 

Fig. 2. A training cube and its classification (a). Volume of the seismic 
image (b). Classification result: every point is labeled /classified as a fault 
(1, black) or no-fault (0, white). 
 
 Among the 8 distinct seismic volumes considered one is 
randomly chosen for the validation purpose and it is not 
included in the training phase. The remaining seven are 
utilised to construct the training dataset. To create the training 
dataset, from each cube 100000 points which are labeled as 
faults or around 0.4% of all the existing fault points in the 
seismic cube and one more 100000 points from every cube 
that have been labeled as no-fault are randomly chosen. 
Owing to the characteristics of the seismic image, in general 
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the no-fault points are substantially higher in number than the 
fault points. For training equal number of the fault and no-
fault training samples are considered to make the possibility 
of examining both classes equally. The training dataset totally 
have 0.7 million samples. Data augmentation is also 
employed while training to switch the inline and cross-line 
axes for each sample because any space axis can be 
designated as inline or cross-line. 
 It is very difficult for the human eye to discriminate every 
fault and no-fault sample, but can observe a systematic 
difference between the two classes. Figure 3 displays a few 
examples of the fault and no-fault samples drawn from the 
training dataset in random. More continuous seismic events 
are visible in no-fault samples but the fault samples consist of 
irregular structures. The same techniques are used to construct 
the test dataset, that is used to test the proposed trained model 
and decide when to terminate the training.  
 

 
Fig.3. Example samples of (a) fault, (b) no fault. 
 
2.2. CNN Model and Training 
The proposed seismic fault detection as an image classification 
is modeled using Convolutional Neural Network. Figure.4 
presents the Fault detection workflow using the proposed CNN 
model.    

 
Fig. 4.  Seismic Fault detection workflow using CNN model.  
 
 The proposed network comprises of two convolution 
layers, two fully-connected layers, and one softmax classifier, 
that can predict the label probability as either fault or no-fault. 
Three orthogonal 2D seismic images of 24×24 size are given 
as input to the proposed network, and the network outturns a 
label prediction for the centre point O. Before being fed into 
the network the input is normalized by subtracting the mean 
and dividing it by the standard deviation. The network 
considered is identical to the network in classical CIFAR-10 
classification problem [24,25]. Each of the convolution layers 
has 64 filters of size 5×5. The two FC layers include 384 and 
192 feature maps, respectively. ReLU is applied after each 
Conv layer and Fully-Connected layer. After the two Conv 

layers, max-pooling with a size and step of 2×2 and the local 
response normalization (LRN) are applied. At the end 
softmax classifier generates a probability that indicates the 
possibility of a fault at the center point O of the input. Label 
prediction of the output can be done by applying a threshold 
of 0.5 for the values of output probability, such that the values 
above the threshold are regarded as a fault location, and the 
values below it are no-fault.  
 The network is trained by initializing the weights of each 
layer according to the CIFAR-10 tutorial [25,26]. Gradient 
descent optimization technique with initial learning rate of 0.2 
and default parameters is used. To achieve good network 
performance, for each epoch the training samples are shuffled 
randomly prior to giving them to the network. When the error 
function in eq (1) plateaus during the optimization phase, the 
model is saved, and is then validated using the validation 
dataset. For both the training and validation datasets the 
proposed model achieves classification accuracy of about 
83%.  
 
 
3. Results and Discussion 
 
This section presents the results of the proposed seismic fault 
detection and their description. The obtained results are also 
compared with the outcomes of the Coherence method. 
 A properly trained CNN Model is first operated on a basic 
3D synthetic seismic volume to detect the faults. Figure.5 
presents the results of the proposed model on simple synthetic 
seismic data. A single trace of a training cube is extended 
horizontally along the length of inline axis to create the 
synthetic cube. Three exact fault lines with distinct slopes are 
used as artificial discontinuities, and the 2D section is 
additionally extended along the cross-line axis with a 5-
degree rotation along the time axis as displayed in Figure 5 
(a). The Figure 5(b) displays the result of fault probability by 
the proposed network for an inline section. The synthetic cube 
is then used to extract the CNN testing data.  
 Experiment results classification accuracy of 96% for the 
considered synthetic cube. Even though the network is not 
aware of these artificial faults, it is obvious that the three 
faults are exactly detected by it. The fault probability map 
shows some horizon traces footprints for values below 0.4. 
Close observation reveals that the footprints are feeble 
whereas the seismic trials are strong and hence clearly visible. 
The tests demonstrate that these type of artifacts can be 
eliminated by using learning samples taken from the synthetic 
cube to train the network. Such footprints or imperfections are 
in fact helpful to differentiate between true fault probabilities 
from the false fault probabilities. The effectual detection of 
the exact faults signifies that CNN has learned to differentiate 
faults from no-fault zones.  

 

 
            (a)                             (b) 

Fig.5. Results of the proposed CNN model for synthetic seismic data. (a). 
Inline seϲtion consisting of 3 artificial seismiϲ faults, (b). Probability of 
the seismic faults acquired by the proposed method. 
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 For testing the network, a 3D seismic test image cube of 
actual data, is next applied to the trained network, as 
illustrated in Figure 6.  The dimensions of the cube are 
1000×655×108Ӡ. The top, front, and side panels are 
displaying time section T=Ӡ10, in-line section Y=420, and 
cross-line section X=415 respectively. The black lines present 
in the figure indicate the locations of the sections.  The 
classification accuracy achieved by the CNN for this real data 
cube is around 83%, which is comparable to the results for the 
training and validation datasets.  

 
Fig.6. A real seismic test image cube  
 
 The fault probability results of the proposed model are 
justified by comparing with the results of seismic coherence. 
The fault probability cube resulted by the CNN is displayed 
in Figure.7(a), and 7(b) displays the results by the seismic 
coherence.  Seismic coherence is a popular and commonly 
used characteristic to highlight the seismic image 
discontinuities [1]. From Figure.7 and 8, it can be concluded 
that the CNN results exhibit seismic faults with greater 
resolution as compared to coherence volume. The CNN 
results also exhibit clearer channels compared to coherence. 
The computation of the fault probability is carried out for 
individual points. The contours of the discontinuities in the 
images of the fault probability are fair and continuous which   
ensures that the proposed CNN model performs effectively 
even in the existence of noise. 

 

 
 (a)                                 (b) 

Fig. 7. Results for a real data cube (a). Fault probability cube predicted 
by the proposed CNN model and (b). Fault probability cube predicted by 
the seismic coherence. 

 
(a)                                     ( b) 

Fig. 8. Fault probability time slices  (a).CNN  (b). Coherence 
 
 The proposed method requires high computational time 
since the model has to estimate the fault probability at every 
point in the 3D seismic image cube. Every computation 
involves, feeding the trained network with an input sample at 
a specific location and finding the fault probability as output. 
One such computation requires 10msec of time with one core 
processor.  Since each location's calculations are independent 
of one another, they can be carried out simultaneously. 
Employing a computer cluster having 20 nodes of 40 core 
processors at each node, it has taken around 2 and half hours 
to find the fault probability for a considered 3D image. Hence 
the proposed method can be more effective by reducing the 
redundant calculations. 

 
 

4. Conclusion  
 
This work proposed a CNN-based technique for the detection 
of seismic faults in 3D seismic images. The fault probability 
results of the proposed method on real seismic data surpassed 
the results of the seismic coherence. The network is trained 
with 100000 training samples which is nearly 0.4% of the 
available fault samples in the training cubes hence it can 
detect synthetic and real faults exactly. In this work the 
training samples are generated using auto-picking hence the 
network training may be biased due to this strategy.  It is very 
effective if the faults are picked up by the best interpreters and 
the network will learn from several experienced interpreters 
which can decrease human bias. Deep learning technologies 
have demonstrated their ability to perform as humans and 
sometimes surpass human judgment in various applications 
related to image detection and image classification. The 
ability of the CNN in detecting seismic faults makes it very 
appealing to deploy in upcoming automatic seismic 
interpretation systems.  
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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