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Abstract 
 

To improve the accuracy of demand forecasting for new electronic products, especially in scenarios with limited 
historical data, a novel forecasting model was proposed in this study which integrated K-means based on Euclidian 
distance, Multi-layer perceptron algorithm, and Quantile Regression with Gradient Boosted Trees (KEM-QRGBT). The 
model also incorporated grid search with K-fold cross-validation to enable the adaptive selection of the optimal 
parameters for product data. Additionally, the KEM-QRGBT model, which can balance the intricacies of learning 
parameter patterns with its ability to quantify demand uncertainty, exhibited proficiency in quantifying the uncertainty 
inherent in demand forecasting. Using a case study from a manufacturing enterprise in Turkey, the effectiveness of the 
model was validated. Results demonstrate that, for new electronic products with limited historical data, the KEM-
QRGBT model with adaptive parameter selection improves demand forecasting accuracy, outperforming benchmark 
methods, and other machine learning models. The proposed algorithm provides a strong evidence for the demand 
forecasting of new electronic products, particularly in cases where historical data is limited. 
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1. Introduction 
 
In the initial stages of product development, accurate 
demand forecasting for the entire product life cycle becomes 
crucial. It profoundly influences the development of product 
positioning strategies and the formulation of intricate market 
penetration strategies. As technology rapidly progresses and 
competitive landscapes evolve, many industries are 
experiencing a trend toward increasingly shorter product life 
cycles. Prominent sectors such as electronics, automobiles, 
and fashion are prime examples, often showcasing annual 
product updates or revisions. This evolving dynamic 
presents significant challenges for decision-makers (DMs), 
who often lack sufficient historical data to forecast new 
product demand accurately before the sales season [1]. The 
limited availability and incompleteness of historical data 
skew the forecasting accuracy in the volatile demand [2]. 
The consequences of inaccurate demand forecasting are not 
trivial. Major companies such as Microsoft, Samsung, and 
Lenovo have experienced substantial losses due to 
miscalculations in demand forecasting for new electronics 
[3]. These examples underscore the importance of refining 
forecasting methodologies to better align with the realities of 
today's fast-changing markets. 

Demand forecasting for new products is a classic cold 
start problem, which has received more attention. Products 
with brief life cycles face challenges like extended lead 
times, a dearth of early historical data, and seasonal 
influences, complicating demand predictions. To address the 
challenges, a widely adopted method is analogical reasoning, 
leveraging the historical data of similar products for new 
product forecasting. However, the traditional demand 
forecasting models for new products that employ analogical 

reasoning tend to be subjective. The process of selecting 
comparable products often hinges on subjective criteria and 
depends heavily on expert judgment, which results in a 
larger forecasting error. In addition, point forecasting is 
frequently-used in demand forecasting for new products. 
Due to few relevant historical data, traditional point 
forecasting methods often result in significant discrepancies 
from actual demand and are ill-suited to environments with 
short product life cycles [4]. Interval forecasting, by contrast, 
provides a range of potential outcomes, allowing DMs to 
more accurately assess the risk associated with future 
demand for new electronic products. Hence, to address these 
issues, this study employed analogical learning principles 
combined with cluster analysis, deep learning classification, 
and ensemble regression techniques, to develop a novel 
interval forecasting model for new electronic products 
before the sales season. We aim to provide DMs with 
insights into the life cycle trends and demand intervals at 
different stages for new electronic products, even in the 
absence of historical data. This model can help manufacturer 
improve their decision-making processes and decrease 
marketing costs. 
 
 
2. State of the art 
 
Demand forecasting for new products often relies on 
qualitative analysis, yet this approach can be skewed by 
external factors. There is an urgent need to employ 
quantitative models for forecasting demand [5]. In this realm, 
quantitative methodologies are broadly classified into case-
based reasoning (CBR) and Bass diffusion model. The CBR 
method identifies and adapts solutions from similar 
historical cases to predict new product demand, proving 
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effective in fields like industrial design and printed circuit 
board production. However, due to the uncertainties in 
knowledge representation, attribute description, and 
similarity measurement within CBR, identifying similar 
cases from a database is challenging. Moreover, the 
selection process is often subjective. Previous studies have 
addressed these issues in traditional CBR systems by 
integrating clustering techniques [6,7]. However, the 
individual adaptation of models in CBR can be resource-
intensive, inefficient, and not fully adaptable to the 
fluctuating nature of product demand forecasting. The Bass 
model, on the other hand, considers consumer adoption 
patterns and word-of-mouth effects to model new product 
diffusion [8]. Its limitation lies in heavy reliance on 
historical data for parameter estimation, reducing its 
effectiveness for products without historical data. To address 
this issue, some studies have employed analogy-based 
approaches, and selected parameters for new product 
diffusion models from similar established products [9]. Lee 
et al. [10] developed a library of product attributes through 
expert analysis and created a parameter database from the 
sales data of older products. They then applied machine 
learning algorithms to categorize products and construct the 
Bass model, providing demand forecasting for new 
electronic products in the US. Yin et al. [2] refined this 
approach by incorporating fuzzy clustering and sets in the 
Bass model, forecasting demand for new cellphones and cars 
in China. Zhou et al. [11] utilized analogical reasoning to 
assess clothing similarity, and devised an augmented Bass 
model with consumer preferences and seasonal variations, 
predicting clothing pre-sale demand. However, the Bass 
model is mainly applied for durable products and may not be 
as effective for new electronic products. 

Consequently, various scholars have explored machine 
learning to address the inherent limitations of the mentioned 
approaches. For example, Thomassey et al. [12] applied the 
K-means algorithm to categorize product life curves into 
distinct groups and utilized decision tree classifiers to 
describe the life curves of new electronic products. A self-
organizing map is introduced into this approach to improve 
classification accuracy [13]. Lu et al. [14] utilized the K-
means algorithm to categorize older products and provided a 
voting mechanism to categorize new products by using 
cluster linkage rules. Tehrani et al. [15] used K-means 
clustering to segment product demand into three tiers and 
implemented logistic regression and regression tree 
approaches to forecast future demands of new products. Hu 
et al. [16] used subjective judgment to classify new products 
and applied multiple curve-fitting techniques for forecasting 
life curves. Van Steenbergen et al. [17] expanded the 
random forest algorithm to predict the total demand for new 
products, combining the total demand forecasting with the 
predicted life curve to determine multi-period demand 
values. Lei et al. [18] developed a dynamic life curve 
forecasting model using a Bayesian regression, capturing 
real-time product promotion data. Elalem et al. [19] 
implemented hierarchical clustering and machine learning 
techniques to determine the future life curve of new products. 
However, these models also exhibit limitations. The 
approaches used in [12], [16], and [18] focus solely on life 
curve forecasting, hindering precise demand forecasting for 
different sales periods. The model proposed in [14] ignores 
product demand heterogeneity, assuming average group 
demand as the future demand for new products. In [15], 
subjective segmentation is adopted, leading to greater error 
margins in classification. The model in [17] lacks objective 

algorithm selection and hyperparameter optimization, 
making it less versatile for varied retail scenarios. 

The above literature highlights the importance of 
addressing demand forecasting for new electronic products. 
Notably, there exists a significant gap in examining the 
process of parameter selection, especially from a data-driven 
perspective, and in acknowledging the inherent uncertainties 
within predictive models. Hence, this study developed a 
novel demand forecasting model by incorporating K-means 
based on Euclidian distance (K-means-ED), Multi-layer 
perceptron (MLP) algorithm, and Quantile Regression with 
Gradient Boosted Trees (QRGBT). The model calculated the 
similarity of the life curve of older products based on 
Euclidian distance, and combined K-means algorithm with a 
multi-layer perceptron algorithm to forecast the future life 
curve of new electronic products. Furthermore, the model 
employed the QRGBT algorithm for forecasting demand 
intervals at various life stages of new products, predicting 
the total demand over the product's life cycle. In particular, 
the model utilized a grid search cross-validation (GSCV) 
algorithm, which incorporates grid search with K-fold cross-
validation, to automatically select the optimal parameters for 
the collected dataset. Additionally, the QRGBT algorithm 
effectively quantifies the uncertainty in demand forecasting, 
balancing the complexity of parameter learning. Using the 
electronic products of a manufacturing enterprise as an 
example, the performance of the model was verified on the 
total demand forecasting of the life cycle of new products 
and the demand intervals forecasting of different life stages. 
 
 
3. Methodology 
 
3.1 Model construction 
Based on the time series dataset of older products 

, iÎ{1,2,…,N}, the KEM-QEGBT 
model can forecast the demand for new electronic products 

, mÎ{1,2,…,M}. Where the life 
cycle length of electronic products is T, the number of older 
products is N, and the number of new electronic products is 
M. The framework of the KEM-QRGBT model is as follows: 

1) Life curve clustering: The life cycles of older products 
are clustered after normalization using the K-means 
algorithm based on Euclidean distance. Further, the mean of 
each cluster is extracted to define a unified trend (prototype) 
of the life cycle clusters. Finally, the prototype is considered 
as a potential life curve of new electronic products. 

2) Life cycle forecasting: The MLP algorithm is trained 
by using the characteristics of older products and the 
corresponding relationship of their life cycles. Based on the 
features of the new electronic products, the cluster label with 
the highest probability can be obtained. Finally, the 
predicted life cycle curve of new electronic products can be 
learned from the cluster's prototype. 

3) Total demand quantile forecasting: The QRGBT 
algorithm is trained on the features of older products and 
their total demand over the life cycle. By inputting the 
features of new electronic products and adjusting the 
quantiles of the Quantile Regression Tree, the total demand 
for new electronic products is obtained for quantiles ranging 
from 0.01 to 0.99. 

4) Multi-period demand interval forecasting: Through 
multiplying the predicted total demand of new electronic 
products at different quantiles with the predicted life cycle 

{ },1 ,2 ,, , ,x x x x
i i i i TTS TS TS TS= 

{ },1 ,2 ,, , ,y y y y
m m m m TTS TS TS TS= 
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curve, the multi-period future demand and their respective 
quantiles for new electronic products are obtained. 

The framework of the KEM-QRGBT model is shown in 
Fig. 1. 

 

 
Fig. 1.  The framework of the KEM-QRGBT model 

 
3.2 Older electronic product life cycle clustering 
Multi-period forecasting methods rely on multi-step forward 
forecasting based on existing time series. However, new 
electronic products lack historical demand data for these 
models to learn. Therefore, the KEM-QRGBT model utilizes 
the K-means algorithm to group life cycles with high 
similarity into clusters, and employs centroid extraction 
based on Euclidean distance to obtain prototypes for 
potential life cycle curves of new electronic products. 

To facilitate the clustering of products together, it is 
necessary to normalize demand time series to overcome the 
influence of dimension, as shown in Eq. (1): 

 

                                   (1) 

 
where,  is the proportion of the demand of the ith older 
product in period t after normalization. This study adopts the 
Euclidean distance to measure the similarity of time series, 
as defined in Eq. (2): 

 

                   (2) 

 
where  and . Considering prototype 
extraction dependent on the distance measurement method 
[20], this study selected Euclidean distance gravity center 
extraction algorithm to obtain the prototype. Assuming that 

there is  life curves in kth cluster Ck, the prototype is 
obtained as follows: 

 

                                   (3) 

 
where,  refers to the value of the prototype  for the tth 
period. The objective of K-means is to minimize the sum of 
squared errors, which essentially classifies life cycles with 
similar trends into one category, as specifically depicted in 
Eq. (4): 

 

                         (4) 

 
Based on the above, the process of K-means-ED time 

series clustering algorithm is as follows: (1) the life curve set 
is generated through normalization, and an arbitrary life 
curve is selected as the initial prototype. (2) the distance of 
each life curve is calculated by using Euclidean distance, 
and each life curve is initially assigned to the nearest cluster. 
(3) through K-means algorithm, the life curves are 
reallocated, and the prototypes can be determined. The 
prototype can summarize the characteristics of all life curves, 
to avoid the issue of using a single similar old product life 
curve as the benchmark error of life curve. 
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3.3 Forecasting of new electronic product life cycle 
The KEM-QRGBT model utilizes K-means clustering to 
convert the subjective forecasting of new electronic product 
life cycles into a data-driven classification problem. 
Considering the uncertainty and complex relationship 
between new electronic product life cycles and their features, 
the MLP algorithm is selected to predict the life cycles of 
new electronic products. The MLP algorithm enhances the 
adaptive learning and inferencing abilities of models and 
describes the nonlinear relationship by weighting neuron 
inputs and utilizing activation functions. This effectively 
mines the deep intrinsic connections between multi-
dimensional life cycles and product features. 

 
                 (5) 

 
                                       (6) 

 
Eq. (5) describes a fully connected MLP algorithm, 

where k is the number of the predicted life cycle cluster, and 
 is the predicted life cycle of new electronic products. 

The hidden layer can be denoted as the weight vector . 
The output of the hidden layer, after being mapped by the 
activation function a(×), connects to the nodes  of the 
output layer. The output of the layer is then obtained through 
another activation function o(×), with  and  
representing the biases of the nodes at each layer. Since the 
forecasting of  is a classification problem, the KEM-
QRGBT model brings the output of MLP into softmax 
function, transforms it into the probability distribution, and 
selects the prototype of cluster number with the largest 
probability value as the forecasting life curve. 

 
3.4 Forecasting of total life cycle demand for new 
electronic products 
The life curve of new electronic products describes the 
proportion of demand in various periods. However, it does 
not consider the significant differences in demand scales 
among different products. To accurately assess this 
heterogeneity, the model introduces the QRGBT algorithm 
to predict the total demand for products, which combines 
with the predicted life curve to determine the specific 
demand for various periods.  

Assuming that the QRGBT model comprises  quantile 
regression trees, each with L leaf nodes  and 

response variables , l=1,2,…,L. Given a 

training set , where 

 represents the total demand corresponding to the 

older product feature vector , the output values of 
each leaf node with t quantile are calculated as follows: 

 

              (7) 

 
where  represents the 

empirical conditional distribution function, I(×) is the 

indicator function, and  is the number of occurrences of 
. 
The QRGBT algorithm uses the steepest descent method 

to produce multiple quantile regression trees iteratively. The 
results of all regression trees are linearly combined to 
determine the QRGBT algorithm. The specific steps for 
generating the QRGBT algorithm are as follows: 

1) Initialize the QRGBT algorithm as ； 
2) When the QRGBT algorithm iterates to the jth tree, 

for feature , define the residual  as follows: 
 

                        (8) 

 
where,  represents the loss function. Through 
fitting , we can obtain the quantile regression tree 

. Where  is an 

independently and identically distributed variable controlling 
the growth of the quantile regression tree. 

3) Update the quantile regression with gradient boosting 
tree algorithm as follows: 

 
                          (9) 

 
4) Repeat the first two steps until the QRGBT algorithm 

reaches the convergence or the maximum number of 
iterations, resulting in the following model: 

 

                             (10) 

 
Through utilizing the feature vector x of new electronic 

products, quantiles of the conditional distribution of the total 
demand forecasting are calculated as follows: 

 

                   (11) 

 
 
4. Result Analysis and Discussion 
 
4.1 Data processing 
The data selected in this study is from the product data of a 
manufacturing enterprise. To verify the effectiveness of the 
KEM-QRGBT model, two sample sets from different 
product lines are utilized. Sample set A contains 697 
samples, and sample set B contains 570 samples. The split 
ratio of the training set and testing set is 8:2. 

Considering the heterogeneity of identical products from 
different suppliers, the data should be processed into the 
same format, including demand time series and features. 
This study extracts products and suppliers as primary keys, 
aggregates product demand monthly, and filters out products 
with life cycle lengths greater than or equal to 12 months. 
Before applying the MLP algorithm, this study performs 
one-hot encoding on non-numeric features, achieving a 
mapping from non-numeric to numeric features. 
Additionally, considering the sensitivity of regression 
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algorithms to the scale of numeric features, numeric features 
are standardized before applying the gradient boosting tree 
algorithm. The mean of the standardized feature columns is 
0, with a variance of 1. 

 
4.2 Parameter setting 
In parameter optimization, this study integrates grid search 
with K-fold cross-validation. The KEM-QRGBT model 
pairs up the parameters to be set for each algorithm. For the 
parameter selection process, the forecasting system 
randomly splits the training set into  parts. Where  
subsets are used for training and the remaining subset for 
testing. Each data point is only allocated once to the training 
set or the testing set. In the th cross-validation, a grid 
search is conducted to traverse the two-dimensional grid 
formed by candidate parameter value combinations. After 

th  cross-validation, the  evaluation 
metric values of each combined parameter in the two-
dimensional grid are averaged, and the combination with the 
best performance is selected as the model parameters. 
Considering the complexity of combining cross-validation 
with grid search, this study set . 

 
4.3 Benchmark comparison analysis 
To assess the effectiveness of the KEM-QRGBT model, this 
study analyses the predicted results of the life curve, total 
demand interval, and multi-cycle demand for new electronic 
products predicted from the KEM-QRGBT model. 

1) Accuracy of full life curve characterization: A 
comparative analysis between the K-means-ED algorithm 
and common clustering methods (self-organizing maps, K-
shape, K-means with Dynamic Time Warping (K-means-
DTW)) is conducted to verify that the K-means-ED 
algorithm can better describe the product similarity. Based 
on the results of the K-means-ED algorithm, a comparative 
analysis between the MLP algorithm and common 
classification methods, including Random Forest (RF), 
Logistic Regression (LR), Support Vector Machine (SVM), 
and Gradient Boosting Regressor Tree (GBRT), is carried 
out to demonstrate that the integration of K-means-ED and 
MLP algorithms can more accurately determine the life 
curve of new electronic products. 

2) Demand interval forecasting: By comparison among 
KEM-QRGBT, KEM with Quantile Regression Forest 
(KEM-QRF), and KEM with Lasso Penalized Quantile 
Regression (KEM-LassoQR) models to verify whether the 
integration of QRGBT can reduce demand uncertainty. 

 
4.4 Evaluation index 
Due to the unsupervised nature of K-means-ED, the size of 
cluster number K value needs to be set in advance. The 
KEM-QRGBT model utilizes the Calinski-Harabasz (CH) 
index to assess the effectiveness of the clustering algorithm 
under different K values. The CH index is calculated as 
follows: 

 

                          (12) 

 
where K is the number of clusters, Tr(X) depicts the trace of 
the matrix X, N describes the total number of samples,  is 
the inter-group covariance, and  is the intra-group 
covariance. The larger the CH index, the better the clustering 
effect. In this study, the contour coefficient and Davies-

Bouldin (DB) index are not used to measure clustering effect. 
The silhouette coefficient is calculated by measuring the 
distances between each life curve and all other life curves 
within the same cluster. Due to the high dimensionality of 
life curve data, the computational complexity of the 
algorithm for calculating the silhouette coefficient grows 
exponentially as the sample size increases. The distance 
metric for the DB index is the Euclidean distance, which 
may not effectively assess clustering algorithms based on 
alternative distances (i.e., dynamic time warping). 

The classification accuracy is used to assess the 
effectiveness of the classification procedure. It represents the 
proportion of correct predicted samples, which reflects the 
probability of correctly assigning the new electronic product 
to the right life curve. For the mth (m=1,2,…,M) new 
electronic products, its real life curve belongs to cluster  
and predicted life curve belongs to cluster . The 
classification accuracy is calculated as follows: 

 

                             (13) 

 
where c is a 0-1 variable. If  equals , c=1, otherwise c=0. 
The larger the accuracy, the better the classification effect. 

For demand interval forecasting, Prediction Interval 
Coverage Probability (PICP) and Prediction Interval 
Normalized Average Width (PINAW) are used to 
comprehensively assess the effectiveness of interval 
forecasting. PICP represents the proportion of actual values 
that fall within the predicted interval bounds. A higher PICP 
value indicates better interval forecasting performance, as 
detailed in Eq. (14): 

 

                             (14) 

 
where  is a binary variable: it is 1 if the actual value falls 
within the forecasting interval, and 0 otherwise. The PICP 
metric does not consider the width of the interval forecasting. 
Therefore, this study introduces the PINAW metric to 
measure the confidence level of interval forecasting, 
calculated as follows: 

 

                            (15) 

 
where  and  denote the upper and lower bounds of the 
predicted demand for new electronic products, R denotes the 
range of forecasting target values. As a narrower forecasting 
interval provides more precise information, a smaller 
PINAW value is preferable. 
 
4.5 Forecasting results of life curve of new electronic 
products 
Due to the unsupervised nature of clustering, the most 
critical issue is the selection of the number of clusters (i.e., 
K). As shown in Table 1, with the same K value, the K-
means-ED algorithm chosen in this study outperforms others 
like Self-Organizing Maps, K-shape, and K-means-DTW in 
clustering performance. It performs optimally at K=2, 
respectively averaging improvements of 3.47%, 59.71%, and 
63.57% over the other models. 
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Table 1. Clustering methods CH index table 

Sample Set Number of Clusters K-means-ED Self-organizing Mapping K-Shape K-means-DTW 

A 

K=2 115.51 110.69 75.04 74.43 
K=3 102.45 72.97 42.92 42.98 
K=4 93.34 64.40 40.93 43.93 
K=5 83.23 57.99 31.58 37.43 

B 

K=2 83.11 81.02 50.22 48.80 
K=3 67.62 64.12 29.66 44.83 
K=4 71.62 53.07 27.90 47.62 
K=5 70.28 48.39 19.64 41.93 

 
This study categorizes data sets A and B into two 

clusters, as shown in Fig. 2. Note that the full lines 
 represent the life cycles, and the dotted lines 

denote the prototypes. Fig. 2 shows that the prototypes 
effectively reflect the general trend of most product life 
cycles. However, due to the information loss in the 
clustering center extraction process, the prototypes do not 
accurately represent the cases of extremely high demand for 
a few products. Furthermore, as observed in Fig. 2, due to 

the clustering approach's emphasis on maximizing 
differences between clusters, the life cycle trends within the 
two clusters exhibit strong complementarity. For set A, the 
first cluster has demand troughs concentrated in the middle 
of the life cycle, whereas the second cluster shows demand 
peaks in the middle. For set B, the first cluster's product 
demand peaks occur in the latter half of the life cycle, while 
the second cluster's demand peaks are in the first half. 

 

 
Fig. 2.  K-means-ED clustering 

 
After the K-means clustering, the KEM-QRGBT model 

identifies potential values for the future life cycle curves of 
new electronic products. The KEM-QRGBT model further 
employs the MLP algorithm to predict the life cycle curves 

of these products. As shown in Table 2, in experiments with 
two sets, the MLP algorithm achieved the most accurate life 
cycle curve forecasting, outperforming other models by an 
average of 6.14%, 7.15%, 9.28%, and 18.44%, respectively. 

 
Table 2. Forecasting accuracy of classification method 

Sample Set MLP RF SVM LR 
A 80.71% 74.29% 80.71% 76.42% 
B 70.18% 63.16% 61.40% 65.79% 

 
4.6 Forecasting results of total demand for new electronic 
product life cycle 
This study assesses the accuracy of demand interval 
estimates for new electronic products by using PICP and 
PINAW, assessing the KEM-QRGBT, KEM-QRF, and 
KEM-LassoQR models. This further measures the model's 
ability to depict demand for new electronic products in 
uncertain environments. The performance of the three 
algorithms is assessed within a 90% forecasting interval 
(with lower and upper quantiles at 5% and 95%, 

respectively), as shown in Table 3. Regarding the PICP 
metric, the KEM-QRF model performed the worst, lagging 
behind the QRGBT algorithm by 7.32% and 18.00% in sets 
A and B, respectively. In terms of the PINAW metric, the 
KEM-LassoQR model performed the worst, 
underperforming the KEM-QRGBT model by 105.47% and 
55.50% in sets A and B, respectively. Thus, incorporating 
the QRGBT algorithm into the forecasting model can 
improve the accuracy of demand forecasting for new 
electronic products. 

 
Table 3. Quantile regression algorithm total demand 90% interval forecasting performance 

Index Sample Set KEM-QRGBT KEM-QRF KEM-LassoQR 

PICP↑ A 87.86% 81.43% 88.57% 
B 87.72% 71.93% 86.84% 

PINAW↓ A 403.46 376.10 829.00 
B 620.31 610.33 964.56 

( )m mU L-
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4.7 Multi-cycle demand forecasting results for new 
electronic products 
Based on the KEM-QRGBT model, the forecasting interval 
for the multi-period demand of new electronic products can 
be determined by multiplying the forecasted life curve by the 
upper and lower bounds of the total demand interval 
forecasting. Considering the rationality of interval selection, 
this study investigates the impact of quantile interval size on 
the PICP and PINAW metrics for multi-period demand 
interval forecasting, as illustrated in Fig. 3. 

For the PICP metric, the KEM-LassoQR model performs 
better in set A, while the KEM-QRGBT model excels in set 

B. However, for the PINAW metric, incorporating the Lasso 
quantile regression performs the worst in both sets, with the 
other two algorithms showing similar results. Notably, at a 
98% forecasting interval, the PINAW values for the KEM-
QRF and KEM-LassoQR models are significantly higher 
than the KEM-QRGBT model. From Fig. 3, the PINAW 
metric shows exponential growth after a 90% forecasting 
interval, while the PICP curve remains linear. Thus, this 
study evaluates the performance of each algorithm in multi-
period demand interval forecasting at a 90% forecasting 
interval. 

 

 
Fig. 3.  Multi-cycle demand PICP and PINAW change with quantile interval 

 
Table 4 shows the results of multi-period demand 

interval forecasting at a 90% forecasting interval (with lower 
and upper quantiles at 5% and 95%, respectively). From 
Table 4, it is evident that the KEM-QRF model is the worst 
in terms of the PICP metric, particularly worse than the 
KEM-QRGBT model by 16.45% in set B. The KEM-

LassoQR model performs poorly on the PINAW metric, 
underperforming the KEM-QRGBT model by 105.47% and 
55.50% in sets A and B, respectively. Consequently, the 
KEM-QRGBT model demonstrates the best overall 
performance, providing accurate demand information within 
the smallest feasible confidence interval. 

 
Table 4. Multi-cycle demand forecasting results under 90% interval 

Index Sample Set KEM-QRGBT KEM-QRF KEM-LassoQR 

PICP↑ A 70.95% 70.35% 80.59% 
B 77.33% 64.62% 78.36% 

PINAW↓ A 33.62 31.34 69.08 
B 51.69 50.86 80.38 

 
 
5. Conclusions 
 

An integrated demand forecasting model was proposed to 
analyze the full life cycle demand of new electronic products 
with limited historical data. The algorithm performance on 
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demand forecasting of new electronic products was analyzed 
in the context of an actual case. The main conclusions are as 
follows: 

(1) The KEM-QRGBT model can effectively capture the 
demand uncertainty and adaptively select optimal 
parameters, to more accurately predict the life cycle of new 
electric products with limited historical data. In particular, 
the GSCV algorithm with grid search and K-fold cross-
validation was introduced into the KEM-QRGBT model, 
which can learn inherent correlations between products and 
avoid the risk of model overfitting. 

(2) The effectiveness of the proposed demand 
forecasting model was verified through a real case study. 
Compared with the KEM-QRF model and the KEM-
LassoQR model, introducing the QRGBT algorithm was 
employed to effectively balance the parameter learning 
complexity with demand forecasting accuracy.  

(3) From the manager’s perspective, the KEM-QRGBT 
model can provide practical guidance regarding how to 
obtain a more accurate life curve and multi-cycle demand for 
new electric products.  

This study introduces time series clustering, neural 
network classification, and ensemble tree model algorithms 
to construct the combined demand forecasting model for 
new electronic products. The performance of demand 
forecasting model relies on the precision of cluster-based 
extraction of life curves. The KEM-QRGBT model employs 
a multilayer perceptron algorithm to predict the life curve of 
new electronic products. A customized deep learning 
framework can be developed to extend the applicability of 
the KEM-QRGBT model. 
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