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Abstract 
 
Global organisations are concentrating on lowering greenhouse emissions as a result of the enormous environmental 
pollution caused by the usage of conventional energy sources. The expensive price of an electric vehicle and the absence 
its charging stations, however, prevent their mass adoption. This study suggests a data-driven demand side management 
strategy can be used to manage the electricity demand for an electric vehicle charging station of electric vehicles connected 
to a microgrid powered by photovoltaics. The suggested approach lessens dependency on traditional energy sources and 
addresses the lack of electric vehicle charging facilities by utilising solar-powered charging stations to meet energy demands 
during peak times. Real-time data from photovoltaic power plants, industrial and residential demands, and electric vehicle 
charging stations was gathered so that it could mimic the system. The electric vehicles are charged during the off-peak 
times in order to regulate the energy that is supplied to the microgrid and also determine the energy storage system’s level 
of charge, a hybrid genetic algorithm sperm swarm optimisation approach was designed. The outcomes show that the 
electric vehicle charging station effectively offset peak demand during those hours. 
 
Keywords: Load Forecasting, Electric Vehicle Charging Station, Demand Side Management, Hybrid Optimization, Renewable Energy 
Integration. 
 

 
1. Introduction 
 
There is an urgent need to reduce greenhouse gas emissions 
as the world faces more serious environmental problems [1]. 
Electrification of transportation and the usage of renewable 
energy sources (RES) are two of the most promising strategies 
being investigated to address these issues and the world's 
energy needs [2]. Therefore, the usage of RES and electric 
vehicles (EVs) is becoming more prevalent in the power 
generation and transportation sectors. Although conventional 
energy sources account for the majority of the electricity 
produced today, RES are being incorporated into 
conventional grid to meet the growing demand for electricity 
[3]. As more minor units linked to the distribution grids, the 
centralised power system has given way to one with a more 
decentralised structure as a result of this evolution [4]. With 
the ability to accommodate additional capacities directly at 
the user end or the main grid itself, the distributed energy 
resources (DERs) could support the energy generation at the 
central level. Renewable energy production systems, 
however, are highly unpredictable and climate-dependent [5]. 
Hence, the load demand might surpass the maximum capacity 
if the grid balance is not efficiently maintained during peak 
hours, causing instabilities in the networks or even leading to 
a blackout [6]. For the majority of the time, generation 
capacity is underutilised, and peak demand periods are often 
brief. The majority of the time, short-term peak loads are 
managed using diesel engine plants or pump storage 
hydroelectricity. In order to manage the peak load, they can 
now be used as temporary energy storage devices because to 

advancements in EVs and battery technology. This is due to 
the fact that an EV’s idle period is much larger than that of 
EV’s charging time [7]. Hence, the other energy storage 
systems (ESS) along the electric vehicles are crucial for 
preserving the system's power balance. Peak demand 
management (PDM) with a renewable energy storage system 
reduces the environmental pollution and the use of fossil 
fuels. 
 Electric grid support services are often provided on a scale 
of hundreds of kilowatts to manage peak load on the grid, 
whereas a single EV can only supply a finite amount of 
electricity. The idea of an aggregator has been established in 
order to obtain large-scale power ratings [8], [9]. An EV 
aggregator can operate as a bridge power grids and the electric 
vehicles, acting as a third-party entity like an EV charging 
station. When enough EVs are combined, they can function 
as a reliable and significant part of DERs by utilizing a 
foundational energy storage system and can act as a 
substantial source of energy [10]. 
 A better environment with much reduced greenhouse 
emissions and less noise pollution can be achieved by using 
electric automobiles. The higher price of electric vehicles and 
the absence of an electric vehicle charging infrastructure, 
however, continue to be significant barriers to mainstream EV 
adoption [11]. EV owners are waiting for suitable charging 
infrastructure, while investors are waiting for widespread EV 
adoption to benefit from EV charging stations. 
 Investigating other revenue streams is important to 
improve the viability of EV charging infrastructure. Grid 
peak-load control may be accomplished via an integrated EV 
charging station that makes use of RES and contains an ESS, 
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generating income for investors [12]. By giving charging 
stations another source of income, this strategy would lessen 
the issue of an inadequate EV charging infrastructure. 
 When combined with EVs and an ESS, an EV charging 
station serves as a dynamic battery that can be utilised for 
demand-side management (DSM) during peak hours [13]. 
Fast reaction times, no start-up or shut-down fees, and a 
solution to the uncertain nature of RES are all advantages of 
the EV aggregator. A possible structure for incorporating EV 
charging stations into DSM operations is illustrated in Fig. 1. 
 

 
Fig. 1. Proposed model architecture for EV charging station system 
integration into microgrid. 
 
 
 In DSM programmes that include EVs, environmental 
issues are taken into account in addition to financial goals. 
Vehicle-to-grid (V2G), which enables EVs to provide grid 
support services while charging or parked, is an illustration of 
such a system. Moreover, V2G can lessen the demand for new 
power plants, improve the grid's integration of renewable 
energy sources, and cut overall carbon emissions [14]. 
Researchers looked into the possibility of peak shaving and 
frequency regulation in a grid that integrates renewable 
energy utilising V2G technology [15]. The findings 
demonstrated that by offering ancillary services, V2G has the 
potential to lower peak load and guarantee grid stability. Also, 
it was discovered that V2G increased the use of RES and 
decreased greenhouse gas emissions. The study also found a 
requirement for an ideal scheduling system that takes EV 
users' preferred charging practises into account and prevents 
battery deterioration [16]. DSM programmes that include EVs 
have the potential to reduce carbon emissions and improve 
grid stability, while also providing financial advantages to 
utility operators and customers. 
 These analyses emphasise the potential advantages of 
including EVs and ESSs in DSM plans to raise the general 
effectiveness and profitability of electric power networks. 
According to Tong et al., repurposing retired car traction 
batteries can increase the energy system's overall 
sustainability while giving EV owners an additional source of 
income. According to [17], [18] the integration of automatic 
demand response (ADR) and demand response (DR) 
approaches could increase the responsiveness and 
dependability of energy system, that could lead to cost 
savings and higher customer satisfaction. The optimisation 
strategy put forth by [19] can serve as a foundation for making 
wise choices that minimise energy expenditures while taking 
end-user wants and values into account. These studies show 
that adding EVs and ESSs to DSM plans could increase the 
sustainability, dependability, and profitability of electric 
power systems [20], [21]. 
 A DSM optimisation method was created by the authors 
of [22] that uses load shifting based Time of Use (ToU) at the 
household level and takes into consideration different home 
appliances, EV charging stations, and rooftop PV systems. 

With rooftop PV systems supplying energy and lowering the 
grid's carbon intensity, this method significantly reduced daily 
electricity expenditures while simultaneously significantly 
reducing home carbon emissions. As electric vehicles and 
renewable energy sources continue to gain popularity, proper 
scheduling of household loads can dramatically improve grid 
resilience and energy efficiency. The synchronization of 
pooled EV operations underneath a demand response is 
optimised by the two-stage planning optimisation approach 
that the authors of [23] developed. The primary stage involves 
choosing the charging station’s location, while as the 
secondary stage is concerned with moving the vehicles. This 
model accounts for charging ability uncertainty as well as 
supply-side and demand-side uncertainties, which were 
estimated using a sample average approximation. Other 
demand response elements, such as the production of solar 
and wind power, are not taken into account by the model [24]–
[26]. 
 Using Matlab, the authors of [27] created a solar-powered 
electric vehicle charging station that is managed by a 
particular type of car connector. They conducted an analysis 
of the circuit's operation and determined the model's 
parametric design parameters. To show the power factor 
correction with various steady-state loads, hardware was 
developed. Unfortunately, the impact of EV charging station 
on DSM was not examined in this study. A data-based 
outcome analysis technique for the EV charging behaviour at 
the charging infrastructure was proposed in [28] for 
increasing the usage of public electric vehicle charging station 
and the quality of service. The study, however, did not take 
into account the limitations of additional factors linked to the 
EV charging station. Using EV charging stations as a 
component of the microgrid and EVs as a part of the 
transportation network, the authors of [29] presented an 
electric vehicle charging infrastructure as a cyber physical 
system (CPS). Suggested algorithms balanced regional load 
patterns, EV charging habits, and charging cost optimisation. 
Batteries' limitations, RES, residential and business loads, 
however, were not taken into account in the study. The authors 
of [30] provided a system of mathematical equations for 
modelling the charging loads of electric vehicles using 
probabilistic load model. They tested the applicability and 
precision of the proposed approach using an actual battery-
swapping charging station.  
 The authors of [31] presented a pricing strategy to 
dynamically modify peak loads. They created a constraint 
optimisation issue and used a heuristic method to optimise it 
in order to reduce the overlap between household loads and 
plug-in electric vehicles (PEV) during their peak load times. 
To successfully execute Demand-Side Management 
programmes, a number of elements must be taken into 
account, including state of charge (SoC) estimations, power 
and load forecasts, the identification of suitable users, and the 
creation of automatic system for managing the DERs [32]. 
Data-driven control and model predictive control methods are 
now employed to design dynamic nonlinear systems in power 
systems [33], [34]. Moreover, data-based methods are also 
employed in the power networks for a variety of tasks, 
including economical dispatch [35], efficient charging, 
handling the uncertainties associated with RES [36], and 
predicting SoC for ESS and electric vehicles [37]. The 
aggregator needs to be aware of the charge levels of the 
energy storage systems and electric vehicles taking part, as 
well as the reserved energy levels of every system involved in 
managing the load, in order to operate a grid-connected, 
integrated photovoltaic EV charging station. Methods based 
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on mathematical modelling are frequently employed for SoC 
estimate [38]. 
 Due to batteries' complicated nonlinear nature, SoC 
estimation models frequently lack precision. These models 
often only work under predetermined conditions, like a 
specific battery type and a defined temperature, and new 
models must be created when other aspects are taken into 
account. Researchers have used hybrid optimisation 
techniques, which simulate the complexity of a system using 
pertinent data, to overcome these constraints. These 
techniques might give a more precise picture of the SoC levels 
in battery storage. 
 As the future goes towards precise control of end-user 
loads, load, and price projections in demand response in smart 
grids need to be more precise. In order to forecast load and 
pricing in DR, conventional time-series models like AR, 
ARIMA, and exponential smoothing have long been 
employed [39]. However, because these models assume 
linearity, it has been found that they are less accurate at 
predicting load. Due to its ability to approximation 
exceedingly complex relationships, hybrid optimisation 
approaches have been utilised to get around these restrictions. 
Hybrid metaheuristic techniques are also anticipated to offer 
even more precise load and pricing estimates in DSM as 
demand becomes more complicated [32]. 
 In order to forecast load, the study used a hybrid 
metaheuristic method called Hybrid Genetic Algorithm 
Sperm Swarm Optimization (HGA-SSO). In order to take 
advantage of each technique's advantages, this algorithm 
combines Sperm Swarm Optimization (SSO) with Genetic 
Algorithms (GA). GA is a population-based optimisation 
technique that mimics the process of natural selection, while 
SSO is a swarm intelligence programme inspired by the 
behaviour of sperm cells. These methods are combined to 
increase the performance of load forecasting and the accuracy 
of the results. 
 HGA-SSO optimises the parameters of prediction models, 
such as artificial neural networks or ARIMA models, to 
increase the precision of load forecasting. The algorithm 
works by repeatedly updating a set of possible solutions, each 
corresponding to a specific set of parameters for the 
prediction model. To get the best answer, it uses SSO to scour 
the search space and GA to take advantage of the existing best 
solutions. 
 HGA-SSO minimises the discrepancy between the 
expected load and the actual load in load forecasting, which 
is commonly quantified using performance metrics like 
MAPE or RMSE. To accommodate particular load 
forecasting needs, such as short-term or long-term 
forecasting, the algorithm has been fine-tuned. According to 
earlier research, HGA-SSO performs better in load 
forecasting than conventional algorithms like GA or SSO 
alone. HGA-effectiveness, SSO's however, is dependent both 
on the nature of the issue at hand and how the algorithm is 
actually put into practise. For a particular load forecasting 
situation, it is crucial to carefully choose the suitable 
prediction model and fine-tune the HGA-SSO algorithm's 
parameters. 
 The creation of an efficient load scheduling and electrical 
transportation network management system for peak loads 
control in RES enabled power networks is the key 
contribution of this research. The first step of control 
comprises managing the electric vehicles and solar systems 
combined into the EV charging station infrastructure, while 
the second stage of control focuses on building an intelligent 
controller for managing the peak load for a microgrid which 

incorporates RES and EV charging station. The many 
components of the planned transportation network were 
modelled using a data-driven methodology to handle the 
complexity of the components. It is important to note that 
when mathematical component modelling is employed, some 
variables can be difficult to execute in real-time. 
 
 
2. Architecture of the Proposed Model and Methodology 

Used 
 
Demand-side management, which tries to balance the load 
profile throughout the day and monitor and control peak 
energy demands, is an essential component of energy 
management. DSM's main goals are to reduce the capital costs 
of power plants and improve the economic aspects of power 
utility. Using energy storage systems, which store energy 
during off-peak times and release the stored energy into the 
grid at peak times to satisfy the increased load demand, is one 
of the most efficient methods for peak clipping. Using an ESS 
for DSM is thought to be a potential approach in this regard. 
The research paper's suggested methodology, which takes a 
novel approach to DSM, uses an electrical transportation 
system to regulate peak demand. 
 
2.1. Modelling of the proposed system 
This research focuses on using a PV-connected EV charging 
station to control peak grid demand and increase the station's 
profitability. An energy storage system, an EV charging 
station, household loads, important commercial loads, 
renewable energy sources, and EVs utilised for charging and 
discharging are all included in the system. Fig. 2 illustrates a 
two-stage structure for coordinating power between the grid 
and the EV charging station. In the first stage, a direct mode 
integration of the ESS and EV is used based on a dynamic 
source model. In the second stage, the power allocation of 
every subunit like the solar photovoltaic and energy storage 
system is established. Accurate modelling of these unknown 
parameters is essential in the process of distributing electricity 
across the units because the load and solar photovoltaics are 
the have uncertainties in the microgrid. 

 
Fig. 2. Flow of power between the grid and EV charging. station. 
 
2.1.1. Modelling of microgrid 
The primary objective of this research is to create a model for 
demand side management load forecasting that makes use of 
electric vehicles. The main goal of the model is to lower 
overall expenses while optimising the total profits of the EV 
charging infrastructure throughout the dispatch period. The 
minimization of the sum of different expenses, including 
those associated with the EV charging station's grid supply, 
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EV charging, and energy storage systems, can be 
quantitatively stated in Eq. 1. 
 
min𝐶! = ∑ '(𝐶"#$%!(𝑘) + 𝐶"#$%"(𝑘) + 𝐶&'""(𝑘) +

(#
)*($

𝐶&'%&(𝑘) + 𝐶&++%&(𝑘),       (1) 
 
 Eq. 2 defines the grid tariff as 𝐶"#$%!(𝑘), which is applied 
during off-peak load. 
 
𝐶"#$%!(𝑘) = 𝛽,-(𝑘).𝑃,-(𝑘).∆𝑘      (2) 
 
 Eq. 3 defines 𝐶"#$%"(𝑘) as the cost of the energy provided 
by the EV charging station during off-peak load. 
 
𝐶"#$%"(𝑘) = 𝛽.+!(𝑘)|𝑃.+(𝑘)|∆𝑘      (3) 
 
 The power supplied 𝑃.+(𝑘) and consumed 𝑃,-(𝑘) by the 
EV charging station from the main grid, as well as the related 
energy purchase price 𝛽.+!(𝑘), sale price 𝛽.+! of the grid, are 
all represented in Eq. (3). The time period is represented by 
the symbol ∆𝑘. 
 Eq. 4 defines the term 𝐶&'""(𝑘), which denotes the energy 
cost associated with charging an EV. 
 
𝐶&'""(𝑘) = 𝛽&'""(𝑘)|𝑃&'.(𝑘)|∆𝑘      (4) 
 
 In Eq. 4, 𝑃&'. stands for the energy used by the EV while 
it is charging, and 𝛽&'""(𝑘) stands for the grid's energy sale 
price at that time. 
 The terms "cost of energy storage system deterioration" 
and "cost of EV battery degradation" are provided in Eqs. 5 
and 6, respectively. 
 
𝐶&++%&(𝑘) = 𝛽&+%&(𝑘)|𝑃&+(𝑘)|∆𝑘      (5) 
 
𝐶&'%&(𝑘) = 𝛽&'%&(𝑘)|𝑃&'%(𝑘)|∆𝑘      (6) 
 
 The total power utilised by the ESS 𝑃&+(𝑘) and EV 
𝑃&'%(𝑘) are shown in Eqs. 5 and 6, as well as the average 
charging costs for the energy storage system 𝛽&+%& and 
electric vehicle 𝛽&'%&, respectively. 
 
2.1.2. State of Charge of the Energy Storage System 
An ESS's state of charge is a gauge of its capacity for energy. 
The ESS model is represented by Eq. 7 in terms of SoC. 
 
𝑆𝑜𝐶&'.+(𝑘 + 1) =

5
𝑆𝑜𝐶&'.+(𝑘) + 6𝑃&'.+(𝑘)

∆(0'()(
&*+'(

7 , 𝑃&'.+(𝑘) ≥ 0

𝑆𝑜𝐶&'.+(𝑘) + 6𝑃&'.+(𝑘)
∆(

&*+'(0'(%'
7 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (7) 

 
 Eq. 7 calculates the EV charging station's state of charge 
at time 𝑘, 𝑆𝑜𝐶&'.+, taking into consideration the EV charging 
station's dispatched power 𝑃&'.+(𝑘), charging efficiency 
(CSCH), and discharging efficiency (CSDC). 𝐸&'.+ is a 
representation of the EV charging infrastructural energy 
requirements. 
 The constraints of the model given in Eq. 7 are 
represented by Eqs. 8, 9, and 10. 
 
𝑆𝑜𝐶&'.+1$2 ≤ 𝑆𝑜𝐶&'.+	 (𝑘) ≤ 𝑆𝑜𝐶&'.+145       (8) 
 
𝑃&'.+1$2 ≤ 𝑃&'.+	 (𝑘) ≤ 𝑃&'.+145        (9) 

 
𝑃"#$%1$2.+ ≤ 𝑃"#$%	 (𝑘) ≤ 𝑃"#$%

145,%    (10) 
 
 𝑆𝑜𝐶&'.+145  and 𝑆𝑜𝐶&'.+1$2 respectively, stand for the maximum 
and minimum charge levels of the EV charging stations. 𝑃&'.+145  
and 𝑃&'.+1$2  respectively, stand for the maximum and minimum 
charging power requirements. 𝑃"#$%	  represents the maximum 
capacity of the grid. Also, 𝑃"#$%

145,% and 𝑃"#$%1$2.+ respectively 
stand for the maximum and minimum power flowing from the 
grid to the EV charging station both in terms of EV charging 
station and vice versa. Eqs. 8, 9, and 10 describe these 
restrictions. 
 
2.1.3. Modeling of EV charging station 
The electric vehicle charging station is handled as one unit 
instead of considering it as a combination of various units like 
electric vehicles, energy storage system and solar 
photovoltaics in order to simplify the power coordination 
problem. The demand model of an electric vehicle charging 
station is created by taking into consideration the charging 
requirements and technological constraints of each electric 
vehicle. The concept presupposes that EV owners will 
exchange pertinent data like SoC, departure time, and arrival 
time. The charge level data of each energy source is gathered 
by the EV charging station for each time slot. Eqs. 11 and 12 
show the limitations on how the EV charging station can 
operate during a given time period. 
 
𝑃&'.+145 (𝑘) = ∑ 𝑃&',2145 + 𝑃&++,2145

278,     (11) 
 
𝑃&'.+1$2 (𝑘) = ∑ 𝑃&',21$2 + 𝑃&++,21$2

278,     (12) 
 
 The terms 𝑃&',2145 and 𝑃&++,2145  in Eq. 11, respectively, denote 
the maximum power supply for the 𝑛9: electric vehicle and 
energy storage system. Similarly, 𝑃&',21$2  and 𝑃&++,21$2  represents 
the minimum amount of power that the 𝑛9: EV and ESS can 
supply, respectively. 
 Eq. 13 shows the maximum amount of energy that the 
ESSs connected to the EV charging station may produce, 
whereas Eq. 14 shows the energy produced by EVs for the full 
time period. 
 
𝐸&++(𝑘) = ∑ 𝐸&++,2(𝑘)8*2

8*;      (13) 
 
𝐸&'(𝑘) = ∑ '𝑆𝑜𝐶&',2(𝑘 + 1) − 𝑆𝑜𝐶&',2(𝑘). 𝐸&',2(𝑘)8*2

8*;  (14) 
 
 EESS stands for energy given in its entirety to the 𝑛9: 
energy storage system at time 𝑘. A variable called 𝑛(𝑘) may 
stand for a particular index or parameter pertaining to the 𝑛9: 
energy storage system. The term "EEV" stands for "energy 
emitted by the 𝑛9: electric vehicle at time 𝑘." The term 
"𝑆𝑜𝐶&'" stands for the 𝑛9: electric vehicle's state of charge at 
time 𝑘. 

 
2.2. Intelligent hybrid controller for power management 
Using an intelligent controller is crucial for managing 
fluctuating demands and the discharging or charging of 
various power resources in DSM. An intelligent optimization-
based controller is the best option for controlling the power 
flowing between the microgrid and electric vehicle charging 
station. The schematics of the control logic for managing peak 
loads is illustrated in Fig. 3. It determines if the total power 
demand on the grid 𝑃<=4%	  exceeds or is equivalent to the peak 
demand limit 𝑃1$2	  and whether the present 𝑇 falls inside 
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grid's permitted time range (𝑇>1$2 −	𝑇>145). The EV 
charging station system is also restricted from taking part in 
peak load management unless its energy level exceeds a 
predefined threshold level. The controller determines if the 
charge level 𝑆𝑜𝐶	 of the EV batteries 𝑆𝑜𝐶&' or the ESS 𝑆𝑜𝐶&++ 
is larger than or equivalent to the designated threshold value 
after the current time surpasses the maximum time limit 
𝑇>145 𝑆𝑜𝐶&'.+1$2 . If either condition is true, the controller will 
only permit the ESS to be charged if the peak load limit 𝑃<=4%	  
is not reached 𝑃1$2	 . By using this approach, the ESS will be 
charged at off-peak times, easing the loads on the system 
during peak times. 

 
Fig. 3. Flowchart for management of peak loads. 
 
 
3. Proposed Hybrid Genetic Algorithm-Sperm Swarm 

Optimization (HGA-SSO) 
 
Hybrid metaheuristics are a valuable approach to resolving 
optimization problem as they find a middle ground between 
exploitation and exploration. Furthermore, they address the 

shortcomings of traditional algorithms by leveraging the 
strengths of multiple algorithms and mitigating their 
respective limitations. 
 In order to overcome difficulties in wireless sensor 
networks, sperm swarm optimization was suggested in a 
recent study. The natural fertilisation process, in which only 
one sperm cell is eventually successful after swarms of sperm 
cells travel towards the ova to fertilise it, serves as the model 
for this algorithm. The sperm cell swarm is randomly 
distributed in the cervix at the beginning of the optimisation 
process, moving at two speeds along the two-coordinate axis. 
The swarm's collective motion resembles "flocking" 
behaviour. In the female reproductive system, the pH value 
and temperature play an important role in the determination 
the motility and direction of the sperm cells' migration. These 
ideas are used by SSO to create a possible solution that 
explores a multidimensional searching to identify the best 
overall solution while also capturing the best local and overall 
solutions for subsequent iterations of optimisation. 
 The swarm of sperms functions as possible solutions that 
travel through a multidimensional search space to explore the 
overall optimal solution so that they can apply this biological 
process to an optimisation context. The algorithm also keeps 
track of the best results from the optimisation process, such 
as the ideal sperm, or the global parent sperm cell, which 
fertilises the ovum, and the local optimal solution, or the most 
effective sperm cell solution. 
 Over the past ten years, the genetic algorithm has become 
a well-liked optimisation technique for several applications, 
including ticket reservations, wireless sensor network, and 
power electronics [40]. An algorithm called GA was built on 
theory of natural selection proposed by Charles Darwin, in 
which the strongest individuals survive and procreate while 
the weaker individuals disappear. The GA method initiates 
with a chromosome population which is created at random 
and then undergo crossover and mutation procedures while 
being optimised. 
 Crossover operators allow for the precise exchange of 
genes from the chosen chromosomes, which serve as the 
parents and give rise to new offspring (solutions) [41]. This 
study uses a uniform crossover operator, which gives fewer 
diverse solutions but offers impartial exploration and may be 
utilised successfully on vast subsets. To avoid being stuck in 
local optima, mutation operators, in contrast, guarantee 
variation among individuals, in different generations of 
populations. Mutation operators produce a diverse result by 
changing a few genes on a single chromosome, causing it to 
inherit traits different from those of its parents [41]. 
 
3.1. Initialization 
The sperm swarm optimisation algorithm goes through a 
number of iterations after the initiation phase in order to get 
the best outcome. The sperm cell swarm navigates the search 
space during each iteration using its prior placements as well 
as knowledge of the overall optimum solution. A velocity 
vector that tracks each sperm cell's motion is adjusted 
utilising Eq. 15 below: 
 
𝑉$?
(9A;) = 𝜔𝑉$?9 + 𝑐;𝑟; 6𝑃CD-9-.

9 − 𝑥$?(𝑡)7 + 𝑐E𝑟E 6𝑥-,FD-9.
	 −

𝑥$?(𝑡)7       (15) 
 
 Where 𝑐; and 𝑐E are the coefficients of acceleration, 𝜔 is 
the inertia weight, 𝑟; and 𝑟E are randomized variables between 
1 and 0, 𝑉$?9  is the speed part of the 𝑖9:sperm cell in the 𝑗9: 
dimension at iteration 𝑖, and 𝑥-,FD-9.

	  is the sperm cells' best 
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location in the 𝑗9: dimension. The location of every sperm cell 
is revised after the velocity vector that use the Eq. 16: 
 
	𝑥$?(𝑡 + 1) = 𝑥$?(𝑡) + 𝑉$?

(9A;)   (16) 
 
 Where the 𝑖9: sperm cell's location in the 𝑗9: dimension at 
iteration t is represented by 𝑥$?(𝑡). 
 The fitness of each sperm cell is then assessed and 
contrasted with the best fitness values for the individual and 
the world. A sperm cell's personal best is updated if another 
sperm cell has a higher fitness value than it does. Similar to 
this, the global best is updated if a sperm cell has a higher 
fitness value than the benchmark. 
 A stopping criterion, such as a maximum number of 
iterations or a desirable level of convergence, must be reached 
before the iteration process can cease. The algorithm then 
returns the best answer discovered during the iterations as the 
answer that best solves the optimisation problem. 
 
3.2. Selection 
Using the Roulette Wheel technique, two sperm cells are 
chosen out the initial population during the sperm swarm 
optimisation process, where each chromosome stands in for a 
potential solution. In order to choose particular chromosome 
sets for the crossover and mutation, this method randomly 
revolves the wheel. With the help of the Eq. 17, one may 
determine the likelihood of choosing particular candidates. 
 
𝑃𝑟𝑜𝑏$ = 𝑒𝑥𝑝 6GCD94.I$9$

J=#-9I$9
7     (17) 

 

𝑃𝑟𝑜𝑏$ = 𝑒𝑥𝑝 O >#=C-
∑ I$9#/01
-23

P     (18) 

 
 Where beta denotes selection pressure, 𝑊𝑜𝑟𝑠𝑡𝐹𝑖𝑡 is the 
poorest fitness attained, 𝑛𝑃𝑜𝑝 denotes population size, and 
𝐹𝑖𝑡𝑖 denotes chromosome fitness. 
 
3.3. Crossover and mutation 
After the sperm cells are chosen, the crossover procedure is 
started, that results in the development of a new population 
known as the crossover population. Then the process of 
mutation starts, when the sperm cells from the original 
population go through mutation to create a new mutant 
population. 
 
3.4. Merging, sorting, and truncation 
The mutation and crossover population are created, and then 
they are mixed and arranged in ascending order of fitness 
values. To make sure that just the finest population are kept, 
the resulting population is then trimmed to the population 
count, 𝑛𝑃𝑜𝑝, that was originally set. 
 
3.5. Velocity and position updation 
Eq. 19 is used to calculate the initial sperm velocity, or 𝑉L, 
where 𝑉; is the maximum sperm velocity, Damp is the 
damping coefficient, and pH1 is the pH of the female 
reproductive system. 
 
𝑉L = 𝐷𝑎𝑚𝑝. 𝑉$ . 𝑙𝑜𝑔;L(𝑝𝐻;)    (19) 
 
 The starting sperm velocity, 𝑉L, is determined by the 
damping factor 𝐷𝑎𝑚𝑝, which ranges from 0 to 1, a pH value 
𝑝𝐻; and the current sperm velocity 𝑉L that is created at 
random and ranges from 7 to 14. 

 Eq. 20 represents the present best solution, which is 
established by the logarithms of two random pH and 
temperature values, 𝑇𝑒𝑚𝑝; and 𝑇𝑒𝑚𝑝E, respectively. The 
difference between the sperm's personal best location, 𝑥-,FD-9-

	  
and the current location of sperm 𝑥$ during 𝑡9: iteration and 
is multiplied by these numbers (𝑡). Eq. 21 represents the 
global best solution, which is established by the logarithms of 
two random temperature values (𝑇𝑒𝑚𝑝; and 𝑝𝐻M). The 
difference between the sperm's present location at iteration 𝑡, 
𝑥$, and its optimal location globally, 𝑥-,FD-9, is compounded 
by these numbers (𝑡). 
 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝑆𝑜𝑙(𝑡) =
𝑙𝑜𝑔;L(𝑝𝐻E). 𝑙𝑜𝑔;L(𝑇𝑒𝑚𝑝;). (𝑥-,FD-9-

	 − 𝑥$(𝑡))   (20) 
 
𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝑆𝑜𝑙(𝑡) =
𝑙𝑜𝑔;L(𝑝𝐻M). 𝑙𝑜𝑔;L(𝑇𝑒𝑚𝑝E). (𝑥-,FD-9 − 𝑥$(𝑡))   (21) 
 
 Using Eq. 22, which includes Damp (the damping factor), 
𝑝𝐻;, 𝑝𝐻E, and 𝑝𝐻M as random value of the pH between 7 and 
14, 𝑇𝑒𝑚𝑝; and 𝑇𝑒𝑚𝑝E as random value of the temperature 
between 34°C and 39°C, and 𝑉$ (the velocity of each sperm), 
The sperm's present location at iteration 𝑡 is indicated by the 
symbol 𝑥$, whereas the global best location, denoted by the 
symbol 𝑥-,FD-9, is indicated by the symbol 𝑥-,FD-9-

	 . 
According to Eq. 22, where 𝑥$(𝑡) denotes the sperm's current 
position at time 𝑡 and 𝑉$(𝑡) denotes its velocity at time 𝑡, the 
sperm's current position (current solution) is updated at each 
iteration. As a result, each sperm's location is continuously 
updated to produce the overall ideal result. 
 
𝑥$(𝑡) = 𝑥$(𝑡) + 𝑉$(𝑡)     (22) 
 
 When calculating the fitness, velocity and position 
constraints are set in order to keep the technique from straying 
too far from the overall ideal answer. Eq.s 23 and 24 are used 
to calculate the upper and lower velocity limitations. 
 
𝑉145 = 0.1(𝑉𝑎𝑟145 − 𝑉𝑎𝑟145)    (23) 
 
𝑉1$2 = −𝑉145      (24) 
 
 𝑉𝑎𝑟145 and 𝑉𝑎𝑟1$2 are the maximum and lowest position 
limitations of the search domains in this case, whereas 𝑉1$2 
and 𝑉145 are the minimum and maximum velocity limits. 

The two populations are combined, sorted, and shortened 
to create a new population for the following iteration after 
updating the sperm cell's velocity and location. This 
population's fitness is assessed and contrasted with the prior 
global best practise. Fig. 4 illustrates the flow chart of hybrid 
genetic algorithm sperm swarm optimization process to 
provide a comprehensive picture of the complete procedure. 

Steps involved in the proposed hybrid optimization 
algorithm: 
i. Initialization of the population: Generate a random 

beginning population of potential solutions. 
ii. Fitness evaluation: Using an objective function, assess 

the fitness of each potential solution within the 
population. 

iii. Parent selection: Choose a portion of parents based on 
how well-suited they are for mating. 

iv. Crossover: Construct new candidate solutions by 
performing crossover between the chosen parents. 

v. Mutation: To add additional genetic material, perform 
mutation on a few of the new candidate solutions. 
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vi. Fitness assessment: Assess the new candidate solutions' 
fitness. 

vii. Selection: To create the new population for the 
following iteration, choose the top candidate solutions. 

viii. Termination: Verify that the criteria for termination 
have been met (e.g., maximum number of iterations 
reached or convergence of the solution). In that case, 
return to step III. 

ix. Output: The optimal solution identified throughout the 
optimisation phase should be output. 

 

 
Fig. 4. Flowchart of hybrid genetic algorithm sperm swarm optimization 
process 
 
 The specifics of the crossover and mutation procedures 
might differ depending on how the algorithm is implemented, 
and the hybrid nature of the method is a result of the 
combination of swarm intelligence (sperm swarm 
optimisation) and evolutionary computation (genetic 
algorithm) techniques. 
 We have employed a cutting-edge strategy dubbed Hybrid 
Genetic Algorithm Sperm Swarm Optimisation, which 
outperforms conventional approaches in the field of load 
forecasting for Demand Side Management. Utilising the 
strength of both evolutionary algorithms and swarm 
intelligence, HGA-SSO is a novel optimisation technique. It 
combines the advantages of both genetic algorithms and 
sperm swarm optimisation. HGA-SSO uses the capacity to 
look for optimal solutions in a highly dynamic and 
complicated load forecasting environment, in contrast to 
existing methods that frequently rely on deterministic or 
heuristic approaches. HGA-SSO successfully adjusts to the 
constantly changing nature of load patterns driven by Electric 
Vehicles, Energy Storage Systems, and Renewable Energy 
Sources by using a hybridised approach. Since it optimises the 
control of EVs and ESS in real-time by making accurate 
predictions based on the existing and anticipated conditions, 
HGA-SSO genuinely beats traditional methodologies in this 
area of adaptability. The end result is a load forecasting model 
that is more precise and effective, which ultimately leads to 
improved DSM strategies and considerable cuts in energy 
expenditures and environmental effects. Our study shows that 
HGA-SSO offers higher performance and adaptability 
compared to traditional approaches, making it a possible 

solution to the problems associated with contemporary energy 
management systems. 
 
 
4. Results 
 
The intelligent optimization model proposed in this study was 
implemented using Matlab, and the load data used for load 
forecasting was obtained from reference [99]. The intelligent 
controller played a significant role in managing variable loads 
and the charging/discharging of different energy sources in 
demand-side management. An intelligent optimization-based 
controller was utilized to regulate the energy flow between 
the microgrid and the EV charging station. Fig. 5 shows the 
load forecasted by the intelligent controller over a 24-hour 
period, indicating that the load peaks during daytime hours, 
primarily due to air conditioning loads. The power profile of 
the electric vehicle charging station during various hours of 
the day is presented in Fig. 6, with power levels ranging from 
-55 KW to 95 KW. A positive value of power means that 
power is supplied to the microgrid while as a negative power 
value specifies that power is drawn from the microgrid, i.e., 
discharging and charging of the EV charging system, 
respectively. As seen in Fig. 5, the EV charging station is 
discharged during peak day hours and gets charged during off-
peak night hours. 

Fig. 7 depicts the photovoltaic power available and 
injected into the microgrid over different hours of the day, 
indicating that photovoltaic power is only available during 
daylight hours. In this model, the photovoltaic power and EV 
charging system together form the microgrid. The load profile 
of the conventional grid without the EV charging station and 
photovoltaic integration is shown in Fig. 8, and this load 
profile must match the forecasted demand curve as predicted 
by the intelligent controller. The load profile of the 
conventional grid after integrating the hybrid EV charging 
station and photovoltaic system is shown in Fig. 9. The 
integration of these hybrid renewable energy resources helped 
to clip peak load demands from the main grid as they provided 
power during peak day hours, thereby reducing power losses 
and improving voltage profiles. Approximate quantitative 
data associated with Figs. 5, 6, 7 and 8 is presented in Table 
1, and Fig. 10 illustrates the merged load profiles of all 
associated quantities. 

 
Table 1. Approximate power and load data of different 
sources during different hours of the day. 

Time 
(h) 

Total 
forecasted 
load (KW) 

Total 
EVCS 
Power 
(KW) 

Total 
PV 

(KW) 

Total 
Hybrid 
EVCS 
and PV 
Power 
(KW) 

Total 
Grid 

Power 
after 

EVCS 
and PV 
(KW) 

00:00 25 -55 0 -55 80 
01:00 24 -41 0 -41 65 
02:00 25 -42 0 -42 67 
03:00 24 -43 0 -43 67 
04:00 26 -44 0 -44 70 
05:00 30 -43 0 -43 73 
06:00 39 -37 1 -36 75 
07:00 45 -33 3 -30 75 
08:00 73 30 4 34 39 
09:00 98 47 6 53 45 
10:00 109 60 6 66 43 
11:00 122 74 7 81 41 
12:00 138 84 8 92 46 
13:00 171 95 9 104 67 
14:00 150 87 7 94 56 
15:00 127 73 6 79 48 
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16:00 115 60 5 65 50 
17:00 97 49 4 53 44 
18:00 72 36 1 37 35 
19:00 63 24 0 24 39 
20:00 51 -30 0 -30 81 
21:00 39 -35 0 -35 74 
22:00 38 -40 0 -40 78 
23:00 33 -43 0 -43 76 
Total 1734 233 67 300 1434 

 
Fig. 5. Load profile of forecasted demand during different hours of the 
day. 
 

 
Fig. 6. EV charging station’s power profile of during different hours of 
the day. 
 
 

 
Fig. 7. Photovoltaic power profile of during different hours of the day. 

 
Fig. 8. Power profile of grid without hybrid EVCS integration during 
different hours of the day. 
 

 
Fig. 9. Power profile of grid with hybrid EVCS integration during 
different hours of the day. 
 
 

 
Fig. 10. Merged power and load profiles during different hours of the day. 

 
 The Hybrid Genetic Algorithm and Sperm Swarm 
Optimisation method have shown encouraging results in our 
Short-Term Load Forecasting Model for Demand Side 
Management. One important factor that warrants discussion 
is the performance of this hybrid algorithm. Swarm 
optimisation and genetic algorithms working together has 
proven to have many benefits for improving our model's 
forecast accuracy. With this hybrid technique, the local search 
effectiveness of swarm optimisation and the global 
exploration power of GAs are combined. Through extensive 
testing and validation, we found that the hybrid algorithm not 
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only displayed faster convergence rates than separate 
algorithms, but also significantly increased prediction 
accuracy while lowering forecasting mistakes. However, 
introducing such a sophisticated and cutting-edge strategy 
also poses certain difficulties. The proper balancing of 
exploration and exploitation requires careful consideration of 
crossover and mutation rates, swarm size, and other control 
factors, which is one of the main issues when fine-tuning 
hybrid algorithm settings. Additionally, because of the hybrid 
algorithm's computational complexity, additional research 
may be needed to determine how well it can be adapted to 
different datasets and system settings. For our suggested 
forecasting model to be reliable and scalable, these issues 
must be resolved. 
 
 
5. Conclusion 
 
This research article proposes a thorough framework for data-
driven DSM in an electric car connected microgrid in light of 
the urgent problems surrounding conventional fossil fuel 
vehicles and their related greenhouse gas emissions. The EV 
charging station was modelled as single energy source with 
the level of charge of its ESS calculated by hybrid GASSO. 
Intelligent hybrid optimisation was used to forecast loads 
connected to the microgrid. Effective DSM was made 
possible by the efficient optimisations suggested. After 
applying the specified controller, the analysis of the outcomes 
depicted a reduction in the amount of electricity provided by 
conventional sources during the day. In comparison to 
conventional mathematical modelling methodologies, the 
proposed technique is found to be less complex, very 
effective, and capable of producing a more accurate system 
modelling. Overall, the suggested approach reduces 
greenhouse gas emissions while also improving microgrid 
dependability and EV charging station system profitability, 
which encourages investors to build more EV charging 
stations. 
 
6. Future Work 
 

 There are several opportunities for more study and 
potential improvements to the suggested methodology. First, 
it may be investigated to incorporate sophisticated machine 
learning methods, such as deep learning models like recurrent 
neural networks (RNNs) or Long Short-Term Memory 
(LSTM) networks. The accuracy and effectiveness of load 
forecasting could be further improved by these models in the 
presence of electric vehicles, energy storage systems, and 
renewable energy sources, which have demonstrated 
promising outcomes in a variety of time-series forecasting 
applications. 
 Second, our methodology might benefit from a greater 
emphasis on real-time data sources given the expanding 
significance of real-time data and the Internet of Things (IoT) 
in energy management. Smart metres, grid sensors, and other 
IoT devices can contribute data that is more precise and up to 
date, improving the accuracy of load forecasting and the 
control of EVs and ESS. 
 Also, it could be interesting to investigate how our model 
scales and adapts for various geographic areas and utility 
grids. Our model could produce more region-specific load 
forecasts and DSM strategies by being adjusted to particular 
geographic characteristics because different locations have 
different load patterns and different energy resource 
availability. 
 Additionally, future study might focus on maximising the 
allocation and utilisation of energy from RES, seeking to 
reduce energy waste while maximising the utilisation of 
renewable sources as sustainability and environmental 
concerns continue to rise. Last but not least, a fascinating area 
for future research could be examining how new battery 
technologies and vehicle-to-grid systems affect load 
forecasting and DSM. By allowing EVs to send energy back 
into the grid, for example, V2G systems have the ability to 
complicate and add additional factors to load forecasting 
models. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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