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Abstract 
 
This study applies a third order shear deformation theory in order to present free vibration behaviour of two directional 
functionally graded porous beams (2D-FGPB) at several combinations of boundary conditions. These boundary conditions 
include being simply supported, clamped- clamped, and clamped- free. In both directions, beam’s properties exhibit 
exponentially changing patterns. Hamilton’s principle is utilised so that the free vibration response may be analysed. These 
equations of motion are derived in order to accomplish this. Polynomial forms are used to express axial, transverse, and 
rotational deflections of the cross sections. These forms also include auxiliary functions which are utilised to meet the 
desired boundary conditions. Using the published results from earlier studies, verification and convergence studies are 
carried out. The gradient indices have a significant impact on the dimensionless natural frequency (λ) of the 2D-FGPB. For 
SS beam, at px = 1.0, the values of λ are 2.365, 2.340, and 2.299 for pz = 0.1, 0.6, and 1.0, respectively. Likewise for CC 
beam, at px = 1.0, the values of λ are 5.158, 5.131, and 5.082 for pz = 0.1, 0.6, and 1.0, respectively and for CF beam, at 
px = 1.0, the values of λ are 0.674, 0.668, and 0.658 for pz = 0.1, 0.6, and 1.0, respectively. The findings of numerous 
investigations are presented here in order to facilitate an understanding on vibrations in 2D-FGPB of the implications of 
varying gradient indices, aspect ratios, and boundary conditions.  
 
Keywords: Functionally graded porous beam; third order shear deformation theory; Lagrange’s equations; Hamilton Principle; Free 
vibration. 
 

 
1. Introduction 
 
Amazing developments in technology in recent years have 
encouraged researchers to create materials with enhanced 
qualities. Functionally graded materials (FGMs) are a family 
of materials that have continuously varying distributions 
between two or more constituent phases [1]. The majority of 
current research on FGMs assumed that the material 
characteristics fluctuated smoothly only in one direction. Due 
to the uniform composition distribution of the body's exterior 
and inner surfaces, conventional FGM may not be as helpful 
in solving design issues [3]. Additionally, by choosing 
appropriate distinct parameters of power law distribution, the 
design of such a material profile could be more efficient. A 
2D generalised power law is suggested for modelling material 
qualities in two directions in order to achieve this. The volume 
fraction is a common variable in engineering studies of FGMs. 
Volume fractions may vary solely in terms of the structure's 
thickness or in another direction. Young's modulus, thermal 
conductivity, Poisson's ratio, thermal expansion coefficient, 
shear modulus, and material density are a few examples of 
mechanical [5] and thermal parameters [6] that vary smoothly 
and continuously in FGMs' preferred orientations.  
 Structural evaluation, damage detection, and location have 
always been key topics. Depending on the severity of the 
damage, a structure's flexibility will often increase locally. 
This alters the natural vibrational frequencies and modifies the 
natural mode shapes, effects that have been used to evaluate 

the degeneration with varying degrees of success. Material 
properties of functionally graded beams (FGBs) were 
continuously varied in thickness, which is also consistent with 
power law. Nguyen et al. [7] developed two different 
formulations, the bending rotation as well as shear rotation as 
unknown functions. The frequency equations were derived 
from Lagrange's equations, while the beam's boundary 
conditions were met. In order to account for bending as well 
as the free vibration of FGBs, multiple Higher Order Shear 
Deformation Beam Theories (HSDT) [8, 9] were devised. For 
the free vibration evaluations in 2D- FGBs having 
exponentially variable material parameters, a symplectic 
elasticity solution was provided in [10, 11].  
 Researchers' interest in Functionally Graded Porous 
Materials (FGPMs) has lately increased [12]. FGPMs, where 
the mechanical properties change constantly along the 
structure. These are compounds that gradually change in 
porosity across their volume. A gradual change in porosity can 
be used to provide desirable properties. Using analytical 
solutions and Euler-Bernoulli theory, Mojahedin et al. [13], 
estimation of natural vibration in functionally graded (FG) 
thin beam with pores was made. Babaei et al. [14] 
implemented finite element approach to examine buckling, 
static, and dynamic evaluations of a FG porous thick beam in 
accordance with HSDT. In another analysis, using beam 
theories and Navier's solution, Hung et al. [15] explored the 
static behaviour of FGB with a fluid-infiltrating porous core. 
Gharibi et al. [16] implemented Frobenius series approach to 
compare the stresses in FG rotating thick cylinders to the finite 
element findings under plane stress and plane strain 
conditions. Free vibration and stress analysis were executed 
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on FGMs using the Ritz method [17], and based on HSDT 
[18], a four-node quadrilateral plate was proposed to assess 
static bending as well as vibrational analysis of the FG plates. 
By incorporating a quadratic shear shape function into terms 
of higher order and eliminating shear result, transverse shear 
forces on two sides were avoided. Using a unified model, 
Karami et al. [19] examined the resonance behaviour of 
nanoplates adapting nonlocal bi-Helmholz strain gradient 
theory. Using nonlocal elasticity theory, Zarezadeh et al. [20] 
examined the effect of size on FG nano-rods under a magnetic 
field. To study nonlinear bending, and vibration analysis, 
numerous studies on bidirectional FGBs, Euler Bernoulli [21], 
Timoshenko beam theory [22], third order shear deformation 
theory by Karmanli [23], and the finite element method [24]. 
Using a quasi-three dimensional shear deformation theory, 
Zenkour [25] analysed bending reactions of rectangular plates 
using a new quasi-3D refined theory. Kaddari et al. [26] 
provided a statics along with free vibration study of FG porous 
plates which are resting on an elastic foundations to assess the 
effect of porosity.  
 From the current literature, it could be inferred that 
classical beam theory disregards shear deformation and offers 
only relevant solutions to thin beams. Deficiency in 
Timoshenko beam theory is that it does not accurately predict 
the behaviour of beams with non-uniform loads or loads 
applied at an angle to the beam axis. Also, it is only applicable 
to beams with small deflections, and may not accurately 
predict the behaviour of beams with large deflections or large 
deformations. Above all, it does not take into account the 
effect of rotary inertia, which can be important for beams 
subjected to high levels of acceleration or impact loads. The 
quasi-3D theories that incorporate shear deformation as well 
as stretching in thickness may be mathematically prohibitive 
in case of complicated geometries [27]. A study on vibrations 
occurring in FG beams with porosity employing a refined 
beam theory is needed. In this study, the beam is modelled that 
is according to HSDT which takes into consideration the 
influence of porosity with a unique shear shape function along 
the thickness of the beam. According to current theory, the 
behaviour of 2D- FGPBs does not need to be adjusted based 
on the material and shape of the beam or the constraints on its 
ends.  
 This article focuses on vibrational analysis of 2D-FGPB 
when subjected to different types of constraints along with the 
distribution of the material's attributes follows a power law. 
Adapting Hamilton's principle and three specific boundary 
conditions such as simply supported, clamped - clamped, and 
clamped - free, this article develops a special approach for 
ensuring that there is no shear stress felt on either the top or 
bottom surfaces of the beam. 
 
 
2. Formulation and Mathematics 
 
2.1 Formulation of porous FG beam 
The coordinate system for the beam used in the present 
research is presented in Fig. 1. A rectangular FG beam with 
dimensions of dimensions in the x (length), y (width), and z 
(thickness) directions. It is hypothesized that material qualities 
differ continually across length and thickness directions. By 
grading ceramic and metal phases, a FG rectangular beam 
along the thickness is produced. Here, the lower side of beam 
(z = -h/2) is made of metal and the upper side (z = +h/2) is 
made of ceramic. Reference surface, or (z = 0), is the central 
axis of the beam. Origin (O) is the midpoint of a rectangular 
beam. 

 
Fig. 1. Functionally graded beam geometry with even as well as uneven 
porosity 
 Material characteristics of FG beam depends on the 
volume proportion of their component materials. It is expected 
that the thickness coordinate and material characteristics have 
a functional relationship. A distribution of x and z values that 
follows power law could be used in representing the porous 
volume fraction (Vf) as shown in Eq. 1 [29]. 
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here, 𝑃'	and 𝑃" denote the behaviour of volume fraction 
throughout the thickness and length of beam. 
 Effective material properties in evenly distributed porous 
FG beams (P) can then be expressed in Eq. (2a) [28]. 
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where α refers to porosity coefficient (0 ≤ α ≤ 1), m is metal 
and c is ceramic.  
 
2.2 Material homogenization 
According to the aforementioned relationship, the Modulus of 
elasticity (E) and mass density (ρ), that are used for material 
stiffness and moment of inertia estimation for evenly 
distributed porous FG beams can be expressed in Eqs. (2b) 
and (2c) respectively [29]. 
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 Although a slight variance in Poisson's ratio is seen when 
compared with other properties, it is considered a constant 
because computations are made using the average value. Also, 
the effective properties of materials (P) for unevenly 
distributed porous FG beams could be estimated using Eq. 
(3a).  

𝑃(𝑥, 𝑧) = (𝑃) − 𝑃*) (
"
#
+ $

%
*
&!
('
(
+ $

%
*
&"
+ 𝑃* −

+
%
(𝑃) +

𝑃*) (1 −
%|'|
(
*                (3a) 

 
 The Modulus of elasticity (E), and mass density (ρ) for 
unevenly distributed porous FG beams could be estimated 
using Eqs. (3b) and (3c) respectively.  
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and 
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2.3 Constitutive equations for displacement field 
To ensure rigid structure and lower manufacturing costs, FG 
beams and plates that experience static and dynamic loads 
must be well-designed. When analysing FGM structures that 
are adapted from conventional beam and plate theories, the 
results of the bending analysis often show that the deflections 
are underestimated, while the critical loads and natural 
frequencies are typically overstated. Therefore, it is advised to 
employ theories that consider shear deformation effects in 
FGB analysis so as to increase forecast accuracy. Reddy’s 
advanced HSDT is adapted to find the effect of transverse 
shear. Displacement field and constitutive equations [30] are 
presented in Eqs. (4a) and (4b). 
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./#
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𝑊(𝑥, 𝑧, 𝑡) = 𝑤-(𝑥, 𝑡)                       (4b) 
 
where 𝑈, and 𝑊 are axial and transverse displacements. 𝑢- 
and 𝑤- are the axial and transverse displacements at a given 
point on the neutral axis. ./#

."
 is the bending slope while ∅	is 

the shear slope. Displacement field equation in matrix form 
could be presented in Eq. (5), 
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 The shear shape function f(z) could be applied to find 
transverse shear deformation as well as the non-zero strain 
field equations which can be computed using Eqs. (4a) and 
(4b) as, 
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 According to Hooke’s Law and using Eqs. (6a), (6b), (6c), 
(7a), and (7b), the field equations for stress can be deduced as 
shown in Eqs. (8a) and (8b). 
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2.4 Equations of motion 
One of the most important concepts in vibration analysis is 
Hamilton's principle. It results in the fundamental equations 
of elasticity and dynamics, which are given in Eq. (9) [29]. 
 
∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)@%
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where t1 and t2 are the beginning and the end points in time.  
𝛿𝑈, 𝛿𝑉, and 𝛿𝐾  represent changes in strain energy, potential 
energy, and kinetic energy respectively. The change in strain 
energy in a 2D-FGPB can be expressed in Eq. (10). 
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substituting Eqs. (6a), (6c), (8a), and (8b) into Eq. (10), strain 
energy could be deduced as, 
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and,  
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where A,B,C,D, F, and H are stress resultants. 
The variation in potential energy while applying transverse load 
q could be expressed as shown in Eq. (12). 
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Variation in kinetic energy of a 2D- FGPB could be 
presented as in Eq. (13a). 
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where I-, I$, I%, J$, J%, K$ are mass inertias. 
 when functions,𝑢-(𝑥, 𝑡), 𝑤-(𝑥, 𝑡) and 𝜙(𝑥, 𝑡), of infinite 
dimensions are expressed as generalised coordinates. As a 
result, the displacement functions are represented by a 
polynomial series and are presented in Tab. 1 [23, 29]. 
 
Table 1. Different kinematic constraints that are used in 
numerical calculations 

Boundary 
condition X = -L/2 x = L/2 

Simply supported 
(SS) u=0, w=0 w=0 

Clamped- 
clamped (CC) 

u=0, w=0, 
𝜙=0, w’=0 

u=0,w=0, 𝜙=0, 
w’=0 

Clamped- free 
(CF) 

u=0, w=0, 
𝜙=0, w’=0 --- 

 
 Substituting Eqs. (11b), (12), and (13a) into Eq. (9) and 
integrating with respect to time intervals, the displacement 
function coefficients are expressed as shown in Eqs. (14a), 
(14b), and (14c). 
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where, 𝜃P(𝑥), 𝜑P(𝑥), and 𝜓P(𝑥) are shape functions for 
boundary conditions. Aj, Bj, and Cj are unknown coefficients 
that are to be estimated. 𝜔 is the natural frequency. 𝑝5, 𝑞5, 
𝑝/, 𝑞/, 𝑝O, 𝑞O are the boundary exponents and the values 
for boundary exponents can be taken from Table 2 [23]. 
 
Table 2. Boundary exponents to be used for boundary 
conditions 

Boundary condition Left end  Right end 
 pu pw pϕ qu qw qϕ 
SS 1 1 0 0 1 0 
CC 1 2 1 1 2 1 
CF 1 2 1 0 0 0 

 
 Substituting Eqs. (14a), (14b), and (14c) into Eqs. (11a) 
and (13a), governing equation of motion could be derived as 
shown in Eq. (15). 
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 Further, the analytical solutions could be obtained using the 
following expression as shown in Eq. (16) [32]. 
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where, 
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𝑀%%(𝑖, 𝑗) = 𝐾$ ∫ 	𝜌(𝑥, 𝑧) B(C,D)
$:E$

+
$
:+$

𝜑Q𝜑P𝑑𝑥 + (1 − 2𝐼% −

𝐽%) ∫ 	𝜌(𝑥, 𝑧) ;(C,D)
%($?>)

+
$
:+$

𝜑Q,"𝜑P,"𝑑𝑥               (27) 

 

𝑀%Y(𝑖, 𝑗) = 2𝐼$ − 2𝐼$𝐽$ ∫ 	𝜌(𝑥, 𝑧)
+
$
:+$

B(C,D)
$:E$

𝜑Q,"ψP𝑑𝑥   (28) 

 

𝑀YY(𝑖, 𝑗) = (𝐼% − 2𝐼$𝐽$ +𝐾$) ∫ 	𝜌(𝑥, 𝑧)
+
$
:+$

;(",')
$:>$

𝜓Q𝜓P𝑑𝑥 (29) 

 
 
3. Results and Discussion 
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3.1 Effect of gradation on natural frequency 
To determine the accuracy of the proposed theory in 
calculating natural frequencies, a 2D- FGPB is considered 
whose length varies from –L to +L and thickness varies as –
h/2 to +h/2. The constituents of beam [29] are Al/Al2O3, and 
the properties are Alumina: Ec = 380 GPa,	ρ[ = 3960	kg/mY, 
μc = 0.3; Aluminum: Em = 70 GPa,	ρ\ = 2702	kg/mY, μm = 
0.3 
 A dimensionless natural frequency (λ) could be used to 
represent the results using the Eq. (30). 
 

𝜆 = R#$

( �
],
;,

                  (30) 

 
 A homogeneous beam is taken into account for the 
convergence and verification investigations, and displacement 
functions having various terms (m = 2, 4, 6, 8, 10, and 12) 
have been used [31]. Calculated findings are provided as a 
dimensionless free vibration, taking into account different 
gradient index values in both directions. For comparison, 
findings from the earlier investigations [27, 29] for 
dimensionless free vibration are detailed in Tabs. 3 - 8 for the 
mentioned SS, CC, and CF boundary conditions at L/h = 5 and 
L/h = 20. 
 
 
Table 3. Influence of px, and pz, on λ for a SS 2D-FGPB at 
L/h = 5 

Beam Theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 2.677 2.677 2.677 2.677 2.677 2.677 
[28] 2.676 2.674 2.666 2.653 2.633 2.610 
[29] 2.677 2.675 2.666 2.654 2.635 2.612 
P 
R 
E 
S 
E 
N 
T  

2 terms 2.553 2.529 2.505 2.481 2.457 2.433 
4 terms 2.476 2.452 2.428 2.404 2.380 2.356 
6 terms 2.399 2.375 2.351 2.327 2.303 2.279 
8 terms 2.323 2.299 2.275 2.251 2.227 2.203 
10 terms 2.323 2.299 2.275 2.251 2.227 2.203 
12 terms 2.323 2.299 2.275 2.251 2.227 2.203 

[23] 0.5 2.672 2.672 2.672 2.672 2.672 2.672 
[28] 2.672 2.672 2.672 2.672 2.672 2.672 
[29] 2.673 2.670 2.662 2.648 2.629 2.606 
P 
R 
E 
S 
E 
N 
T  

2 terms 2.478 2.475 2.467 2.453 2.434 2.412 
4 terms 2.400 2.397 2.389 2.375 2.356 2.333 
6 terms 2.321 2.318 2.310 2.296 2.277 2.255 
8 terms 2.321 2.318 2.310 2.296 2.277 2.255 
10 terms 2.321 2.318 2.310 2.296 2.277 2.255 
12 terms 2.321 2.318 2.310 2.296 2.277 2.255 

[23] 1.0 
  
  
  
  
  

2.645 2.645 2.645 2.645 2.645 2.645 
[28] 2.645 2.645 2.645 2.645 2.645 2.645 
[29] 2.645 2.642 2.634 2.621 2.603 2.579 
 P 
R 
E 
S 
E 
N 
T 

2 terms 2.413 2.410 2.402 2.389 2.371 2.347 
4 terms 2.389 2.385 2.377 2.364 2.346 2.323 
6 terms 2.365 2.361 2.353 2.340 2.322 2.299 
8 terms 2.365 2.361 2.353 2.340 2.322 2.299 
10 terms 2.365 2.361 2.353 2.340 2.322 2.299 
12 terms 2.365 2.361 2.353 2.340 2.322 2.299 

 
 
Table 4. The effect of px and pz on the value of λ for a CC 
2D-FGPB with L/h = 5 

Beam Theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 5.194 5.194 5.194 5.194 5.194 5.194 
[28] 5.231 5.231 5.231 5.231 5.231 5.231 
[29] 5.233 5.230 5.221 5.206 5.184 5.156 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.212 5.209 5.200 5.184 5.163 5.135 
4 terms 5.190 5.187 5.178 5.163 5.142 5.114 
6 terms 5.169 5.166 5.157 5.142 5.120 5.093 
8 terms 5.169 5.166 5.157 5.142 5.120 5.093 

10 terms 5.169 5.166 5.157 5.142 5.120 5.093 
12 terms 5.169 5.166 5.157 5.142 5.120 5.093 

[23] 0.5 5.198 5.198 5.198 5.198 5.198 5.198 
[28] 5.237 5.237 5.237 5.237 5.237 5.237 
[29] 5.238 5.235 5.226 5.216 5.189 5.161 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.205 5.202 5.193 5.177 5.156 5.128 
4 terms 5.183 5.180 5.171 5.156 5.135 5.107 
6 terms 5.162 5.159 5.150 5.135 5.113 5.086 
8 terms 5.162 5.159 5.150 5.135 5.113 5.086 

10 terms 5.162 5.159 5.150 5.135 5.113 5.086 
12 terms 5.162 5.159 5.150 5.135 5.113 5.086 

[23] 1.0 5.219 5.219 5.219 5.219 5.219 5.219 
[28] 5.258 5.258 5.258 5.258 5.258 5.258 
[29] 5.263 5.260 5.251 5.236 5.214 5.186 

P 
R 
E 
S 
E 
N 
T 

2 terms 5.201 5.198 5.189 5.173 5.152 5.124 
4 terms 5.179 5.176 5.167 5.152 5.131 5.103 
6 terms 5.158 5.155 5.146 5.131 5.109 5.082 
8 terms 5.158 5.155 5.146 5.131 5.109 5.082 

10 terms 5.158 5.155 5.146 5.131 5.109 5.082 
12 terms 5.158 5.155 5.146 5.131 5.109 5.082 

 
Table 5. The effect of px and pz on the value of λ for a CF 2D-
FGPB with L/h = 5 

Beam Theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 0.984 0.984 0.984 0.984 0.984 0.984 
[28] 0.984 0.984 0.984 0.984 0.984 0.984 
[29] 0.985 0.984 0.981 0.977 0.971 0.963 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.951 0.950 0.947 0.943 0.937 0.929 
4 terms 0.917 0.916 0.913 0.909 0.903 0.895 
6 terms 0.883 0.882 0.879 0.875 0.869 0.861 
8 terms 0.883 0.882 0.879 0.875 0.869 0.861 

10 terms 0.883 0.882 0.879 0.875 0.869 0.861 
12 terms 0.883 0.882 0.879 0.875 0.869 0.861 

[23] 0.5 0.870 0.870 0.870 0.870 0.870 0.870 
[28] 0.872 0.872 0.872 0.872 0.872 0.872 
[29] 0.871 0.870 0.867 0.863 0.851 0.849 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.859 0.859 0.856 0.852 0.840 0.838 
4 terms 0.848 0.847 0.845 0.841 0.828 0.827 
6 terms 0.837 0.836 0.834 0.830 0.817 0.816 
8 terms 0.837 0.836 0.834 0.830 0.817 0.816 

10 terms 0.837 0.836 0.834 0.830 0.817 0.816 
12 terms 0.837 0.836 0.834 0.830 0.817 0.816 

[23] 1.0 0.721 0.721 0.721 0.721 0.721 0.721 
[28] 0.722 0.722 0.722 0.722 0.722 0.722 
[29] 0.723 0.722 0.720 0.716 0.712 0.706 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.706 0.706 0.704 0.700 0.696 0.690 
4 terms 0.690 0.690 0.688 0.684 0.680 0.674 
6 terms 0.674 0.674 0.672 0.668 0.664 0.658 
8 terms 0.674 0.674 0.672 0.668 0.664 0.658 

10 terms 0.674 0.674 0.672 0.668 0.664 0.658 
12 terms 0.674 0.674 0.672 0.668 0.664 0.658 

 
Table 6. The effect of px and pz on the value of λ for a SS 2D-
FGPB with L/h = 20 

Beam Theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 2.836 2.836 2.836 2.836 2.836 2.836 
[28] 2.837 2.837 2.837 2.837 2.837 2.837 
[29] 2.837 2.834 2.826 2.812 2.792 2.768 
P 
R 
E 
S 
E 
N 
T 

2 terms 2.795 2.792 2.784 2.770 2.750 2.726 
4 terms 2.753 2.750 2.741 2.728 2.708 2.684 
6 terms 2.711 2.708 2.699 2.685 2.666 2.642 
8 terms 2.711 2.708 2.699 2.685 2.666 2.642 
10 terms 2.711 2.708 2.699 2.685 2.666 2.642 
12 terms 2.711 2.708 2.699 2.685 2.666 2.642 

[23] 0.5 2.833 2.833 2.833 2.833 2.833 2.833 
[28] 2.832 2.832 2.832 2.832 2.832 2.832 
[29] 2.833 2.830 2.821 2.807 2.788 2.764 
P 
R 
E 
S 
E 
N 
T 

2 terms 2.789 2.786 2.778 2.764 2.744 2.720 
4 terms 2.747 2.744 2.735 2.722 2.702 2.678 
6 terms 2.705 2.702 2.693 2.679 2.660 2.636 
8 terms 2.705 2.702 2.693 2.679 2.660 2.636 
10 terms 2.705 2.702 2.693 2.679 2.660 2.636 
12 terms 2.705 2.702 2.693 2.679 2.660 2.636 

[23] 1.0 2.809 2.809 2.809 2.809 2.809 2.809 
[28] 2.808 2.808 2.808 2.808 2.808 2.808 
[29] 2.809 2.806 2.798 2.784 2.765 2.741 
P 2 terms 2.781 2.778 2.770 2.756 2.736 2.712 
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R 
E 
S 
E 
N 
T 

4 terms 2.739 2.736 2.727 2.714 2.694 2.670 
6 terms 2.697 2.694 2.685 2.671 2.652 2.628 
8 terms 2.697 2.694 2.685 2.671 2.652 2.628 
10 terms 2.697 2.694 2.685 2.671 2.652 2.628 
12 terms 2.697 2.694 2.685 2.671 2.652 2.628 

 
Table 7. The effect of px and pz on the value of λ for a CC 2D-
FGPB with L/h = 20 

Beam theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 6.348 6.348 6.348 6.348 6.348 6.348 
[28] 5.133 5.133 5.133 5.133 5.133 5.133 
[29] 6.351 6.345 6.327 6.297 6.256 6.203 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.338 6.332 6.314 6.284 6.243 6.190 
4 terms 6.325 6.319 6.301 6.271 6.229 6.177 
6 terms 6.312 6.306 6.288 6.258 6.216 6.164 
8 terms 6.312 6.306 6.288 6.258 6.216 6.164 

10 terms 6.312 6.306 6.288 6.258 6.216 6.164 
12 terms 6.312 6.306 6.288 6.258 6.216 6.164 

[23] 0.5 5.112 5.112 5.112 5.112 5.112 5.112 
[28] 5.138 5.138 5.138 5.138 5.138 5.138 
[29] 6.358 6.352 6.333 6.303 6.262 6.209 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.287 6.281 6.263 6.233 6.192 6.139 
4 terms 6.274 6.268 6.250 6.220 6.178 6.126 
6 terms 6.261 6.255 6.237 6.207 6.165 6.113 
8 terms 6.261 6.255 6.237 6.207 6.165 6.113 

10 terms 6.261 6.255 6.237 6.207 6.165 6.113 
12 terms 6.261 6.255 6.237 6.207 6.165 6.113 

[23] 1.0 5.133 5.133 5.133 5.133 5.133 5.133 
[28] 5.160 5.160 5.160 5.160 5.160 5.160 
[29] 6.391 6.384 6.366 6.336 6.294 6.241 

P 
R 
E 
S 
E 
N 
T 

2 terms 6.283 6.277 6.259 6.229 6.188 6.135 
4 terms 6.270 6.264 6.246 6.216 6.174 6.122 
6 terms 6.257 6.251 6.233 6.203 6.161 6.109 
8 terms 6.257 6.251 6.233 6.203 6.161 6.109 

10 terms 6.257 6.251 6.233 6.203 6.161 6.109 
12 terms 6.257 6.251 6.233 6.203 6.161 6.109 

 
Table 8. The effect of px and pz on the value of λ for a CF 2D-
FGPB with L/h = 20 

Beam Theory Px Pz 
0.0 0.2 0.4 0.6 0.8 1.0 

[23] 0.0 1.012 1.012 1.012 1.012 1.012 1.012 
[28] 1.013 1.013 1.013 1.013 1.013 1.013 
[29] 1.013 1.012 1.009 1.004 0.997 0.989 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.992 0.991 0.988 0.983 0.976 0.968 
4 terms 0.971 0.970 0.967 0.962 0.955 0.947 
6 terms 0.950 0.949 0.946 0.941 0.934 0.926 
8 terms 0.950 0.949 0.946 0.941 0.934 0.926 

10 terms 0.950 0.949 0.946 0.941 0.934 0.926 
12 terms 0.950 0.949 0.946 0.941 0.934 0.926 

[23] 0.5 
 
 
 
 
  

0.895 0.895 0.895 0.895 0.895 0.895 
[28] 0.895 0.895 0.895 0.895 0.895 0.895 
[29] 0.895 0.894 0.891 0.887 0.881 0.873 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.884 0.883 0.880 0.876 0.870 0.862 
4 terms 0.873 0.872 0.869 0.865 0.859 0.851 
6 terms 0.862 0.861 0.858 0.854 0.848 0.840 
8 terms 0.862 0.861 0.858 0.854 0.848 0.840 

10 terms 0.862 0.861 0.858 0.854 0.848 0.840 
12 terms 0.862 0.861 0.858 0.854 0.848 0.840 

[23] 1.0 
 
 
 
  

0.739 0.739 0.739 0.739 0.739 0.739 
[28] 0.739 0.739 0.739 0.739 0.739 0.739 
[29] 0.739 0.739 0.736 0.733 0.728 0.721 

P 
R 
E 
S 
E 
N 
T 

2 terms 0.728 0.727 0.725 0.721 0.716 0.710 
4 terms 0.717 0.716 0.714 0.710 0.705 0.699 
6 terms 0.706 0.705 0.703 0.699 0.694 0.688 
8 terms 0.706 0.705 0.703 0.699 0.694 0.688 

10 terms 0.706 0.705 0.703 0.699 0.694 0.688 
12 terms 0.706 0.705 0.703 0.699 0.694 0.688 

 Dimensionless free vibration of SS, CC, and CF beams 
showed rapid reaction and polynomial expansion of 6 in SS 
and 4 in CC and CF. However, a 12-term polynomial 
expansion was evaluated for accuracy. As gradient indices 
increase in both directions, dimensionless free vibration 
diminishes in SS, CC, and CF beams with aspect ratios of L/h 

= 5 and 20. As the gradient index value increases, the natural 
frequency in the CC beam increases in the x direction while it 
decreases along the z direction, influenced by the end 
constraints and reactions. Gradient index improve beam 
stiffness and elasticity modulus [21]. Gradient indices, 
elasticity modulus, and beam stiffness increase frequencies. 
This is accurate if the beam's mass remains constant. Vibration 
theory states that mass inversely affects frequency and 
stiffness directly affects frequency. As demonstrated in Tabs. 
5 and 6, gradient indexes have the same influence on SS and 
CC beam frequencies, but x- direction index is much more 
effective than z- direction index [23]. Gradient index affects 
frequency more in z than in x in CF beams. As seen in Tabs. 3 
to 8, the CC beam exhibits highest frequency, followed by the 
SS and CF beams. The aspect ratio effect is crucial because 
free vibration increases as aspect ratio increases (Figs. 2, 3, 
and 4).  

 
Fig. 2. Variation in natural frequencies of SS beam with respect to aspect 
ratios along px and pz 

 
Fig. 3. Variation in natural frequencies of CC beam with respect to aspect 
ratios along px and pz 
 

 
Fig. 4. Variation in natural frequencies of CF beam with respect to aspect 
ratios along px and pz 



N. K. Geetha, G. Chandra Mohana Reddy and P. Bridjesh/Journal of Engineering Science and Technology Review 16 (5) (2023) 59 - 68 
 

 
 

65 

 
The beam's stiffness and mass depend on the material's 

characteristics and cross-section geometry, while its gradation 
exponent and gradient index affect its natural frequency. An 
increase in the gradation exponent increases the beam's 
rigidity, resulting in a higher natural frequency. Conversely, 
an increase in the gradient index increases stiffness and 
natural frequency, resulting in a higher natural frequency. 
However, the gradient index's impact on the natural frequency 
of a CF beam is less significant compared to SS and CC 
boundary conditions. The aspect ratio of an SS 2D-FGPB can 
significantly affect its natural oscillation frequency. It reduces 
the beam's mass and cross-sectional area, but the increase in 
rigidity due to beam lengthening increases its natural 
frequency. The increase in aspect ratio leads to increased 
beam length [33], increased rigidity, and higher natural 
frequency. However, this decrease in cross-sectional area 
results in a decrease in mass and frequency. To compensate, 
beam thickness is increased. 

 
3.2 Effect of porosity on natural frequency 
The effect on material gradation and porosity distribution, 
even and uneven, is presented in this section. The variations 
in natural frequencies in a 2D-FGPB with even porosity for 
the considered boundary conditions SS, CC, and CF are 
presented in Tabs. 9, 10, and 11 and subsequently in Figs. 5 to 
10. The porosity of a 2D-FGPB decreases its natural 
frequency due to cavities or pores, affecting its resistance to 
deformation and oscillation. The distribution of mass and 

rigidity also affects the frequency. A uniform distribution 
reduces stress concentrations and increases resistance. An 
uneven distribution increases frequency, as tension 
concentrations in specific regions contribute to higher 
stiffness and frequency [34]. In contrast to an SS beam, CC 
boundary conditions impose a fixed boundary at each 
extremity of the beam, resulting in distinct mode shapes and 
natural frequencies. At the locations where an SS beam is 
supported, the beam is free to move up and down [35]. This 
means that the support points can function as locations of 
maximum displacement and minimum bending moment, 
resulting in a beam with a reduced effective stiffness. The 
decline in effective rigidity reduces the natural frequency. A 
CC beam, on the other hand, is stationary at both ends. This 
indicates that there is no movement at the support points, and 
that the greatest displacement occurs in the center of the beam. 
Fixed boundary conditions increase the effective rigidity of 
the beam, thereby increasing its natural frequency. Moreover, 
the mode shapes of the beam can vary between the two 
boundary conditions. In an SS beam, the mode morphologies 
have a maximum amplitude at the beam's center, whereas in a 
CC beam, there is a node. The natural frequency of a beam 
can also be affected by the mode shape. As the porosity 
increases, the effective stiffness and mass of the composite 
beam decrease, which results in a decrease in its natural 
frequency. This effect can be more predominant for aluminum 
than for alumina due to the larger difference in their stiffness 
and density. 

 
Table 9. Effect of px, pz and α on natural frequencies of SS 2D-FGPB at the aspect ratio of L/h=5 

Px & Pz 
Even Porosity Uneven Porosity 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 
0.0 2.6753 2.776 2.8172 2.8507 2.6753 2.7561 2.7792 2.7934 
0.2 2.6717 2.7687 2.8061 2.8355 2.6717 2.7522 2.7754 2.7893 
0.4 2.6594 2.7538 2.7876 2.8133 2.6594 2.7402 2.7598 2.772 
0.6 2.6426 2.7312 2.7607 2.784 2.6426 2.7177 2.7369 2.7473 
0.8 2.6171 2.7011 2.7284 2.7478 2.6171 2.6886 2.7059 2.7145 
1.0 2.5771 2.6635 2.688 2.7047 2.5771 2.6519 2.6672 2.6742 

 
Table 10. Effect of px, pz and α on natural frequencies of CC 2D-FGPB at the aspect ratio of L/h=5 

Px & Pz 
Even Porosity Uneven Porosity 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 
0.0 5.1618 5.5842 5.9157 6.2572 5.1618 5.5539 5.8465 6.1400 
0.2 5.1600 5.5160 5.8988 6.2295 5.1600 5.4913 5.8417 6.1330 
0.4 5.1545 5.5035 5.8769 6.1965 5.1545 5.4827 5.8285 6.1144 
0.6 5.1453 5.4868 5.8502 6.1583 5.1453 5.4688 5.8081 6.0867 
0.8 5.1322 5.4658 5.8186 6.1150 5.1322 5.4499 5.7813 6.0514 
1.0 5.1152 5.4404 5.7822 6.0666 5.1152 5.4261 5.7487 6.0094 

 
Table 11. Effect of px, pz and α on natural frequencies of CF 2D-FGPB at the aspect ratio of L/h=5 

Px & Pz 
Even Porosity Uneven Porosity 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 
0.0 0.9850 1.0006 1.0142 1.0256 0.9850 0.9944 1.0014 1.0057 
0.2 0.9255 0.9381 0.9488 0.9571 0.9255 0.9317 0.9355 0.9364 
0.4 0.8673 0.8777 0.8861 0.8922 0.8673 0.8714 0.8731 0.8720 
0.6 0.8108 0.8193 0.8260 0.8305 0.8108 0.8134 0.8137 0.8114 
0.8 0.7560 0.7631 0.7685 0.7718 0.7560 0.7576 0.7571 0.7542 
1.0 0.7059 0.7092 0.7135 0.7160 0.7059 0.7042 0.7032 0.7000 
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Fig. 5. Effect of α on λ for SS 2D-FGPB with even porosity at the aspect 
ratio of L/h=5 

 
Fig. 6. Effect of α on λ for SS 2D-FGPB with un-even porosity at the 
aspect ratio of L/h=5 
 

 
Fig. 7. Effect of α on λ for CC 2D-FGPB with even porosity at the aspect 
ratio of L/h=5 
 

 
Fig. 8. Effect of α on λ for CC 2D-FGPB with un-even porosity at aspect 
ratio L/h=5 
 

 
Fig. 9. Effect of α on λ for CF 2D-FGPB with even porosity at aspect ratio 
L/h=5 
 

As the porosity index (α) grows, from Figs. 5 - 10, it is possible to 
detect that the disparity that exists between the various patterns of porosity 
distribution can become even more pronounced. On the other hand, free 
vibration occurs more frequently in regions with an even porosity 
distribution as compared to regions with an uneven porosity distribution 
[28]. 
 

 
Fig. 10. Effect of α on λ for CF 2D-FGPB with un-even porosity at aspect 
ratio L/h=5 
 

The free vibration value of an SS beam falls when the 
gradation exponents in the x as well as z directions are 
increased and rises when the porosity index is increased. If 
there is an even distribution of porosity across the material, 
the vibration value will be higher than if there is an uneven 
distribution. It should be observed that the free vibration 
proves to be increasing with the porosity coefficient, and that 
the influence of this increase is more significant at a high 
porosity value [32]. This is because there is a decrease in 
flexible stiffness when the porosity value is increased. 
Additionally, it has been shown that the vibration lessens 
when there is an increase in the gradient index; this holds true 
for both the even as well as uneven porosity. The beam is 
considered to be pure metal and has a lower stiffness when the 
gradient index is equal to zero (p = 0). As the gradient index 
(p) approaches infinity, a beam approaches the characteristics 
of a pure ceramic with a high stiffness, which results in 
decreased vibration [23]. 

 
 

4. Conclusion 
 
Under various boundary circumstances, two- directional FG 
porous beams were studied for free vibration (SS, CC, and 
CF). These boundary conditions had various aspect ratios and 
gradation exponents on the x and z axes. The nth order shear 
deformation theory was adapted to calculate free vibration for 
FG porous beams with both even as well as uneven porosity. 
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The properties that determine the behavior of 2D-FGPB were 
calculated using a power law distribution. The computed 
dimensionless free vibrations are compared with published 
research and are in good agreement. Findings of the vibration 
analysis are summarised and listed below: 
 
• The dimensionless natural frequency decreases during the 

transition from the CC boundary condition to the SS and 
CF boundary conditions. This suggests a decrease in the 
beam's stiffness and rigidity as the boundary conditions 
become less restrictive. 

• The dimensionless free vibration of 2D-FGPB is strongly 
affected by gradient indices. But the gradient index affects 
x to a greater extent than z. 

• As the volume percentage of porosity around the centre 
surface increases, free vibration will also increase. 

• Shear deformation affects 2D-FGPB vibration as aspect 
ratio increases. The CC 2D-FGPB is more vulnerable to 
shear deformation than other models. 

• Shear deformation has a significant effect, particularly for 
thick beams, and the proposed theory accurately predicts 
and explains the vibration patterns of 2D-FGPB. 

• The gradient indices and the selection of boundary 
conditions exert a substantial impact on the dimensionless 
natural frequency of the 2D-FGPB. Variations in the 
beam's stiffness and subsequent effects on its vibration 
characteristics are influenced by different values of the 
gradient indices and boundary conditions. 

 

 The research findings hold several practical implications 
for both materials engineering and structural design. The 
significant influence of boundary conditions and gradient 
indices on the natural frequency of 2D-FGPBs can be 
leveraged to make informed decisions about material and 
selection and structural design. This understanding could be 
valuable for applications requiring vibration control, enabling 
the design of 2D-FGPBs with specific properties to effectively 
mitigate vibrations. The porosity parameter is an important 
factor that must be taken into account when designing 
contemporary structures, as the amount of porosity in a 
structure can significantly impact its performance and 
response. The proposed theory may not accurately predict the 
behaviour of structures with large deflections or large 
deformations, as it is based on linear elasticity assumptions. 
The proposed method can be used to analyze 2D-FGPB 
surfaces that are exposed to high temperatures at one end and 
low temperatures at the other in further studies. Future work 
could involve experimental validation, optimization 
algorithms for tailored material properties, dynamic analysis, 
and the exploration of advanced materials and their real-world 
applications. Evaluating the environmental impact of 2D-
FGPBs could also be a relevant focus, aligning with the 
growing emphasis on sustainability in engineering practices. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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Nomenclature 

2D-FGPB Two- directional functionally graded porous beam 
CBT Classical beam theory 
CC Clamped-clamped 
CF Clamped free 
E Modulus of elasticity (GPa) 
FG Functionally graded 
FGB Functionally graded beam 
FGM Functionally graded material 
f(z) Shear shape function 
h Height (m) 
HSDT Higher order shear deformation theory 
K Shear correction factor 
L Length (m) 
UDL Uniformly distributed load 
px Gradient index in the length direction 

pz Gradient index in the thickness direction 

SS Simply supported  
Vf Volume fraction 
x, y, z Different coordinates along length, width, and thickness directions of beam 
α Coefficient of porosity/ Porosity index 
μ Poisson’s ratio 
ρ Mass density (Kg/m3) 
δU Strain energy 
δk Kinetic energy 
ϕ Shear slope 
𝜕𝑤-
𝜕𝑥  

Bending slope 

 


