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Abstract 
 
The application of machine learning (ML) in the prediction of hydrogen (H2) production has proven to be an efficient tool 
for enhancing production capacity. However, while the reported algorithms have demonstrated robustness in hydrogen 
prediction, they fall short in capturing the dynamic nature of real-time production uncertainty.  In this study, we proposed 
a dynamic data-driven algorithm for the identification and prediction of H2 gas during an experimental steam gasification 
process. Initially, feature selection was conducted to assess the appropriateness of the data obtained from literature. 
Subsequently, a machine learning model, specifically based on the time series recurrent artificial neural network 
architecture, was developed to forecast the H2 yield using predefined model inputs. To establish a benchmark for 
comparison, the machine learning model was optimized using the genetic algorithm (GA) optimizer to evaluate its 
predictive performance. The findings of the investigation revealed that the optimized NARx model exhibits robustness in 
predicting H2 yields, achieving an R2 value exceeding 0.90 and a Mean Squared Error (MSE) below 0.070, when evaluated 
against a predefined time trajectory. This stands in contrast to the performance of the reference NARx model, which yielded 
an R2 below 0.90 and an MSE exceeding 0.40. This model could effectively be used to develop decision making strategy 
for large scale H2 production from biomass gasification process. 
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1. Introduction 
 
Clean energy sources have experienced a notable surge in 
usage, witnessing a substantial 6% increase, with an 
additional 10% uptick observed between 2020 and 2021 [1], 
[2]. This upward trend is anticipated to persist, driven by a 
reduced reliance on fossil fuels, with an expected decline of 
50% [3]. This shift reflects a growing global awareness and 
commitment to sustainable energy practices, fostering a more 
environmentally conscious approach to meet energy needs. 
As the world continues to prioritize cleaner alternatives, this 
trajectory underscores the ongoing transition towards a more 
sustainable and eco-friendly energy landscape [1], [2]. With 
this recent surge, there is a continuous effort to meet the 
growing energy demand by employing various mechanistic 
approaches through data-driven techniques.  
 H2 fuel is increasingly being regarded as a sustainable 
alternative to traditional fossil fuels, primarily owing to its 
environmentally friendly characteristics and substantial 
energy capacity [3], Despite being the most abundant 
substance on earth, H2 does not exist independently due to its 
highly reactive nature. Presently, approximately 50% of H2 is 
produced from fossil fuel through a process known as steam 
reforming [4], [5]. Despite being the most cost-effective 
technique for H2 production, this process is not 
environmentally friendly as it involves the emission of CO2. 
Fossil fuels are nonrenewable and highly endothermic. 

Consequently, efforts have been made to explore alternative 
methods for H2 production that are both efficient and 
sustainable. One such method is biomass gasification [6]. 
Biomass, which encompasses organic matter derived from 
various sources such as animal waste, wood waste, municipal 
waste, and oceanic plants, has the potential to generate clean 
H2 with minimal emissions of SOx and NOx [5], [7], [8]. 
Several study on biomass gasification has been investigated 
for different biomass feedstock; biopolymers [9]–[12], algae 
[13]–[15], Municipal waste [16], [17], and food waste [18], 
[19].   
 Biomass gasification is primarily conducted through 
either thermochemical conversion or biochemical conversion. 
Thermochemical conversion encompasses combustion, 
gasification, pyrolysis, and liquefaction. On the other hand, 
biochemical conversion primarily involves extraction and 
hydrolysis [20]. Nevertheless, the thermochemical 
conversion of biomass is regarded as promising, given its 
efficiency and capacity for H2 yield. This process of 
conversion uses heat as the primary mechanism for 
conversion [21]. Initially, biomass is subjected to steam for 
drying at a temperature of approximately 100°C before 
undergoing pyrolysis. In the pyrolysis stage, the feedstock is 
devolatilized at around 300°C, resulting in the production of 
char. Typically, the volatile products undergo a combustion 
process with oxygen, generating CO2. The produced char then 
undergoes a gasification process by reacting with steam and 
CO2 to yield H2. The overall reaction pattern follows:  
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Combustion:                                          𝐶 + 𝑂! ↔ 𝐶𝑂!                                                                   
Pyrolysis:                                               𝐶𝑂 +𝐻!𝑂 ↔	𝐻! + 𝐶𝑂! 
Gasification:                                        𝐶 + "

!
𝑂! ↔ 𝐶𝑂 

                                                             𝐶 + 𝑂! ↔ 2𝐶𝑂 
                                                             𝐶 + 𝐻!𝑂 ↔	𝐻! + 𝐶𝑂 
                                                             𝐶 + 2𝐻! ↔ 𝐶𝐻# 
 

 
Fig. 1. Block flow for Thermochemical conversion of biomass 
 
 The investigation into H2 production from biomass 
gasification through ML techniques has been explored [22]. 
Among ML methods, Artificial Neural Network (ANN) 
stands out as a common technique applied to address biomass 
gasification production [23]. In a related study [24], ANN was 
employed to predict the lower heating value of syngas from a 
modeled circulating fluidized bed (CFB) gasifier. Gibbs free 
energy was utilized in this study, assuming that all reactions 
occurred rapidly at chemical equilibrium. Elmaslar et al, [25] 
implemented four machine learning algorithms which 
includes linear regression, K-nearest neighbors, support 
vector machine, and decision trees to predict H2 yield, 
utilizing seven predictors. The work of Mutlu et al, [26] 
involved classifier algorithms, such as the multi-class random 
forest and binary least square support vector machine 
classifier, to determine syngas composition. The random 
forest algorithm was also applied in predicting biochar yield 
from lignocellulosic biomass [27]. Other ML technique was 
recorded for biomass gasification process such as 
supercritical water gasification [28], and syngas exergy value 
investigation [29]. Recently, a paper reported the use of four 
ML models to predict the three-phase distribution of products 
from gasification [30]. However, while these algorithms have 
demonstrated robustness in syngas prediction, they fall short 
in capturing the dynamic nature of real-time production 
uncertainty. Furthermore, there is a notable gap in the 
literature regarding the application of time series ML models 
specifically for steam biomass gasification processes. 
 
 
2. Methods 
 

2.1 Data Collection and Preprocessing 
Experimental data was retrieved from Singh et al, [31] for this 
study where a laboratory setup of gasification process was 
carried out in a fixed bed reactor. H2 yield underwent 
continuous monitoring, with the steam flowrate (SFR) varied 
between 0.125 mL/min and 0.75 mL/min, and steam 
temperature ranging from 700°C to 800°C. To eliminate solid 
residues, the produced syngas was directed through a ceramic 
filter, and H2 yield was determined by tracking the volumetric 
flowrate of the syngas post-filtration. Sampling occurred at 5-
minute intervals, collecting both syngas and H2. This study 
employed five gasification parameters to predict H2 gas yield: 
steam flow rates (SFR), steam temperature (ST), syngas 
flowrate (GFR), Lower Heating Value (LHV), and Higher 
Heating Value (HHV). These variables were chosen based on 
their significant impact on H2 yield during laboratory-scale 
production. 
 The methodology for this research is detailed in Figure 2. 
The collected data underwent feature selection and 
visualization to extract pertinent information influencing the 
model's performance. Table 1 outlines the initial data points 
used for model development. Data normalization was applied 
using min-max normalization to mitigate potential outliers 
and inconsistencies using; 
 
X$%& =

'()*$(')
)-'(')()*$(')

																																																		    (1) 
 
 Where X$%& is the normalized data, x is the raw data. One 
advantage of this normalization technique is its ability to 
maintain the initial relationships among the original datasets 
while reducing its bounded range. 
 

Table 1. First ten sample set of data used in this work 
Time (min) ST (°C) GFR 

(mL/min) 
SFR 
(mL/min) 

LHV 
(MJ/Nm3) 

HHV 
(MJ/Nm3) 

SYNGAS 
m3/kg 

H2 yield 
(%) 

5 700 0.125 1.25 12.05295 13.03671 14.4599 20.81625 
10 700 0.125 0.17 12.11715 13.41316 20.21863 25.5586 
15 700 0.125 0.22 11.23842 12.42411 7.999975 44.28442 
20 700 0.125 0.23 11.41197 12.5954 2.662519 54.78182 
25 700 0.125 0.22 10.46062 11.54517 0.710389 53.65157 
30 700 0.125 0.28 10.45667 11.5751 0 56.82829 
35 700 0.125 0.23 10.41426 11.55376 0 57.92771 
40 700 0.125 0.22 10.40344 11.55141 0 58.36982 
45 700 0.125 0.18 10.38348 11.55717 0 59.70891 
50 700 0.125 1.25 12.05295 13.03671 14.4599 20.81625 
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Fig. 2. Flow diagram for methodology 
 
2.2 NARx Model Architecture 
NARx was used as the prediction model, while GA optimizer 
was used to minimize the error derivative of the network by 
adjusting the weights. NARx is a recurrent neural network 
with feedback connection to the input layer with respect to 
time delay function 𝑛. and 𝑛/. Unlike other reported static 
ANN models, the strength of the NARx model lies in its 
ability to capture the uncertainty of time dependent data 
which makes it robust for dynamic modelling. The model 
follows an equation of the form: 
 
y(0) = f /y0(", y0(!, … . y0($! , x0(", x0(!, … . . x0($"3 + ε0	     (2) 
 
 Where 𝑥1 is the input at time t, 𝑦1 is the response, 𝜀1 is the 
training error at each time interval, 𝑓 is a nonlinear function, 
𝑛. and 𝑛/ are the time lagged input and time lagged output 
respectively. Figure 3 shows the NARx architecture. It 
consists of an input layer, hidden layer with determinant 
weights w obtained through training and bias hyper parameter 
b, a feedback loop of the response variable 𝑦1 and an 
activation function g. The recurrent nature of the network 
follows a differential equation such as: 
 
τ 23#
20
= −y* + g<x* +∑ w*4 v*@																																				     (3) 

 
𝜏 is the time coefficient, 𝑔(	) is the activation function and is 
the output of the hidden neurons. Table 2 presents the 
parameters used for the model. 
 

 
Fig. 3. NARx architecture 
 

Table 2. Parameter used in this work 
Parameter Value 
Number of hidden layer 1 
Number of hidden neurons 10 
Number of Input neurons 5 
Activation function Tansig 
Time lag input 2 
Time lag output 2 
Learning rate 0.001 

 
 GA is coupled with the model to optimize the weights 
thereby minimizing the error derivative represented by the 
equation: 
 
25
23
= −(t($) − y($))																																																													          (4) 

 
 Where 𝑡(6) represents the training target for n datasets and 
y($) represents the approximated target for n datasets. The 
smaller the training error, the better the prediction ability of 
the model. 
 GA optimizer is a concept based on natural selection 
inspired by the Darwinian theory of evolution [32]. As shown 
in Figure 4, solutions are presented as population. For this 
case, the population are basically the weights of the NARx 
model which are initially chosen at random. These weights 
undergo a tournament selection where the optimum solutions 
are placed in a mating pool for crossover operation to generate 
new set of weight values which are called offspring. These 
offspring are further subjected for mutation to obtain new 
solutions and then selection of best fit is carried out to 
determine the best offspring. This process is done in an 
iterative manner until the best solutions (optimum weights) 
are obtained. The efficiency of GA lies in its ability to 
optimize a function around a global optimum and it does not 
require a derivative information. The pseudocode for the GA 
is given as follows: 
 
NARx-GA (P, y, m) 
 
Extract weights from developed NARx model; Initialize 
generation 0: k = 0; 
Pk = P randomly generated weights; Evaluate Pk: 
Compute fitness(i) for each I = = Pk; 
Do 
{  
Create generation k+1: 
Select(1-y) * P members of Pk; Insert to Pk+1; 
Select y by n members of Pk; Produce offspring and insert to 
Pk+1; 
Select m by n members of Pk+1; Invert a randomly selected 
bit for each member 
Evaluate Pk+1 and compute fitness for each I; 
} 
While fitness value is not high enough; return Pk 
 
 P denotes the population size, y signifies the proportion of 
NARx weights replaced through crossover in each iteration, 
and m denotes the mutation rate. 
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Fig. 4 Flow diagram for GA algorithm 
 
 
2.3 Performance Evaluation 
A comparative framework was established for the reference 
NARx model and the optimized (NARx-GA) model. The 
evaluation was conducted based on a set of performance 
indices outlined in this study, comprising the mean squared 
error (MSE), root mean squared error (RMSE), and multiple 
coefficients of determination (R2). Throughout the training 
process, an iterative approach was employed to minimize the 
network error by adjusting the weights, as previously 
mentioned, and manipulating the number of hidden layer 
neurons. 
 The mean squared error (MSE) served as a metric during 
training, quantifying the error incurred. It represents the 
average square difference between the predicted response 
value and its actual counterpart, offering insights into the 
accuracy of the model's predictions. It is given by: 
 
MSE =	 "

7
∑ (actual − predicted)!7
$8" 																																	    (5) 

 
where N is the overall amount of data. The root mean squared 
error (RMSE) is calculated between the measured values and 
the predicted values using: 
 

RMSE =	T"
7
∑ (actual − predicted)!7
$8" 																										   (6) 

 
 Coefficient of determination, R2 expresses the proportion 
of the total variation in response variable (predicted value) 
that is explained by different independent variables. It is given 
by the equation: 
 
𝑅! = 1 − ∑ (:;1.:<(=>?@A;1?@)$%

%&'
∑ (:B?>:C?(=>?@A;1?@)$%
%&'

																								     (7) 
 
 The lower the difference between actual and forecast 
values the higher the value of the determination coefficient. 
The value of R2 is between 1 and 0. R2 is near 1, for a good fit 
model, and R2 near 0 indicates a poor fit model. 
 
 
3. Results and Discussion 
 
3.1 Data Reliability Analysis 
This section presents the outcomes derived from the feature 
selection process. To construct the NARx model, a series of 

pairwise feature correlation charts were generated, 
specifically depicted in Figures 5 and 6 for H2 yield. These 
charts visually outline the degree of discrepancy between 
each variable in the dataset and illustrate their 
interrelationships. Through careful examination of these 
charts, the feature relationships between predictors and the 
response variable are studied, providing valuable insights into 
the correlations shaping the dataset. 
 

 
Fig. 5 Pairwise correlation between predictors and H2 
 
 From figure 5, the upper diagonal presents the correlation 
matrix. Usually, the correlation matrix lies between -1 which 
indicates a perfectly less correlation between each feature, 
and +1 which indicates a perfectly good correlation. It is 
evident that the variables are correlated judging from the plot. 
It can be seen that GFR, LHV and HHV are positively and 
near perfectly related to H2 yield, whereas, ST and SFR are 
negatively related to H2 yield with a value of -0.14 and -0.21. 
Usually, a negative correlation occurs due to large numeric 
disparities between features values hence, data normalization 
was carried out to avoid inaccuracies in the predictive ability 
of the NARx model. From the lower diagonal of the 
correlation plots, it can be seen that the values of each variable 
follow a similar pattern which indicates the response of each 
variable to its corresponding feature. The histograms in the 
diagonal indicates the level of outliers for each parameter. It 
is observed from the histogram that there are fewer 
possibilities of outliers recorded. The lower diagonal 
indicates the pattern that exist between a variable and the 
output parameter. From table 3, the possibly of outliers are 
seen from the mean and median of each feature. H2 yield, 
GFR, LHV and HHV has an obvious outlier compared to ST 
and SFR. As seen in Figure 7, there is a consistent flowrate 
for H2 yield despite recording a lower steam flowrate. While 
at a steam to biomass ration of 1.50, the upper diagonal 
presented a strong interaction between the lower and higher 
heating value to the effectual yield of H2. This is part of the 
evidence obtained from the experimental study obtained in 
[31], where a syngas flowrate between 0.325mL/min and 
0.75mL/min was obtained at a temperature 700°C and SFR of 
0.125mL/min and 0.25mL/min respectively. Similarly, the 
lower diagonal in Figure 6 also indicates the pattern of 
relationship between the input and output variable. Figure 7 
presents a response plot for H2 yield. Major clusters are 
formed close to higher H2 yield for both LHV and HHV while 
a dispersed pattern at specific intervals is recorded for SFR 
indicating a timely change in the collection yield of H2. 
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Fig. 6. Singular relationship for predictors and H2 
 

 

 
Fig. 7. Response plot for H2 yield 
 
 The distribution of lower and higher heating values 
throughout the production period appears uniform. Notably, 
an increase in the moderately higher heating value correlates 
with an augmented yield of H2. Syngas flowrate exhibits a 
relatively modest impact on H2 yield, with the yield reaching 
its maximum irrespective of the flowrate. On the other hand, 
steam flowrate emerges as a more influential factor affecting 
H2 yield. The analysis demonstrates that H2 yield is notably 
sensitive to steam flowrate (SFR), lower heating value 
(LHV), higher heating value (HHV), syngas flowrate (GFR), 
and steam temperature (ST). Consequently, all five predictors 
will be incorporated in the neural network for H2 yield 
prediction. 
 
 

Table 3. Outlier Investigation for feature parameters 
 ST (°C) GFR 

(mL/min) 
SFR (mL/min) LHV 

(MJ/Nm3) 
HHV 

(MJ/Nm3) 
SYNGAS 

m3/kg 
H2 yield (%) 

Minimum 700 0.00 0.13 0.00 0.00 0.00 0.00 
Median 700 0.23 0.50 9.29 10.62 0.00 42.63 
Mean 746 0.44 0.47 6.083 6.82 1.71 34.36 

Maximum 800 3.92 0.88 14.28 15.69 23.05 88.36 
 
3.2 NARx model evaluation 
Figure 8 presents the actual and predicted trend which shows 
the timely change of H2 yield with respect to the predictors. 
The residual discrepancy between the observed values and the 
predicted values is extremely small, approaching a high level 
of precision. 

 
Fig. 8. Dynamic change of H2 yield with respect to input variables 
 
 In Figure 9, the plot for the reference NARx model reveals 
an R2 value of 0.890. The training accuracy is depicted at 
0.925, while the validation accuracy hovers around 0.904. It 
is evident that overfitting did not occur, but a test accuracy of 
approximately 0.716 was achieved. This outcome suggests 
that the relationship between H2 yield and the five predictors 
was not adequately captured, resulting in a model with fair 
performance. The recovery of H2 yield was predominantly 
associated with the steam temperature injected into the 
reactor, wherein the flow of steam was notably influenced by 
the steam-to-biomass ratio. This practical correlation 
underscores the significance of modeling the relationship 
between predictors and responses accurately. Failure to 
capture appropriate measurements could lead to discrepancies 
in the feature selection of the NARx model. 

In Figure 10, the regression fit for NARx-GA is illustrated. 
Remarkably, a training accuracy of 0.930 and a validation 
accuracy of 0.960 were achieved, resulting in an overall 
model performance of 0.941. These outcomes underscore the 
effectiveness of the global optimizer embedded in the model, 
indicating an optimal solution. The optimized NARx model 
demonstrates a superior ability to predict H2 yield based on 
the provided predictor variables compared to the reference 
model. The incorporation of the global optimizer has 
evidently enhanced the predictive accuracy of the model. 
 

 
Fig. 9. Regression plot for reference NARx 
 
 As outlined in Table 3, a performance comparison 
between the NARx-GA and the reference NARx model is 
provided. The referenced NARx model exhibited an MSE of 
0.477, whereas the NARx-GA model achieved a significantly 
reduced MSE of 0.056. This substantial difference 
underscores the robustness of the GA in enhancing the 
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predictive capability of the NARx model. Figure 11 illustrates 
the effective minimization of errors through the optimization 
of weights. As the error derivative approaches 0, the model 
accuracy improves, and NARx-GA proves to be particularly 
efficient in achieving this outcome. 
 

 
Fig. 10. Regression plot for NARx-Ga 
 

 
Fig. 11. MSE plot 
 
 Similarly, judging from the model accuracy between both 
compared models, NARx-GA outperformed reference NARx 
model with much difference. It can be observed however that 
the accuracy of the model could be improved by varying the 
number of hidden neurons or lag time of the NARx model. 
This is however noticed as H2 yield is strongly dependent on 
the steam flow rate and temperature. The lower and higher 
heating value are shown to be of influence to the developed 
model through the non-monotonic trajectory of H2 as shown 
in Figure 9. It is shown that GA increased the prediction 

accuracy of the NARx model by about 7.2% making it more 
robust and efficient. This indicates the efficiency of GA to 
improve the performance of the NARx model. 
 
Table 3. Performance evaluation for models 

 NARx-GA Reference 
NARx 

R2 0.941 0.890 
MSE 0.061 0.477 

RMSE 0.237 0.691 
 
 
4. Conclusions 
 
The production of H2 gas via biomass gasification has been 
shown to be a promising and efficient process. Several reports 
on how to improve the yield is one of the discussed topics in 
the field. In this work, a preliminary study was carried out on 
the data obtain from literature where a major determinant of 
the optimal operation is in its investigated data. Furthermore, 
a prediction model based on a hybrid ANN was developed on 
the heating value, steam flowrate, syngas flowrate and steam 
temperature of the biomass gasification process to determine 
the production of H2 as the major target. Also, the developed 
model was optimized in terms of key performance indicators 
such as MSE and R2

 to investigate the model efficiency.  
 It was shown that NARx-GA has the robustness to predict 
the yield of H2 (with R2 > 90% and MSE < 0.070) on the basis 
of a set time trajectory as against the non-optimized NARx 
with R2 < 90% and MSE > 0.40. It was shown by correlation 
that the yield of H2 and other syngas was mostly influenced 
by the steam temperature, syngas and steam flowrates, and 
heating values. A correlation plot was used to indicate the 
strong relationship between feature values. GA is a global 
optimizer which makes efficient for global optimization 
problems. It has been proven effective in optimizing machine 
learning models which is why it is most common for 
optimizing machine learning models however, given the need 
to improve the predictive efficiencies of this model, it is 
recommended to implement some alternative global 
optimizers on the model and then compare their strengths. 
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