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Abstract 
 

With the rapid economic development in China, coal resources are being exploited greatly, which easily causes 
geological disasters due to surface subsidence. Fast and accurate surface subsidence monitoring and forecasting in mining 
regions are important references to analyze surface variation laws and disaster warning. However, differential 
interferometric synthetic aperture radar (D-InSAR) in mine surface monitoring is highly sensitive to spatiotemporal 
baseline and atmospheric delay. In addition, traditional machine learning algorithms have complicated network structures 
and difficulties determining parameters. Small baseline subsets InSAR (SBAS-InSAR) and extreme learning machine 
(ELM) dynamic prediction were combined for corresponding experimental studies to address these problems. On the 
basis of SBAS-InSAR, surface subsidence monitoring data in mining areas in Pingdingshan City, China, were collected, 
and a comparative analysis of D-InSAR monitoring data was performed, which verified the validity of SBAS-InSAR 
monitoring. On the basis of SBAS-InSAR data, a prediction model was built by ELM. The model results were compared 
with the prediction results of back propagation (BP) neural network and support vector machine (SVM) through root 
mean square error (RMSE) and mean relative error (MRE). Results demonstrate that the surface subsidence prediction of 
SBAS-InSAR in the monitoring mining area can reach millimeter accuracy. The MRE values of ELM, BP, and SVM 
prediction are maintained within 2%, 5%, and 8%, and the RMSE values are less than 3 mm, 7 mm, and 10 mm, 
respectively, thereby indicating that ELM prediction has high accuracy and reliability. This study provides an important 
evidence for safe production and scientific disaster prevention and reduction in mining areas. 
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1. Introduction 
 
With the rapid economic development and increasing energy 
demand in China, the demand for coals is increasing 
gradually, thus expanding the mining scale continuously [1]. 
Following the extensive use of coal resources, the natural 
stress state of surrounding rocks in the working section and 
the original balanced stress state in overlying strata will be 
destroyed, thus causing redistribution of stresses. This 
condition further causes deformation, movement, collapse, 
and rupture of overlying strata in the working section, which 
will be finally transmitted to the surface and thereby cause 
surface subsidence. Surface subsidence has many hazards, 
such as destroying surface buildings, large-scale farmlands, 
and forest vegetation, and threatening the lives and 
properties of residents in the mining area. Hence, effective 
monitoring and prediction are important to prevent disasters 
and reduce disasters. 

At present, major technologies for surface subsidence 
monitoring include geodetic surveying, global navigation 
satellite system (GNSS), measuring robots, interferometric 
synthetic aperture radar (InSAR), and three-dimensional 
laser scanning. Geodetic surveying carries out regular 
monitoring of discrete deformation points in mining areas by 
using a level, total station, and other devices. This method 
can acquire high-accuracy deformation information but has a 
high workload and a small monitoring scope. Moreover, it is 

easily influenced by terrain and weather and has difficulty 
meeting the coverage needs of high-frequency and large-area 
subsidence monitoring [2]. Measuring robots and three-
dimensional laser scanning technology can acquire 
millimeter-level monitoring accuracy but require abundant 
economic costs. 

InSAR is a spatial measurement method that has 
developed quickly in recent years and is widely applied to 
various fields, such as urban surface subsidence monitoring 
[3], earthquake monitoring [4], landslide monitoring in 
mountainous regions [5], subsidence monitoring in mining 
areas [6], and glacier monitoring [7]. It has the advantages of 
large monitoring scope and low cost. At present, surface 
subsidence prediction methods can generally be classified 
into two types: model driven and data driven [8]. Model-
driven methods make recursive prediction based on surface 
subsidence deformation data and full geotechnical 
information and are represented by probability integral 
method, finite element method, Kalman filtering, and gray 
system theory. These methods are mainly based on many 
theoretical hypotheses in practical applications. However, 
they have difficulty acquiring geotechnical information, 
showing poor model accuracy. Data-driven methods use 
model-applicable data and create new calculation models 
creatively and adaptively according to different types of data. 
They are highly concerned with the development of machine 
learning and have gradually become the mainstream. 

On this basis, many studies on surface subsidence 
monitoring and prediction have been reported. However, few 
studies have been conducted on applications based on 
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InSAR time series data coupling machine learning. Hence, 
searching for methods and technologies that are more 
appropriate for InSAR deformation data analysis and 
perform surface subsidence prediction accurately and 
effectively is a problem that must be solved. In this study, 
surface subsidence monitoring and prediction were 
investigated by integrating InSAR technology and machine 
learning to provide references for dynamic monitoring and 
accurate prediction in mining areas. 

 
 

2.  State of the art 
 
Extensive studies have been conducted by scholars on 
surface deformation monitoring and prediction. With respect 
to monitoring, several improved InSAR technologies have 
been proposed, such as differential interferometric synthetic 
aperture radar (D-InSAR), persistent scatterer InSAR (PS-
InSAR), and small baseline subsets InSAR (SBAS-InSAR) 
[9]. Rafiei Fatemeh et al. [10] analyzed surface subsidence 
of an agricultural plain in Samalghan, Iran, by using D-
InSAR data and found that groundwater overdraft was the 
cause of local subsidence. PérezFalls Zenia et al. [11] 
studied surface subsidence of the coastal plain in Tabasco 
based on D-InSAR technology and disclosed the possible 
relationship between oil–gas exploitation and surface 
deformation. Ou et al. [12] monitored surface deformation 
through D-InSAR and found that D-InSAR could acquire 
high-accuracy deformation information and without high 
gradient deformation. To realize long-term deformation 
monitoring, Boukhemacha M A et al. [13] applied PS-
InSAR for surface deformation monitoring in Romania and 
compared it with traditional monitoring technologies. They 
proved that PS-InSAR could evaluate surface deformation in 
cities and potential non-urban environment. Tripathi A et al. 
[14] analyzed the correlation between displacement acquired 
by PS-InSAR and average groundwater fluctuation, which 
was applied to analyze surface subsidence charting of cities 
in India, achieving a satisfactory effect. Govil H et al. [15] 
studied monitoring and ground survey by using PS-InSAR 
and identified major causes of surface deformation. PS-
InSAR solves the spatiotemporal discorrelation and 
atmospheric delay of D-InSAR well, but it is not completely 
mature theoretically. In-depth studies with experimental 
analysis are needed. Li et al. [16] analyzed surface 
inclination and curvature in mining areas by using SBAS-
InSAR and provided a feasible method. Umarhadi D et al. 
[17] monitored and analyzed surface changes in Bergkalis 
Island, Indonesia, by using SBAS-InSAR, which further 
verified the validity of SBAS-InSAR. During SBAS-InSAR-
based monitoring, the interference pair increases due to the 
free interference combination of radar images, and sufficient 
redundant observations were obtained, resulting in looser 
requirements on radar image quantity than those of PS-
InSAR. Moreover, this approach overcomes spatiotemporal 
discorrelation indirectly because of the increased temporal 
sampling rate. 

With regard to surface subsidence prediction, Xiao et al. 
[18] predicted surface subsidence in cities in northwest 
Yunnan, China, by using backpropagation (BP) neural 
network supported by SBAS-InSAR. Although the 
prediction accuracy met engineering needs, the BP network 
required a long time for iterative calculation because it has 
many structural parameters and was easily caught in the 
local minimum. Zhou et al. [19] optimized BP by using 
particle swarm optimization (PSO) to increase the 

convergence rate. Although PSO can improve BP prediction 
performances to some extent, it also involves more network 
parameters, making it difficult to optimize parameters. Chen 
et al. [20] combined D-InSAR technology and support 
vector machine (SVM) to predict highway deformation 
above the gob. Results showed that SVM could acquire 
relatively reliable prediction results, but they found that 
SVM was sensitive to penalty factor and kernel function 
parameters. Kong et al. [21] constructed the surface 
subsidence prediction model of mining areas by using four 
machine learning algorithms: extreme learning machine 
(ELM), BP neural network, SVM, and random forest. A 
comparative analysis based on 100 field engineering samples 
was carried out, which showed that ELM had the minimum 
fitness function. 

Existing studies mainly acquired monitoring data 
through D-InSAR and PS-InSAR and then predicted surface 
subsidence by using traditional machine learning algorithms 
such as BP and SVM. However, few studies have been 
conducted on the integration of monitoring based on SBAS-
InSAR and prediction based on new machine learning 
algorithms. Therefore, this study acquired surface 
monitoring data in mining areas by using SBAS-InSAR and 
predicted surface subsidence by introducing ELM to provide 
data support and decision-making support to safe 
exploitation and disaster control in mining areas. 

The remainder of this study is organized as follows. 
Section 3 describes the principles of SBAS-InSAR and the 
ELM algorithm. A detailed test scheme of surface 
subsidence monitoring and prediction in mining areas based 
on SBAS-InSAR and ELM is designed thoroughly. Section 
4 studied the effectiveness of the combination of SBAS-
InSAR and ELM in surface subsidence monitoring and 
prediction in mining areas. Section 5 summarizes the 
relevant conclusions. 
 
 
3. Methodology 
 
3.1 SBAS-InSAR technical principle 
SBAS-InSAR is improved based on the traditional D-InSAR 
technology. Its working principle is introduced as follows. 
According to interference combination conditions, N+1 
SAR images are divided into several subsets according to 
multiple main images. M interference image pairs are gained 
by choosing appropriate spatial-temporal baseline thresholds. 
Differential interferograms are produced after the 
topographic phases and flat earth effect are removed, 
followed by filtering and phase unwrapping. Finally, high-
accuracy time series deformation quantity is calculated by 
singular value decomposition or the least squares method 
[22]. 

Suppose N+1 SAR images combine freely and randomly 
in the period of  ( ) and M interference pairs 
are produced. 

 
                      (1) 

 
Differential interference is performed on images 

acquired at  and , thus obtaining   interferograms. The 
unwrapping phases at the azimuth and diagonal 
coordinates(x, r) are 
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             (2) 

 
where  and  are the phase position of 

SAR images at  and ,  represents the phase 
position of line of sight (LOS) from  and , 

refers to the topographic phase error, 

 is the atmospheric error, and  is 
the noise error. 

After the topographic phase, atmospheric, and noise 
errors are eliminated, the interferometric phase is 
 

                    (3) 

 
l represents the wavelength of the radar signal,  
and are the cumulative deformation quantity of 
LOS at  and in relative to the reference moment , 
respectively. 

A total of M interference pairs are acquired 
interferometric phases, and the matrix expression is 

 
                             (4) 

 
A denotes the M×N matrix. The determinants and 

permanents of the matrix represent the interferograms and 
images at a moment, respectively. The main image and 
auxiliary images are expressed by 1 and -1, respectively. The 
rest is expressed by 0. 

When M ≥ N, R (A) ≥ N. The estimation value of f can 
be calculated. 

 
                    (5) 

 
3.2 Principle of the ELM algorithm 
ELM is a new feed forward neural network [23]. For N 
observation data , where  

represents the network input,  represents 
the network expected output, and L (L≤N) is number of 
hidden layer nodes, and g(x) is the network excitation 
function. The mathematical model of ELM is 
 

      (6) 

 
where  is the output of ELM,  is the weight that 
connects the hidden layer node and the output layer node,  
is the weight that connects the input layer node and the 
hidden layer node ,and  is the bias of node of the hidden 
layer. The excitation function can be one of three types: 
sigmoid, hardlim, and Sin. 

ELM can approximate to any N samples at zero error. 
Then, 

 

                                  (7) 

 
 According to Eq. (7), Eq. (6) can be expressed as: 
 

     (8) 

 
 The matrix can be expressed as: 
 

                                      (9) 
 
where H and T are the output matrix of the hidden layer and 
the output of the network, respectively. 
 

         (10) 

 
When g(x) is infinitely differentiable, if network 

parameters  and  are given randomly, then H is constant. 
Hence, the training process of ELM can be viewed as 
calculating the least squares solution of  about . 
 

                                      (11) 
 

 is the Moore-Penrose generalized inversion of H. On 
the basis of the above deduction, only L and g(x) have to be 
determined during ELM training.  can be 

calculated.  is solved based on the least squares method, 
which is why it has uniqueness and global optimization, as 
well as strong generalization ability in theory. 
 

3.3 Subsidence monitoring test in mining areas 
The testing mining area is in the middle of Pingdingshan 
City, Henan Province, China. The geologic structure is 
mainly a fold structure. The terrain is high in the west and 
low in the east. Wells have been built in the mining area 
since 1955 for exploitation of coal resources. Pingdingshan 
has many production wells, such as Mine 1, Mine 2, Mine 3, 
and Xiangshan Mine. With the intensive exploitation of coal 
resources has led to continuous expansion of the gob and 
intensifying surface subsidence, thus bringing significant 
potential safety hazards. The digital elevation model (DEM) 
of the mining area is depicted in Fig. 1. 
 

 
Fig. 1.  DEM of the study area 

 
Sentinel-1A image data of 21 scenes from March 5, 2022, 

to March 12, 2023, were collected. The selection period of 
image data was from 12 days to 24 days, and the 
corresponding 30 m DEM data and precise orbit 
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ephemerides data were collected. The Sentinel-1A data 
parameters are indicated in Table 1. 

On the basis of the above data, the method based on the 
integration of SBAS-InSAR and ELM was established.  
 Its working procedures are shown in Fig. 2. 
 
Table 1. Sentinel-1 A data parameters 
Wavelength /cm 5.63 
Imaging mode Interferometric wide swath 
Polarization mode Vertical polarization 
Orbital direction Rail lift 
Data type Single-look complex 
Resolution /m 5 × 20 
 
 
4. Result Analysis and Discussion 
 
4.1 Monitoring of mining settlement 
The SAR image data of 21 scenes were clipped and the 
maximum time baseline was set to 180 days. The threshold 
of the spatial maximum critical baseline was set as 45%. The 
20220901 image was chosen as the super master image, and 
a total of 52 interference pairs were produced. 

The visual ratio of azimuth and distance direction was 
set to 5:1 to increase radiation resolution. The Sentinel-1A 
precision track file and SRTM-3 DEM data were applied to 
level and eliminate topographic phases. Next, image filtering 
and phase unwrapping were performed by using the 
Goldstein method and minimum cost flow, thus generating a 
differential interferogram. Fig. 3 shows a relatively ideal 
partial filtering interferogram. The phase information is 
clearer and noises are decreased after filtering. 

 

 
Fig. 2. The procedures based on the integration of SBAS-InSAR and 
ELM 
 

A total of 31 ground control points were chosen for orbit 
refining and re-leveling, thus removing the residual slope 
phases and constant phases. Deformation rate and residual 
terrain were estimated by the linear model, followed by 
atmospheric filtering. Finally, the deformation inversion 
results were transformed by geocoding from the SAR 
coordinate system to the geographic coordinate system, thus 
obtaining the LOS deformation rate and cumulative 
subsidence volume of the study area from March 5, 2022 to 
March 12, 2023. The results are shown in Figs. 4 and 5. 

 

 
Fig. 3.  Partial filtering interferogram of the study area 
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Fig. 4.  Subsidence rate of SBAS-InSAR 

 
Fig. 5.  Cumulative subsidence of SBAS-InSAR 
 

Figs. 4 and 5 show that serious subsidence occurred in 
the center of Pingdingshan Mine from March 5, 2022, to 
March 12, 2023, reaching a maximum subsidence rate of -
217.04 mm/a and a maximum cumulative subsidence 
volume of −206.3 mm. The subsidence range expanded 
gradually. The mining area had four subsidence regions, as 
shown in Fig. 4 and Table 2. Specifically, C experienced the 
most serious subsidence, having the largest subsidence area, 
many subsidence centers, and complicated surface 
subsidence conditions. According to the field survey control, 
A is located in Wangzhuang Village in eastern Baofeng 
County, an area affected by coal mining in the south. B is 
located in Bianzhuang, Xinhua District, an area affected by 
coal mining in the north. C is located in the border of 
Weidong District, Xinhua District, Baofeng County, and Jia 
County, covering Longshan, Xiading Village, Jijia Village, 
Chengzhaigou, Zhangzhai, and Zhougou Village. C has the 
highest number of surrounding coal production mines. D is 
located at the border between northern Weidong District and 
Xiangcheng County, covering Xiaowu Village, Majiangou 
Village, and Zhangzhuang Village. The area is influenced by 
coal exploitation in both the northern and southern regions. 
Many coal mines are present in Jiaodian Town south of C. 
However, no subsidence occurred from 2022 to 2023 
because these coal mines have shut down and measures such 

as ecological restoration and mine filling have been adopted. 
The SBAS-InSAR monitoring results agreed with practical 
situations. 
 
Table 2. Subsidence of four regions 
Subsidence 

regions 
Maximum subsidence 

rate (mm/a) 
Maximum cumulative 

subsidence /mm 
A 157 −170 
B 112 −109 
C 206 −217 
D 189 −199 

 
4.2 SBAS-InSAR subsidence monitoring data analysis 
(1) Precision of inner coincidence verification 
The standard deviation of deformation rate in the SBAS-
InSAR monitoring was 1.28. The global deviation of 
monitoring results was low, and the stability was good. 
(2) D-InSAR comparative verification 
Sentinel-1A images covering Pingdingshan Mine from 
March 5, 2022, and March 12, 2023, were chosen for two-
track D-InSAR processing. By using the image of 20220305 
as the primary image and the image of 20230312 as the 
secondary image, we obtained the cumulative settlement 
diagram, as shown in Fig. 6. 
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Fig. 6.  Cumulative subsidence diagram of D-InSAR 
 

A comparison with the SBAS-InSAR results in Fig. 4 
indicates that D-InSAR and SBAS-InSAR showed similar 
positions, shapes, and size of regions with serious 
subsidence, and similar overall subsidence distribution. 
However, the maximum cumulative subsidence volume in 
SBAS-InSAR monitoring was far higher than that of D-
InSAR. SBAS-InSAR is more sensitive to long-term 
subsidence monitoring in mining areas and can monitor 
greater subsidence gradients. 
 
4.3 ELM subsidence prediction test of mining areas 
Three characteristic points were chosen in C, which had the 
most serious subsidence, to verify the feasibility of ELM in 
surface subsidence prediction in mining areas. The 
subsidence time series at these three characteristic points 
were chosen as research objects; these three points are P1, 
P2, and P3. When ELM was used to build prediction model, 
three key parameters were applied: number of the input layer 

nodes, number of the hidden layer neuron, and excitation 
function of the ELM network. The two-dimensional interval 
searching algorithm was introduced to construct the optimal 
ELM network structure. In the experiment, P1 was chosen to 
determine the ELM optimal network structure. 
 
4.3.1 Effects of node number of the input layer on 
network prediction performances 
 
Twenty-one phases of data were available at P1. The 1-16 
phases were chosen as the model training samples, while the 
17-21 phases were chosen as test samples. On the basis of 
the idea of rolling prediction, the node number of the input 
layer increased from 3 to 12, and the output node number 
was fixed 1 in the optimization test. Influences of node 
number of the input layer on ELM network training and test 
samples were analyzed. Table 3 shows the results. 
 

 
Table 3. RMSE of ELM network training and test samples under different number of the input layer nodes 
Samples Number of the input layer nodes 

3 4 5 6 7 8 9 10 11 12 
Modeling (RMSE/mm) 6.013 5.096 9.557 5.857 9.764 4.744 0.006 0.006 0.006 0.005 
Prediction (RMSE/mm) 2.726 4.248 2.696 8.130 6.235 10.617 2.838 1.989 2.118 1.706 
 
 

Table 3 shows that the RMSE of the ELM network 
training and test samples changes significantly with the 
number of the input layer nodes. The best ELM network 
structure is achieved when the input layer has 12 nodes. 

 
4.3.2 Optimization of neuron number of the hidden layer 
and excitation function 
On the basis of the above experiment, the minimum RMSE 
of training samples was chosen as the objective function. 
The two-dimensional interval searching algorithm was 
applied to obtain the optimal values of number of the hidden 
layer neuron and excitation function. The processes are 
shown in Figs. 7 and 8. 
 
Table 4. ELM network modeling and prediction 
performance analysis  
RMSE/mm P1 P2 P3 
Training samples 0.005 0.006 0.008 
Test samples 1.706 2.922 2.797 
 

Figs.7 and 8 show that the excitation function and 
neuron number of the hidden layer influence ELM 
prediction significantly. During modeling of P1, Sin and 
sigmoid functions are better than the hardlim function under 
the same neurons. When the Sin function is applied as the 

excitation function, the RMSE of training samples and test 
samples of the ELM network is the minimum. Fig. 8 shows 
that under the Sin function, the RMSE of prediction 
accuracy decreases obviously and then tends to be stable. 
The prediction effect is the best when there are 16 neurons in 
the hidden layer.  

 
Fig. 7.  Effects of excitation function on ELM prediction performances 
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Fig. 8. Effects of number of the hidden layer neuron on ELM prediction 
performances 

 
The parameter optimization of P2 and P3 can be referred 

to that of P1. According to the ELM model built based on 

the above parameters, the subsidence prediction results are 
shown in Table 4. 

Table 4 shows that ELM prediction could achieve high 
accuracy for both training and test samples. For training 
samples, RMSE reached 10-3 mm, indicating that the 
constructed ELM model is stable and reliable. For test 
samples, the minimum and maximum MRE are 1.706 and 
2.922 mm, respectively. Obviously, the generalization 
ability of ELM network is relatively strong. 

 
4.3.3 Verification analysis of the subsidence prediction 
model 
SVM, BP, and the proposed ELM were chosen for 
comparative tests to verify the advantages of ELM in 
subsidence prediction. The calculation process built models 
and implemented prediction by using the same training and 
test samples. Data prediction and accuracy evaluation results 
are shown in Tables 5-7. 

 

 
Table 5. ELM subsidence prediction values and evaluation results(mm) 
Sequence Subsidence at P1 ELM prediction  Subsidence at P2 ELM prediction  Subsidence at P3 ELM prediction  
17 −104.932 −106.723 −105.515 −109.738 −142.443 −146.202 
18 −113.588 −113.621 −120.789 −116.215 −159.709 −157.456 
19 −121.858 −119.488 −133.672 −132.192 −170.667 −166.815 
20 −124.899 −124.61 −139.218 −138.956 −175.725 −175.280 
21 −127.790 −130.167 −149.023 −150.317 −180.298 −182.509 
RMSE 1.706  2.922  2.798 
MRE 1.150%  1.991%  1.557% 
 
Table 6. SVM subsidence prediction values and evaluation results(mm) 
Sequence Subsidence at P1 SVM prediction  Subsidence at P2 SVM prediction  Subsidence at P3 SVM prediction  
17 −104.932 −105.683 −105.515 −106.274 −142.443 −146.280 
18 −113.588 −110.503 −120.789 −113.351 −159.709 −156.294 
19 −121.858 −113.905 −133.672 −124.519 −170.667 −166.065 
20 −124.899 −118.847 −139.218 −133.167 −175.725 −176.127 
21 −127.790 −123.199 −149.023 −143.064 −180.298 −185.573 
RMSE 5.119  6.509  3.887 
MRE 3.679%  4.414%  2.137% 
 
Table 7. BP subsidence prediction results and evaluation results(mm) 
Sequence Subsidence at P1 BP prediction  Subsidence at P2 BP prediction  Subsidence at P3 BP prediction  
17 −104.932 −115.608 −105.515 −118.532 −142.443 −154.928 
18 −113.588 −127.321 −120.789 −117.216 −159.709 −164.941 
19 −121.858 −134.930 −133.672 −128.699 −170.667 −169.054 
20 −124.899 −125.109 −139.218 −135.213 −175.725 −167.474 
21 −127.790 −123.446 −149.023 −135.728 −180.298 −174.214 
RMSE 9.923  8.941  7.628 
MRE 7.312%  6.163%  4.211% 

 
 
Tables 5-7 and Fig. 9 indicate that during the observation 

period at P1, the MRE values of ELM, SVM, and BP were 
maintained at approximately 1%, 4%, and 7% respectively, 
while the corresponding RMSE values were 2 mm, 5 mm, 
and 9 mm. The residual fluctuation of ELM prediction was 
the minimum, ranging from 0.033 to 2.377 mm. The residual 
error of SVM prediction was relatively small, with a 
fluctuation range of -0.751 to 7.952 mm. The maximum 
residual error occurred in Phase 19. The BP residual error 
showed the highest fluctuation, ranging from 0.210 to 
13.733 mm. Relatively large residual errors were found at 
Phases 17, 18, and 19. 

In the observation period at P2, the MRE values of the 
ELM, SVM, and BP models were controlled at about 2%, 
4%, and 6%, while the RMSE values were about 3, 7, and 9 
mm, respectively. The residuals predicted by ELM showed 

little fluctuation, ranging from -4.223 to 4.574 mm. The 
residual error of SVM prediction exhibited the great 
fluctuation ranging from -13.017 to 13.295 mm. The 
maximum residual error occurred in Phases 17 and 21. 

In the observation period at P3, the MRE values of the 
ELM, SVM, and BP models were controlled at about 1.5%, 
2% and 4%, while the RMSE values were about 3, 4, and 8 
mm, respectively. The residuals predicted by ELM showed 
little fluctuation, ranging from -3.759 to 3.852 mm. The 
residuals predicted by SVM varied widely, ranging from-
5.275 to 4.602 mm, and the larger residuals appeared in 
stage 21. The residuals predicted by BP exhibited the 
greatest fluctuations, ranging from-12.485 to 8.251 mm, and 
the larger residuals appeared in the 17th and 20th phases. 

The RMSE and MRE of ELM prediction at P1, P2, and 
P3 are the lowest. The MRE was controlled within 2%, and 
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RMSE was smaller than 3 mm. SVM had the next lowest 
MRE (<5%) and RMSE (<7 mm). BP prediction was 
relatively poor, with an MRE <8% and an RMSE <10 mm. 

 
Fig. 9.  Residual error comparison of different prediction models 
 
5. Conclusions 
 
SBAS-InSAR monitoring technology and ELM prediction 
are combined to realize integrated surface subsidence 
monitoring and prediction for high-efficiency, real-time 
acquisition of surface subsidence information and accurate 
prediction of subsidence development trend in large mining 
areas. An experimental study in a mining area is conducted. 
The following major conclusions were drawn: 

(1) SBAS-InSAR has stronger adaptation than D-InSAR 
does. It can reflect the size and range accurately and monitor 
larger subsidence gradients. It can also achieve millimeter-
level monitoring accuracy. 

(2) During surface subsidence prediction, ELM has a 
simpler network than SVM and BP do. Its parameters are 
easy to determine, and it has a quick training speed. 
Moreover, ELM prediction results are stable and highly 
accurate. ELM avoids distortion, which exists in SVM and 
BP prediction. 

(3) Integrating SBAS-InSAR technology and ELM 
prediction can provide a new, effective surface subsidence 
monitoring and prediction method to be used in mining areas. 

In this study, the integration of SBAS-InSAR technology 
and ELM prediction realizes dynamic monitoring and 
accurate prediction of mining areas. It can provide 
technological references for disaster control and early 
warning in mining areas. Subsidence prediction of mining 
areas is a recursive prediction mainly based on subsidence 
time series, without considering influencing factors of 
surface subsidence, such as groundwater, and annual 
precipitation data. In the future, surface subsidence can be 
predicted with influencing factors taken into comprehensive 
consideration. 

 
Acknowledgements 
The authors are grateful for the support provided by the 
Henan Science and Technology Research Fund program 
(Grant No. 222102320414). We would like to show our 
gratitude to the website of the European Space Agency for 
the Sentinel-1A data in this experiment and the external 
DEM data of STRM. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  

 

  
______________________________ 

References 
 
[1] H. Xie, L. Wu, and D. Zheng, “Prediction on the energy 

consumption and coal demand of China in 2025,” J. China. Coal. 
Soc., vol. 44, no. 07, pp. 1949-1960, Aug. 2019. 

[2] F. Wang, et al., “Monitoring of surface deformation in mining area 
integrating SBAS InSAR and logistic function,” Environ. Monit. 
Assess., vol. 195, no. 12, Nov. 2023, Art. no. 1493. 

[3] S. Abdollahi, H. R. Pourghasemi, G. A. Ghanbarian, and R. 
Safaeian, “Prioritization of effective factors in the occurrence of 
land subsidence and its susceptibility mapping using an SVM 
model and their different kernel functions,” B. Eng. Geol. Environ., 
vol. 78, no. 6, pp. 4017-4034, Sep. 2019. 

[4] C. Kontoes, et al., “Coseismic surface deformation, fault modeling, 
and coulomb stress changes of the March 2021 Thessaly, Greece, 
earthquake sequence based on InSAR and GPS Data,” Seismol. Res. 
Lett., vol. 93, no. 5, pp. 2584–2598, Jun. 2022. 

[5] B. Xiao, et al., “Combined SBAS-InSAR and PSO-RF algorithm for 
evaluating the susceptibility prediction of landslide in complex 
mountainous area: A case study of Ludian County, China,” 
Sensors., vol. 22, no. 20, Oct. 2022, Art. no. 8041. 

[6] Y. Li, et al., “Deformation monitoring and analysis of Kunyang 
phosphate mine fusion with InSAR and GPS measurements,” Adv. 
Space. Res., vol. 69, no. 7, pp. 2637-2658, Apr. 2022. 

[7] G. Brencher, A. L. Handwerger, and J. S. Munroe, “InSAR-based 
characterization of rock glacier movement in the Uinta Mountains, 
Utah, USA,” Cryosphere., vol. 15, no. 10, pp. 4823-4844, Oct. 
2021. 

[8] Q. Liu, Y. Zhang, M. Deng, H. Wu, Y. Kang, and J. Wei, “Time 
series prediction method of large-scale surface subsidence based on 
deep learning,” Acta. Geod. Cattoger. Sin., vol. 50, no. 03, pp. 396-
404, Mar. 2021.  

[9] J. Aswathi, R. B. B. Kumar, T. Oommen, E. H. Bouali, and K. S. 
Sajinkumar, “InSAR as a tool for monitoring hydropower projects: 
A review,” Energy. Geosci., vol. 3, no. 02, pp. 160-171, Apr. 2022. 

[10] F. Rafiei, S. Gharechelou, S. Golian, and B. A. Johnson, “Aquifer 
and land subsidence interaction assessment using Sentinel-1 data 
and DInSAR technique,” ISPRS. Int. J. Geo-Inf., vol. 11, no. 09, 
Sep. 2022, Art. no. 495. 

[11] Z. Pérez-Falls, G. Martínez-Flores, and O. Sarychikhina, “Land 
subsidence detection in the Coastal Plain of Tabasco, Mexico using 
Differential SAR Interferometry,” Land., vol. 11, no. 09, Sep. 2022, 
Art. no. 1473. 

[12] D. Ou, K .Tan, Q. Du, Y. Chen, and J. Ding, “Decision fusion of 
D-InSAR and pixel offset tracking for coal mining deformation 
monitoring,” Remote. Sens., vol. 10, no. 07, Jul. 2018, Art. no. 1055. 

[13] M. A. Boukhemacha, et al., “Combined in-situ and Persistent 
Scatterers Interferometry Synthetic Aperture Radar (PSInSAR) 
monitoring of land surface deformation in urban environments-case 
study: tunnelling works in Bucharest (Romania),” Int. J. Remote. 
Sens., vol. 42, no. 07, pp. 2641-2662, Jan. 2021. 

[14] A. Tripathi, A. R. Reshi, M. Moniruzzaman, K. R. Rahaman, R. K. 
Tiwari, and K. Malik, “Interoperability of-Band Sentinel-1 SAR 
and GRACE satellite sensors on PSInSAR-Based urban surface 
subsidence mapping of Varanasi, India,” IEEE. Sens. J., vol. 22, no. 
21, pp. 21071-21081, Nov. 2022. 

[15] H. Govil, R. S. Chatterjee, P. Bhaumik, and N. Vishwakarma, 
“Deformation monitoring of Surakachhar underground coal mines 
of Korba, India using SAR interferometry,” Adv. Space. Res., vol. 
70, no. 12, pp. 3905-3916, Dec. 2022. 

[16] Y. Li, K. Yang, J. Zhang, Z. Hou, S. Wang, and X. Ding, 
“Research on time series InSAR monitoring method for multiple 
types of surface deformation in mining area,” Nat. Hazards., vol. 
114, no. 3, pp. 2479-2508, Dec. 2022. 

[17] D. A. Umarhadi, et al., “Use of multifrequency (C-band and L-
band) SAR data to monitor peat subsidence based on time‐series 
SBAS InSAR technique,” Land. Degrad .Dev., vol. 32, no. 16, pp. 
4779-4794, Oct. 2021. 



Ning Gao and Qianhong Pu/Journal of Engineering Science and Technology Review 17 (1) (2024) 45 - 53 

 53 

[18] B. Xiao, J. Zhao, D. Zhou, W. Xi, and Z. Zhao, “Monitoring and 
prediction of land subsidence in Binchuan Fault Basin of Northwest 
Yunnan supported by SBAS-InSAR,” J. Kunming Univ. Sci. 
Technol (Nat. Sci)., vol. 47, no. 03, pp. 30-39, Jun. 2022. 

[19] D. Zhou and X. Zuo, “Surface subsidence monitoring and 
prediction in mining area based on SBAS-InSAR and PSO-BP 
neural network algorithm,” J. Yunnan Univ. (Nat. Sci)., vol. 43, no. 
05, pp. 895-905, Jun. 2021. 

[20] B. Chen, K. Deng, and H. Fan, “Combining D-InSAR and SVR for 
monitoring and prediction of mining subsidence,” J. China Univ. 
Min. Technol., vol. 43, no. 05, pp. 880-886, Sep. 2014.  

[21] F. Kong, T. Tian, D. Lu, B. Xu, W. Lin, and X. Du, “PSO-based 
machine learning methods for predicting ground surface 
displacement induced by shallow underground excavation method,” 
KSCE. J. Civ. Eng., vol. 27, no. 11, pp. 4948-4961, Nov. 2023. 

[22] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new 
algorithm for surface deformation monitoring based on small 
baseline differential SAR interferograms,”IEEE. Trans. Geosci. 
Remote., vol. 40, no. 11, pp. 2375-2383, Nov. 2002. 

[23] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning 
machine: Theory and applications,” Neurocomputing., vol. 70, no. 
1-3, pp. 489-501, Dec. 2006. 

 


