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Abstract 
 

This article used an improved version of the Flow Direction Algorithm (FDA) with acceleration coefficients named 
Modified Flow Direction Algorithm (MFDA) for simultaneous Optimal Network Reconfiguration (ONR) and Optimal 
Distribution Generation’s (ODG) installation to reduce the Active Power Losses (APL), maximize the Voltage Profile (VP) 
and stability of the Distribution System (DS). FDA is motivated by the simulation of the direction of water flow into a 
drainage basin at a lower elevation area. The neighboring flow and its slope also affect the direction of the water flow; its 
slope was obtained using the D8 method. FDA has a low convergence rate, stuck with local optima. This article proposed 
acceleration coefficients to acquire the proper balance between exploration and exploitation, accelerate the global 
convergence rate, and avoid getting stuck with local optima. The efficiency of the MFDA is evaluated based on its 
performance on 16 standard benchmark functions and is also used to solve the simultaneous ONR and ODG installation. 
Two DSs consisting of 33 and 69 bus test systems are considered to solve the problem. There are three methodologies to 
reduce the APL and maximize the VP and stability: ONR, ODG, and simultaneous ONR and ODG installation. This article 
uses four case studies with different load levels to show the proposed method's reliability. The analysis shows a better way 
to minimize the power loss by solving simultaneous ONR and ODG installation rather than only optimizing reconfiguration 
or installation of DG. It has been discovered that the results achieved are superior to those produced using the ISCA, FWA, 
HSA, etc. So, the MFDA shown can be a potentially useful way to solve 16 standard benchmark functions and simultaneous 
ONR and ODG installation. 
 
Keywords: Distribution System, Power Losses, Voltage Profile Improvement, Network Reconfiguration, Distributed Generation 
Installation, Mathematical Modeling, Flow Direction Algorithm, Modified Flow Direction Algorithm. 
 

 
1. Introduction 
 
The primary goal of today's electric power system is to 
consistently and economically meet consumer needs. This 
power system may be categorized into three sectors: 
generation, transmission, and distribution systems. Out of all 
the sectors, the DS is important in providing electricity to 
loads; distribution systems typically have "low voltage and 
high current levels" [1] and have high power loss and poor 
voltage profiles because of their structural and operational 
characteristics. Most studies have found that reducing the 
APL in DS is a significant goal. So, the most common 
approaches are ONR, ODG installation, and optimal Shunt 
Capacitors (SCs) installation to reduce the APL and maximize 
the VP and stability. However, most researchers focused on 
simultaneous ONR and ODG installation due to attractive and 
alternative solution methodologies to reduce the APL and 
maximize the VP and stability [2 - 3]. 
 Network reconfiguration adjusts the network topology by 
exchanging switches open/closed status to obtain a radial 
configuration that reduces power losses and enhances voltage 
profile through meeting operational constraints. Most 
researchers have handled the challenges with network 
reconfiguration and proposed a variety of approaches to 
minimize the losses, and maximize the voltage profile and 
stability. So many researchers solved this challenge using 

novel meta-heuristic techniques like C. Wang and H. Z. 
Cheng used Plant Growth Simulation Algorithm (PGSA) [4], 
A. Y. Abdelaziz et al. used a modified Particle Swarm 
Optimization (PSO) [5], Y. K. Wu used an Ant Colony 
Algorithm (ACA) [6], R. Srinivasa Rao et al. used Harmony 
Search Algorithm (HAS) [7], A. Y. Abdelaziz et al. used Ant 
Colony Optimization (ACO) and HAS [8], J. A. Martín 
García and A. J. Gil Mena used a modified Teaching-
Learning Based Optimization Algorithm (TLBO) [9], J. 
Torres et al. used a GA based on the edge window decoder 
(GA-EWD) [10], Y. Lakshmi Reddy et al. used Firefly 
Algorithm (FFA) [11], E. Azad-Farsani et al. used Particle 
Swarm Optimization (CPSO) and TLBO named as hybrid 
CPSO-TLBO [12], S. Teimourzadeh and K. Zare used Binary 
Group Search Optimization (BGSO) [13], R. Sedaghati et al. 
used Adaptive Modified Firefly Algorithm (AMFA) [14], M. 
Abdelaziz used Genetic Algorithm (GA) [15] with varying 
population size, R. Pegado et al. used Binary Particle Swarm 
Optimization (BPSO) [16], T. Tran The used Chaotic 
Stochastic Fractal Search Algorithm (CSFSA) [17], T. T. 
Nguyen et al. used Improved Coyote Optimization Algorithm 
(ICOA) [18], H. Hizarci et al. used Time-Varying 
Acceleration Coefficient Binary PSO (TVAC-BPSO) [19], 
M. Cikan and B. Kekezoglu used Equilibrium Optimizer (EO) 
[20] to solve optimal network reconfiguration. 
 Distributed generation resources are becoming more 
common as essential parts of the power system. Many 
benefits may be gained through DGs in the networks, 
including lower losses and enhanced voltage profiles. DG's 
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optimal position and sizing must be determined to maximize 
the benefits during the distribution system development. 
Therefore, it's essential to identify DG's suitable size and 
position in the DS without disturbing the present system 
architecture. Hence, DG installation is an essential problem in 
the DS. The DS’s operators and researchers used many 
innovative meta-heuristic algorithms to solve this problem, 
such as Y. J. Jeon et al. used Hereford Ranch Algorithm 
(HRA) [21], E. Haesen et al. used Monte Carlo Simulations 
Algorithm (MCSA) [22], M. R. Alrashidi and M. F. Alhajri 
used an improved PSO [23], F. S. Abu-Mouti and M. E. El-
Hawary used Artificial Bee Colony (ABC) [24], M. H. 
Moradi and M. Abedini used combined GA (GA)/ PSO names 
as GA/PSO [25], H. Doagou-Mojarrad et al. used Hybrid 
Evolutionary Algorithm (HEA) [26], M. M. Aman et al. used 
multi-objective Particle Swarm Optimization (PSO) [27], and 
Hybrid HPSO [28], A. El-Fergany used Backtracking Search 
Algorithm (BSA) [29], N. Kanwar et al. an improved TLBO 
[30], D. Rama Prabha and T. Jayabarathi used Invasive weed 
optimization (IWO) [31], E. S. Oda et al. used Flower 
Pollination Algorithm (FPA) [32], S. A. Chithra Devi et al. 
used Stud Krill herd Algorithm (SKHA) [33], U. Sultana et 
al. used Grey Wolf Optimizer (GWO) [34], H. Hamour et al. 
used Grasshopper Optimization Algorithm (GOA) [35], D. B. 
Prakash and C. Lakshminarayana used Whale Optimization 
Algorithm (WOA) [36], S. Kamel used Hybrid Gray Wolf 
Optimizer (HGWO) [37], J. Radosavljevic et al. used hybrid 
phasor PSO and gravitational search algorithm (HPPSOGSA) 
[38], G. Deb et al. used Spider Monkey Optimization (SMO) 
[39], A. Selim used improved version of Harris Hawks 
optimizer (IHHO & MOHHO) [40], K. H. Truong et al. used 
Quasi-Oppositional Chaotic Symbiotic Organisms Search 
(QOCSOS) [41], Z. Tan et al. used Swarm Moth Flame 
Optimization (SMFO) [42], M. G. Hemeida et al. used Manta 
Ray Foraging Optimization algorithm (MRFO) [44], K. S. 
Sambaiah and T. Jayabarathi used Salp Swarm Algorithm 
(SSA) [45], to solve the ODG installation problem. 
 All the above researchers focused only on optimizing 
network reconfiguration or DG installation. This paper 
focuses on simultaneous NR and DG installation through 
power loss as an objective function significantly contributing 
to technological advancement. Most recent works have 
combined network reconfiguration with DG installation to 
boost electrical distribution system efficiency. "In [46], the 
authors used the HAS to simultaneously handle network 
reconfiguration and DG installation while focusing 
exclusively on reducing power losses". Afterward, many 
scholars used many innovative meta-heuristic algorithms to 
solve this problem, like S. H. Mirhoseini et al. used the 
Improved Adaptive Imperialist Competitive Algorithm 
(IAICA) [47], T. T. Nguyen et al. used an Adaptive Cuckoo 
Search Algorithm (ACSA) [48], S. R. Tuladhar used Non-
Dominated Sorting Particle Swarm Optimization (NSPSO) 
[49], A. Bayat  used a "Uniform Voltage Distribution based 
constructive reconfiguration Algorithm" (UVDA) [50], M. 
Abd El-salam used a hybridization of GWO and PSO named 
as (GWO-PSO) [51], J. Siahbalaee et al. used Improved 
Shuffled Frog Leaping Algorithm (ISFLA) [52], A. Onlam et 
al. used a novel Adaptive  ASFLA [53], U. Raut and S. Mishra 
used an Elitist–Jaya algorithm (IE-JAYA) [54], I. A. Quadri 
and S. Bhowmick used a hybridization of the  TLBO and the 
HSA, it is named as CTLHSO) [55], T. T. The et al. used 
Symbiotic Organism Search (SOS) Algorithm [56], H. 
Teimourzadeh and B. Mohammadi-Ivatloo used a three-
dimensional group search optimization (3D-GSO) [57], T. T. 
Tran et al. used a Stochastic Fractal Search (SFS) algorithm 

[58], K. S. Sambaiah and T. Jayabarathi used a  SSA [59], U. 
Raut and S. Mishra used an Enhanced Sine–Cosine Algorithm 
(ESCA) [60], T. T. Nguyen used a Pathfinder Algorithm 
(PFA) [61], A. M. Shaheen et al. used an Improved EO 
Algorithm (IEOA) [62], T. Van Tran et al. used a new Quasi-
Oppositional Chaotic Neural Network Algorithm 
(QOCNNA) [63], M. T. Nguyen Hoang et al. used a Quasi-
Oppositional-Chaotic SOS (QOCSOS ) Algorithm [64], T. T. 
Nguyen et al. used a Multi-Goal Function Based on Improved 
Moth Swarm Algorithm (MFA) [65], M. Ntombela et al. used 
a hybridization of the GA and the improved PSO (IPSO) 
named as (HGAIPSO) [66], and M. Shaheen et al. used a 
Modified Marine Predators Optimizer (MMPO) [67] to solve 
the simultaneous NR and DG installation problem. 
 Recently, a modern physics-based meta-heuristic 
algorithm, the Flow Direction Algorithm (FDA), was 
developed by Karami et al. [69]. The stochastic nature of the 
FDA gets trapped at local optimums and has a poor 
convergence rate. In response to these issues, our research 
suggests acceleration coefficients to boost the performance of 
the FDA. This modified version of the FDA effectively 
tackles the benchmark functions, and the MFDA deals with 
ONR, ODG installation, and simultaneous ONR and ODG 
installation. The analysis shows a better way to minimize the 
power loss by solving simultaneous ONR and ODG 
installation rather than only optimizing reconfiguration or 
installation of DG. It has been discovered that the outcomes 
achieved are superior to those produced outcomes using the 
ISCA, the FWA, the HSA, etc. 
 
Table 1. Nomenclature 
Abb  Desciption 
APL  Active Power Losses 
APLRI  Active Power Losses Reduction Index 
C1 & C2  Acceleration Coefficients 
DS   Distribution System 
Is   Maximum Acceptable Current through S Line 
iter   Iteration 
Flow_Xnew New Water Flow Position 
Max_iter  Maximum no. of Iterations 
Nbus  Number of Buses 
Neighbor  Neighbor Water Flow Position 
lb   Lower Bound 
NDG  Total Number of DGs 
OF   Objective Function 
ODG  Optimal Distribution Generation 
ONR  Optimal Network Reconfiguration  
PDG  Active Power Supplied by DG 
Ps    Real Power Flowing out of Bus S 
Psub  Active Power Supplied by Substation 
PL   Power Loss 
PLs+1  Real Load Powers at Bus S+1 
Qs   Reactive Power Flowing out of Bus S 
QLs+1  Reactive Load Powers at Bus S+1 
rand   Random Value with Uniform Distribution 
randn  Random Value with Normal Distribution 
RPL  Reactive Power Loss 
RPLRI  Reactive Power Losses Reduction Index 
Rs   Line Resistance 
SCs   Shunt Capacitors 
S0  Slope between the Current and Neighbor Water  

Flows 
TPL  Total System Loss 
TPL, (DG)   Total APL in the Presence of DG 
TQL, (DG)   Total RPL in the Presence of DG 
V   Velocity 
Vmin  Lower Acceptable Voltages 
Vmax  Upper Acceptable Voltages 
VP   Voltage Profile 
VPI   Voltage Profile Improvement 
ub   Upper Bound 
X_Best  Best Water Flow Position 
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X_Flow  Water Flow Position 
Xrand  Random Position 
Xs   Line Reactance 
W  Nonlinear Weight with a Random Number  

between 0 and Infinity 
β   Number of Neighbours 
Δ   Neighbourhood Radius 
 
 
2. Problem Formulation 

 
The only way to enhance the effectiveness of the distribution 
system is to minimize power losses. Also, the main 
contribution made by this article is to plan for the best 
possible reconfiguration of the DS and installation of DG by 
taking the switches and tie switches status and the location 
and size of DG units. This article aims to reduce distribution 
system losses when operating under different load levels due 
to operational constraints. The formal mathematical statement 
of the problem is as follows:   
 
min OF=min(TPL)      (1) 
 
where,  
TPL is the total system loss. 
 

 
Fig. 1. Radial-feeder Single-line diagram. 
 
 
 The single-line diagram of radial-feeder may be seen in 
Figure 1 [68]. The recursive equations below have been 
supplied to determine the power flow [2, 3, and 68]. Power 
flow calculations can be done using the Newton-Raphson 
technique with the software tool MATPOWER [71]. 
 

Ps+1=Ps-PLs+1-Rs, Ls+1•
!Ps2+Qs

2"

|Vs|2
     (2) 

 

Qs+1=Qs-QLs+1-Xs, Ls+1•
!Ps2+Qs

2"

|Vs|2
     (3) 

 
!V(s+1)!

2
=|Vs|2+2#Rs, (s+1)•Ps+Xs (s+1)•Qs$+#Rs, (s+1)

2 +Xs, (s+1)
2 $ !Ps

2+Qs
2"

|Vs|2
   (4) 

 
“where Ps and Qs are the real and reactive power flowing out 
of bus s, PLs+1 and QLs+1 are the real and reactive load powers 
at bus s+1. The line section between buses s and s+1 has 
resistance Rs, s+1 and reactance Xs, s+1” [73]. 
The PL of the feeder is calculated by 
 

PL(s, s+1)=Rs, Ls+1•
!Ps2+Qs

2"

|Vs|2
      (5) 

 
 The total PL of the feeder is calculated by 
 
TPL=∑ PL(s, s+1)n-1

s=0       (6) 
 
2.1 System Constraints 
The outcomes acquired by the proposed technique would be 
subjected to equality and inequality constraints to identify the 
optimal outcomes of the problem. 
 

Equality Constraints 
The balance between power demand and supply is given by  
 
TPsub+∑ PDG,nNDG

s=1 -∑ PLs
Nbus
s=2 -TPLDG=0    (7) 

 
Psub and PDG are the active power supplied by substation and 
DG, respectively; PLs is the total active power demand at bus, 
TPL, (DG) is the total APL in the presence of DG, Nbus is the 
number of buses. NDG is the total number of DGs. 
 
Inequality Constraints 
System constraints should be satisfied during the ONR, ODG, 
and simultaneous ONR and ODG installation. All system bus 
voltages must be maintained between lower and upper limits. 
Current in a branch cannot exceed its rated capacity in the 
system. Mathematically, these constraints are expressed as 
follows: 
 
Vmin≤V≤Vmax       (8) 
 
|Is|≤Is, max       (9) 
 
where, 
Vmin and Vmax are the lower and upper acceptable voltages for 
any bus in the system, 
Vmin is 0.9 and Vmax is 1.05 (p.u.).  
Is is the sth line current, 
Is, max is the maximum acceptable current through the line. 
 
DG Limits 
A random selection is used to attain the DG size, normalized 
between the minimum and maximum operational limitations. 
The lower bound is 10%, and the upper bound is 60% of the 
total active power demand. These limits are derived as 
follows [3, 35]. 
 
0.1×∑ PLs

Nbus
s=2 ≤ ∑ PDG,sNDG

s=1 ≤0.6×∑ PLs
Nbus
s=2   (10) 

 
2.2 Performance Indices 
The following assessment indices determine how well the 
suggested strategy works for reconfiguring and optimally 
integrating DG. Higher values indicate a more favorable 
influence on each index's distribution system. 
 
APL Reduction Index (APLRI) 
 
APLRI is determined from Eq. (11) [57]. 
 
APLRI (%)= TPL-TPL (NR+DG)

TPL
×100   (11) 

 
TPL and TPL (NR+DG) are the total APL in cases 1 and 4. 
 
RPL Reduction Index (RPLRI) 
RPLRI is determined from Eq. (12) [57]. 
 
RPLRI (%)=

TQL-TQL(NR+DG)
TQL

×100   (12) 
 
TQL and TQL (NR+DG) are the total RPL in cases 1 and 4. 
 
Voltage Profile Improvement (VPI) 
VPI is determined from Eq. (13) [57]. 
 
VPI (%)=∑ %Vs(0)-Vs(NR+DG)&

2×100NBus
s=1   (13) 
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where Vs is the sth bus voltage. 
 
3 Flow Direction Algorithm 
Karami et al. Developed Flow Direction Algorithm (FDA) in 
2021 using the D8 technique. The D8 algorithm determines 
the direction of water flow in a drainage basin after 
transforming the rainfall into runoff. Figure 2. Shows the 
basin outflow flow with the D8 technique. This method 
generates an original population in the drainage basin, which 
can also be considered the problem search space.  
 

 
Fig. 2. Diagram of basin outflow flow with the D8 technique 
 
 Then, water flows are directed towards the lowest 
elevation area as much as possible, which can also be 
considered the best solution. 
 According to the FDA algorithm, the starting position of 
flows is calculated as follows: 
 
X_Flow(i)=lbrand×(ub-lb)    (14) 
 
X_Flow is the water flow position, 
 
 In addition to this, it is presumed that there are some β 
neighborhood flows around each flow; the neighboring flows 
are calculated as follows: 
 
Neighbor(j)=X_Flow(i)+Δ×randn   (15) 
 
 Where the neighbor represents the neighbor's position, 
The exploration will be limited to a small range if the value is 
minute; if the ∆ value is large, the exploration will open up 
the possibility of exploring a broad range. In this algorithm, 
to enhance the probability of finding the closest to the optimal 
solutions (global search), search a wide range of search space 
that offers various solutions. It is also necessary to search a 
small region of the search space containing several optimal 
solutions to find the optimal global solution (local search) 
more accurately. If a global search process is enforced in the 
algorithm, the algorithm cannot discover the global optimum 
with the necessary precision; similarly, if a local process is 
enforced in the algorithm, the algorithm gets stuck with local 
optima. If a global search process is enforced in the algorithm, 
the algorithm cannot discover the global optimum with the 
necessary precision; similarly, if a local process is enforced in 
the algorithm, the algorithm gets stuck with local optima. 
Now, in this algorithm, the value of Δ was linearly reduced 
from the highest value to the smallest value to maintain the 
balance between global and local search; now, the direction 
of Δ is towards a random position for more variation. The 
mathematical modelling of Δ as follows: 
 

Δ=(rand×Xrand − rand × X_Flow(i))×‖X_Best−
X_Flow‖×W             (16) 
 
Xrand is a random position, and W is a nonlinear weight with a 
random number between 0 and infinity. This first one 
describes that X_Flow (i) moves to a random position (Xrand). 
For the next one, by increasing iteration, Flow X(i) is closed 
to X_Best, and the Euclidian distance between X_Best and 
X_Flow (i) is reached to zero. The mathematical modelling of 
W is as follows: 
 

W= )*1- iter
Max_iter

+
(2×randn)

,× *rand× iter
Max_iter

+×rand (17) 
 
 The changes of W while increasing the iterations are 
shown in Figure 3; this can avoid the stuck with local optima 
in the algorithm. All the water flows move with a velocity (V) 
to the neighbor with the minimum fitness function.  
 

 
Fig. 3. The Changes of W. 
 
 The velocity of the water flow to neighbor flows depends 
on its slope. The mathematical modelling of V is as follows: 
 
V=randn×S0     (18) 
 
 The S0 is the slope between the current and neighbor water 
flows; the randn generates numerous solutions and enhances 
global search capability. The following relation also 
determines the slope of ith water flow to the neighbor jth:  
 
S(i, j, d)= Fitness_Flow(i)-Neighbor_Fitness(j)

‖X_Flow(i,d)-Neighbor(j,d)‖
   (19) 

 
 To find the new position of water flow, the mathematical 
modelling is as follows: 
 
Flow_Xnew(i)=Flow_X(i)+V× X_Flow(i)-Neighbor(j)

|X_Flow(i)-Neighbor(j)|
 (20) 

 
 The fitness function of any neighbor may not be less than 
the new flow objective function, which is similar to the sink-
filling process to determine the water flow direction. In this 
situation, the FDA algorithm chooses a new flow randomly; 
if its fitness function is less than the current flow's, it will 
follow the same path; otherwise, it will follow the prevailing 
slope direction. The position of a sink before and after filling 
is shown in Figure 4. 
 
Modified Flow Direction Algorithm 
In the case of population-based optimization, there may be a 
possibility of skipping the optimal solution when the global 
search process accelerates the convergence speed of the 
algorithm. The size of the local search process is crucial in 
determining how well an algorithm performs in terms of 
exploration and exploitation; meanwhile, a local search 
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process ensures adequate convergence accuracy. However, 
the balance between exploration and exploitation is necessary 
for an algorithm. Acceleration coefficients are introduced to 
maintain a proper balance between the exploration and 
exploitation of the FDA. This relationship determines the 
flow's new position: 
 
Flow_Xnew(i)=C1.*Flow_X(i)+C2.*V× X_Flow(i)-Neighbor(j)

|X_Flow(i)-Neighbor(j)|
  (21) 

 
Where C1 and C2 are the acceleration coefficients, which are 
equal to one, i.e., C1 + C2 = 1; these values were historically 
chosen as C1 = 0.1 and C2 = 0.9. The pseudo-code of MFDA 
is shown in Table 2, and the flow chart is shown in Figure 5. 
 

 
Fig. 4. Position of a sink before and after filling. 
 
 Under these conditions, the flow direction may be 
simulated using the following relation.  
 

-Flow_Xnew(i)=X_Flow(i)+randn×(X_Flow(r)-X_Flow(i)) if Fitness_Flow(r)<Fitness_Flow(i)
Flow_Xnew(i)=X_Flow(i)+2randn×(X_Best-X_Flow(i))    otherwise                                                        (22) 

 

 
Fig. 5. Flowchart of MFDA 
 
Table 2. Pseudo Code of MFDA 

Initialize the search agents (X_Flowi) i = 1, . . ., n 
Compute the fitness function and create fitness matrix 
Initialize the velocity of flows Vmin and Vmax 

while it < itmax 
 update the W using (Eq. 17) 
 for all the flows 
  for all the neighbours 
   Initialize neighbourhood radius Δj; j = 1, . . ., 
                                    β using (Eq. 16) 
   Initialize neighbour flows X_ neighbour 
   Compute the neighbour fitness function and  
                                    create fitness matrix 

end (for all the neighbours) 
update the slope of neighbour using (Eq. 19) 
if neighbour fitness < flow fitness 
 update the velocity of each flow  

                                     using (Eq. 18) 

 update the new flow using (Eq. 22) 
else 
 update the new flow using (Eq. 21) 
end 
update the best flow and fitness function 

 end (for all the flows) 
end (while) 

 
4. Simulation Results and Discussion 
The proposed MFDA was applied to the sixteen benchmark 
functions and simultaneous reconfiguration and DG 
installation to prove effectiveness and robustness. This paper 
has taken the mean value and standard deviation of sixteen 
benchmark functions with 500 maximum iterations, 50 
population sizes, and 30 independent runs for a fair 
comparison.  
 
Table 3. Unimodal Functions 

Function Dim Range Fmin 
F1(x) =∑ xi2dim

i=1   30 -100, 100 0 
F2(x) =∑ |xi|+∏ |xi|dim

i=1
dim
i=1   30 -10, 10 0 

F3(x) =∑ #∑ xj2i
j-1 $2dim

i=1   30 -100, 100 0 

F4(x) = maxi{|xi|, 1≤i≤dim} 30 -100, 100 0 
F5(x) =∑ )100#xi+1-xi2$

2
+(xi-1)2*dim

i=1   30 -30, 30 0 

F6(x) =∑ (|xi+0.5|)2dim
i=1   30 -100, 100 0 

F7(x) =∑ ixi4+rand(0,  1)dim
i   30 -1.28, 1.28 0 

 
4.1 Benchmark Functions 
First, the proposed MFDA was applied to sixteen benchmark 
functions to prove effectiveness and robustness. The 
parameters of the MFDA algorithm are the same as [69]. 
Maximum iterations are 500, and the population size is 50 for 
the sixteen benchmark functions. The details of the unimodal 
and multimodal benchmark functions may be seen in Tables 3 
and 4, respectively. The outcomes attained by the FDA [69], 
OFDA [74], and MFDA may be seen in Tables 5 and 6. Table 
5 shows that the proposed MFDA performs better regarding 
the mean value and standard deviation. The results obtained 
by MFDA for the unimodal functions F1, F2, F3, F4, F5, and 
F7 give better results than FDA and OFDA; for the function, 
F6 is worse than the OFDA but better than FDA. The results 
obtained by MFDA for the multimodal functions F9, F10, 
F11, F15, and F16 give better results than FDA and OFDA, 
for the functions F8 and F12 are worse than the OFDA but 
better than the FDA, for the function F13 gives worse than 
FDA and OFDA. Table 6 shows that the proposed MFDA 
performs better regarding the success rate than the FDA and 
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OFDA. The convergence curves of some of the benchmark 
functions may be seen in Figure 6. 
 
Table 4. Multimodal Functions 

Function Dim Range Fmin 
F8(x) =∑ -xi sin#-|xi|$dim

i=1   30 -500, 
500 

-418.9829×5 

F9(x) =∑ .xi2-10 cos  (2∏ xi)+10/dim
i=1   30 -5.12, 

5.12 
0 

F10(x) =∑ -20exp 0-0.21 1
dim
∑ x2dim
i=dim 2 -exp 3 1

dim
∑ cos(2∏ xi)dim
i=1 4 20+edim

i=1   
30 -32, 32 0 

F11(x) =
1
4000

∑ xi2-∏ cos 3xi
√i
4 +1n

i=1
n
i=1   30 -600, 

600 
0 

F12(x) =
π
n
510 sin ( πy1)+∑ #yi-1$

2n-1
i=1 .1+10sin2(πyi+1)/+(yn-1)26 +∑ u(xi,10,100,4)n

i=1 , yi=1+ xi+1
4

  30 -50, 50 0 

F13(x) = 0.1 8sin2(3πx1)+9 (xi-1)2
n

i=1
.1+sin2(3πxi+1)/+(xn-1)2[1+sin2(2πxn)]: +9 u(xi,5,100,4)

n

i=1
 30 -50, 50 0 

F14(x) = -∑ sin(xi) . 3sin 3i.xi
2

π
44

%&
, m = 10n

i=1   
30 0, π -4.687 

F15(x) = ;e
-∑ (xi β) *n
i=1

2m
-2e-∑ xi

2n
i=1 < .∏ cos2xi, m=5n

i=1   
30 -20, 20 -1 

F16(x) = 4x12-2.1x14+
1
3

x16+x1x2-4x22+4x24 
30 -10, 10 -1 

where u(xi,a, k, m)==
k(xi-a)m                   xi>a
0                         -a<xi<a
k(-xi-a)m                xi<-a

 
   

 
Table 5. Outcomes of unimodal and multimodal functions 

Function FDA OFDA MFDA 
Ave Std Ave Std Ave Std 

F1 9.00E-05 6.10E-05 1.90E-65 1.00E-64 3.50E-160 1.90E-159 
F2 4.90E-04 2.70E-04 7.00E-19 3.60E-18 9.40E-113 3.30E-112 
F3 4.90E+01 3.10E+01 5.30E-12 2.90E-11 1.80E-153 7.00E-153 
F4 1.70E+01 2.90E+00 1.50E+01 3.40E+00 1.10E-85 3.80E-85 
F5 6.50E+01 4.10E+01 2.30E+01 4.40E+00 2.40E+01 7.00E-01 
F6 1.50E-04 2.20E-04 0.00E+00 0.00E+00 4.20E-06 6.10E-06 
F7 9.50E-02 3.80E-02 3.70E-04 2.40E-04 1.90E-04 1.40E-04 
F8 -3.30E+03 3.40E+02 -3.60E+03 2.80E+02 -3.40E+03 3.60E+02 
F9 9.90E+00 3.40E+00 4.40E+00 6.90E+00 0.00E+00 0.00E+00 

F10 1.20E-01 3.50E-01 4.20E-15 1.30E-15 1.00E-15 6.50E-16 
F11 2.00E-01 1.20E-01 4.10E-02 4.40E-02 0.00E+00 0.00E+00 
F12 2.10E-02 7.90E-02 4.70E-32 1.70E-47 2.30E-24 1.10E-23 
F13 3.70E-04 2.00E-03 3.90E-32 6.70E-32 2.10E-02 3.90E-02 
F14 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.90E+00 2.70E+00 
F15 5.20E-04 3.90E-04 5.30E-04 3.90E-04 3.10E-04 1.80E-19 
F16 -1.00E+00 6.80E-16 -1.00E+00 6.80E-16 -1.00E+00 6.70E-16 

 
Table 6. Outcomes of success rate for unimodal and 
multimodal functions 

Function Threshold 
FDA OFDA MFDA 

Success 
Rate 

Success 
Rate 

Success 
Rate 

F1 1.00E-20 0 100 100 
F2 1.00E-20 0 90 100 
F3 1.00E-20 0 73.33 100 
F4 1.00E-20 0 0 100 
F5 1.00E-20 0 16.66 0 
F6 1.00E-20 0 100 0 
F7 1.00E-05 0 0 10 
F8 1.00E-05 100 100 100 
F9 1.00E-05 0 50 100 
F10 1.00E-05 83.33 100 100 
F11 1.00E-05 0 56.66 100 
F12 1.00E-05 73.33 100 100 
F13 1.00E-05 100 100 66.66 
F14 1.00E-05 0 0 0 
F15 1.00E-05 0 0 0 
F16 1.00E-05 100 100 100 

Average 28.54 61.67 67.29 

 
                             F1    F2 

 
  F3     F4 
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 F7    F9 

 
 F10   F11 

Fig. 6. Convergence curves of some of the benchmark functions 
 
4.2 Network Reconfiguration with Distributed Generator 

Installation 
Second, simultaneous reconfiguration and DG installation 
using 33-69 bus test systems to prove effectiveness and 
robustness. Distribution system total loss depends on 
integrated DG size and location, so adding more DGs may be 
technologically or financially unfeasible. DGs become active 
networks and increase network short-circuit levels if their 
overall rating increases. For a fair and accurate comparison, 
this study restricts the number of DGs to historical literature 
[35], [59], [60], but the suggested approach works for any 
number of DGs. To test the efficacy and superiority of the 
suggested method, we simulate all of the systems with three 
case studies under light (0.5), nominal (1.0), and heavy (1.6) 
load levels. 

 The parameters of the MFDA algorithm are the same as 
[59]. Maximum iterations are 500 for the 33 – 69 bus systems, 
and the population size is 75 for the 33 – 69 bus systems based 
on problem difficulty and size. The research cases are 
repeated 30 times, and the results are consistent every time, 
with negligible variations among various runs. MATLAB 
R2018a runs on a PC with 8 GB RAM and an 11th Gen Intel 
Core i5-11300H @ 3.10GHz processor. 
 
4.3 Bus Systems 
The test system data is taken at [46], [71], [72], [73]; this 
system contains five ties and 32 sectional switches. Figure 7 
exhibits the single-line diagram of the test system. The active 
and reactive power demands and losses are (3.72 MW and 
2.30 MVAr), (202.66 kW, and 135.14 kVAr), respectively, 
and the minimum voltage is 0.9131 (p.u.). 
 System network setup begins with the base case. Next, 
switches 33, 34, 35, 36, and 37 are opened, causing active 
(kW) and reactive (kVAr) power losses and minimum voltage 
(p.u.) for three loading conditions (47.07, 31.35, 0.9583 (18)), 
(202.66, 135.14, 0.9131 (18)) and (575.31, 384.26, 0.8529 
(18)), respectively. 
 The second stage deals only with network reconfiguration 
to attain the best switch states; the attained best switch states 
are tabulated in Table 7. Table 7 shows that the MFDA finds 
optimal open switches for all three loads (7, 9, 14, 32, and 37). 
Table 7 shows that real (kW) and reactive (kVAr) power loss 
decreased to (33.27 and 24.38), (139.55 and 102.30), and 
(380.44 and 278.97) for the three loading scenarios. Active 
and reactive power loss index (%) are (29.32 and 22.22), 
(31.14 and 24.3), and (33.87 and 27.4) for each load 
condition. Table 7 shows that minimum system voltage has 
grown dramatically at different load levels. VPI (%) is 0.41, 
1.84, and 5.61; these findings show that the MFDA 
effectively works for optimum network reconfiguration. 
 

 
Table 7. For a 33-bus with different case studies and load levels. 
Case Description Load Level 

Light Nominal Heavy 

Case 1 
TPLoss (kW) 47.07 202.66 575.31 
TQLoss (kVAr) 31.35 135.14 384.26 
Vmin (p.u.) 0.9583 (18) 0.9131 (18) 0.8529 (18) 

Case 2 

Open Switches 7−9−14−32−37 7−9−14−32−37 7−9−14−32−37 
TPLoss (kW) 33.27 139.55 380.44 
TQLoss (kVAr) 24.38 102.30 278.97 
APLRI (%) 29.32 31.14 33.87 
RPLRI (%) 22.22 24.3 27.4 
Vmin (p.u.) 0.9698 (32) 0.9378 (32) 0.8967 (32) 
VPI (%) 0.41 1.84 5.61 

Case 3 

Size in kW (Bus) 
371.5 (25) 
371.5 (14) 
371.5 (31) 

743 (25) 
743 (14) 
743 (31) 

1188.8 (14) 
1188.8 (25) 
1188.8 (31) 

TPLoss (kW) 18.47 76.71 206.28 
TQLoss (kVAr) 12.51 51.95 139.73 
APLRI (%) 60.77 62.15 64.15 
RPLRI (%) 60.11 61.56 63.64 
Vmin (p.u.) 0.9811 (33) 0.9612 (33) 0.9359 (33) 
VPI (%) 0.85 3.77 11.13  

Case 4 

Open Switches 7−28−34−35−36 7−28−34−35−36 7−11−14−28−36 

Size in kW (Bus) 
371.50 (32) 
371.50 (29) 
371.50 (8) 

743.00 (30) 
743.00 (15) 
743.00 (25) 

1188.8 (31) 
1188.8 (9) 
1158.8 (25) 

TPLoss (kW) 14.12 58.36 154.38 
TQLoss (kVAr) 11.15 43.31 114.71 
APLRI (%) 70 71.2 73.17 
RPLRI (%) 64.43 67.96 70.15 
Vmin (p.u.) 0.9815 (17) 0.9724 (33) 0.9574 (33) 
VPI (%) 1.08 5.88 18.31 
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Fig. 7. IEEE-33 bus base configuration 
 
 In the third stage, the system installs the only optimal DG 
to attain the optimal size and location of DG; the obtained 
optimal DG sizes and locations are tabulated in Table 7. From 
Table 7, it is observed that the MFDA finds the best optimal 
locations for all three loads (25, 14, 31), (25, 14, 31), and (14, 
25, 31) with real power injection capacities in kW (371.5, 
371.5, 371.5), (743, 743, 743), and (1188.8, 1188.8, 1188.8), 
respectively. Table 7 shows that active (kW) and reactive 
(kVAr) power loss decreases to (18.47, 12.51), (76.71, 51.95), 
and (206.28, 139.73) for the three loading conditions. Active 
and reactive power loss indexes (%) are (60.77, 60.11), 
(62.15, 61.56), and (64.15, 63.64) for each loading state. 
Table 7 shows that minimum system voltage has grown 
dramatically at different load levels. VPI (%) is 0.85, 3.77, 
and 11.13; these findings show that the MFDA effectively 
works for appropriate DG installation.  

 
Fig. 8. MFDA obtains the bus voltage of 33-bus with a light load in all 
cases. 

 
Fig. 9. MFDA obtains the bus voltage of 33-bus with a nominal load in 
all cases. 

 
Fig. 10. MFDA obtains the bus voltage of 33-bus with a heavy load in 
all cases. 
 
 

 In the fourth stage, reconfiguration and DG installation 
are performed simultaneously for the system to attain an 
optimal state of switches, size, and location of DG; attained 
best switch states, size, and location of DG are tabulated in 
Table 7, and this table shows that the MFDA attained the best 
open switches for all three load (7, 28, 34, 35 and 36), (7, 28, 
34, 35 and 36), and (7, 11, 14, 28, and 36) and best optimal 
locations for all three loads (32, 29, and 8), (30, 15, and 25), 
and (31, 9, and 25) with real power injection capacities in kW 
(371.5, 371.5, and 371.5), (743, 743, and 743), and  (1188.8, 
1188.8, and 1158.8), respectively. Table 7 shows that power 
loss decreases for real (kW) and reactive (kVAr) loading 
conditions by (14.12 and 11.15), (58.36 and 43.31), and 
(154.38 and 114.71) for the three loading conditions. Active 
and reactive power loss indexes (%) are (70, 64.43), (71.2, 
67.96), and (73.17, 70.15) for each loading state. Table 6 
shows that minimum system voltage has grown dramatically 
at different load levels. VPI (%) is 1.08, 5.88, and 18.31; these 
findings show that the MFDA effectively works for 
simultaneous reconfiguration and DG installation. The 
convergence curve of the light, nominal, and heavy loads is 
shown in Figures 11(a), 11(b), and 11(c) for the cases. 
 To show the relevance of the suggested approach, Tables 
8, 9, and 10 compare the MFDA performance to ISCA [2] and 
FWA [3] results in all three loading situations. The tables 
show that the MFDA is best. 
 

 
(a2) 

 
(b2) 

 
(c2) 
(a)  
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(a3) 

 
(b3) 

 
(c3) 
 (b) 

 
(a4) 

 
(b4) 

 
(c4) 
(c) 

Fig. 11. (a) Convergence curve of the light, nominal, and heavy load 
conditions for case 2, (b) convergence curve of the light, nominal, and 
heavy load conditions for case 3 and (c) convergence curve of the light, 
nominal, and heavy load conditions for case 4 
 
 In case 3, APLRI obtained by the MFDA is 62.15%, 
which is better than ISCA [2], HSA [46], FWA [3], GA [46], 
RGA [46], and FF [70]. The value of RPLRI obtained from 
the MFDA is 61.56%, which is better than ISCA [2], HSA 
[46], and FWA [3]; thus, the MFDA achieves better results 
than other algorithms on all three measures. 
 The performance of the MFDA is compared across all 
cases of ISCA [2], HSA [46], FWA [3], GA [46], RGA [46], 
and FF [70] at the nominal loading conditions, and the 
outcomes are provided in Table 11. In case 2, as shown in the 
table, APLRI produced by the MFDA is 31.14%, identical to 
those gained by ISCA [2]. The MFDA produces superior 
outcomes compared to HSA [46], FWA [3], GA [46], and 
RGA [46]. RPLRI produced by the MFDA is 24.3% identical 
to those gained by ISCA [2] and FWA [3] and worse than 
HSA [46]. The minimum voltage obtained by the MFDA is 
0.9378, identical to those gained by ISCA [2] and FWA [3]. 
The MFDA produces superior outcomes compared to HSA 
[46], GA [46], and RGA [46]. Thus, the MFDA achieves 
better results than other algorithms on all three measures. 
 In case 4, APLRI obtained by the MFDA is 71.2%, which 
is better than ISCA [2], HSA [46], FWA [3], GA [46], RGA 
[46], and FF [70]. The value of RPLRI obtained from the 
MFDA is 67.96%, which is better than ISCA [2], HSA [46], 
and FWA [3]; thus, the MFDA achieves better results than 
other algorithms on all three measures. 
 

Table 8. For a 33-bus with a light load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 47.06 47.067 47.07 
TQLoss (kVAr) - 31.35 31.35 
Vmin (p.u.) 0.9583 (18) 0.9583 (18) 0.9583 (18) 

Case 2 

Open Switches 7−14−9−32−28 37−32−9−14−7 7−9−14−32−37 
TPLoss (kW) 33.39 33.26 33.27 
TQLoss (kVAr) - 24.38 24.38 
APLRI (%) 29.04 29.33 29.32 
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RPLRI (%) - 22.23 22.22 
Vmin (p.u.) 0.9714 (32) 0.9698 (33) 0.9698 (32) 
VPI (%) - 0.41 0.41 

Case 3 

Size in kW (Bus) 
294.80 (14) 
94.700 (18) 
507.20 (32) 

371.50 (14) 
371.50 (24) 
371.50 (31) 

371.5 (25) 
371.5 (14) 
371.5 (31) 

TPLoss (kW) 21.37 18.57 18.47 
TQLoss (kVAr) - 12.58 12.51 
APLRI (%) 54.58 60.55 60.77 
RPLRI (%) - 59.87 60.11 
Vmin (p.u.) 0.9844 (30) 0.9811 (33) 0.9811 (33) 
VPI (%) - 0.85 0.85 

Case 4 

Open Switches 7−14−10−32−28 7−10−14−31−28 7−28−34−35−36 

Size in kW (Bus) 
258.60 (32) 
321.80 (29) 
280.30 (18) 

357.98 (30) 
88.670 (13) 
340.11 (16) 

371.50 (32) 
371.50 (29) 
371.50 (8) 

TPLoss (kW) 16.22 16.24 14.12 
TQLoss (kVAr) - 12.14 11.15 
APLRI (%) 65.53 65.49 70 
RPLRI (%) - 61.28 64.43 
Vmin (p.u.) 0.9862 (14) 0.9816 (32) 0.9815 (17) 
VPI (%) - 1.08 1.08 

 
Table 9. For a 33-bus with a nominal load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 202.67 202.66 202.66 
TQLoss (kVAr) - 135.14 135.14 
Vmin (p.u.) 0.9131 (18) 0.9131 (18) 0.9131 (18) 

Case 2 

Open Switches 7−14−9−32−28 7−14−9−32−28 7−9−14−32−37 
TPLoss (kW) 139.98 139.55 139.55 
TQLoss (kVAr) - 102.30 102.30 
APLRI (%) 30.93 31.14 31.14 
RPLRI (%) - 24.30 24.3 
Vmin (p.u.) 0.9413 (32) 0.9378 (32) 0.9378 (32) 
VPI (%) - 1.27 1.84 

Case 3 

Size in kW (Bus) 
589.70 (14) 
189.50 (18) 
1014.6 (32) 

743.00 (14) 
743.00 (24) 
743.00 (31) 

743 (25) 
743 (14) 
743 (31) 

TPLoss (kW) 88.68 77.13 76.71 
TQLoss (kVAr) - 52.29 51.95 
APLRI (%) 56.24 61.94 62.15 
RPLRI (%) - 61.31 61.56 
Vmin (p.u.) 0.9680 (30) 0.9612 (33) 0.9612 (33) 
VPI (%) - 3.8 3.77 

Case 4 

Open Switches 7−14−11−32−28 7−9−14−28−31 7−28−34−35−36 

Size in kW (Bus) 
536.70 (32) 
615.80 (29) 
531.50 (18) 

648.46 (30) 
510.27 (13) 
532.46 (16) 

743.00 (30) 
743.00 (15) 
743.00 (25) 

TPLoss (kW) 67.11 66.81 58.36 
TQLoss (kVAr) - 49.53 43.31 
APLRI (%) 66.89 67.03 71.2 
RPLRI (%) - 63.35 67.96 
Vmin (p.u.) 0.9713 (14) 0.9611 (31) 0.9724 (33) 
VPI (%) - 5.14 5.88 

 
Table 10. For a 33-bus with a heavy load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 575.31 575.31 575.31 
TQLoss (kVAr) - 384.25 384.26 
Vmin (p.u.) 0.8529 (18) 0.8529 (18) 0.8529 (18) 

Case 2 

Open Switches 7−14−9−32−28 7−9−14−37−32 7−9−14−32−37 
TPLoss (kW) 381.24 380.44 380.44 
TQLoss (kVAr) - 278.96 278.97 
APLRI (%) 33.73 33.87 33.87 
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RPLRI (%) - 27.39 27.4 
Vmin (p.u.) 0.9027 (32) 0.8967 (32) 0.8967 (32) 
VPI (%) - 5.61 5.61 

Case 3 

Size in kW (Bus) 
944.10 (14) 
301.30 (18) 
1678.4 (32) 

1188 (14) 
1188 (24) 
1188 (31) 

1188.8 (14) 
1188.8 (25) 
1188.8 (31) 

TPLoss (kW) 238.07 207.49 206.28 
TQLoss (kVAr) - 140.66 139.73 
APLRI (%) 58.57 63.93 64.15 
RPLRI (%) - 63.39 63.64 
Vmin (p.u.) 0.9484 (29) 0.9359 (33) 0.9359 (33) 
VPI (%) - 11.08 11.13 

Case 4 

Open Switches 7−14−11−32−28 7−9−14−28−31 7−11−14−28−36 

Size in kW (Bus) 
959.00 (32) 
1190.1 (29) 
1020.6 (18) 

1126.80 (30) 
700.600 (13) 
1153.80 (16) 

1188.8 (31) 
1188.8 (9) 
1158.8 (25) 

TPLoss (kW) 172.97 167.96 154.38 
TQLoss (kVAr) - 123.9 114.71 
APLRI (%) 69.93 70.81 73.17 
RPLRI (%) - 67.76 70.15 
Vmin (p.u.) 0.9554 (14) 0.9504 (32) 0.9574 (33) 
VPI (%) - 17.09 18.31 

 
Table 11. For a 33-bus with a nominal load, MFDA is compared against other algorithms. 
Method Description Case 2 Case 3 Case 4 

MFDA 

Open Switches 7−9−14−32−37 33−34−35−36−37 7−10−12−28−32 
Size in kW (Bus) - 2229 2229 
APLRI (%) 31.14 62.15 71.2 
RPLRI (%) 24.30 61.56 67.96 
Vmin (p.u.) 0.9378 (32) 0.9612 (33) 0.9724 (18) 

ISCA [2] 

Open Switches 7−14−9−32−37 33−34−35−36−37 7−9−14−28−31 
Size in kW (Bus) - 2229 1691.2 
APLRI (%) 31.14 61.94 67.03 
RPLRI (%) 24.30 61.31 63.35 
Vmin (p.u.) 0.9378 0.9612 0.9611 

HSA [46] 

Open Switches 7−14−9−32−37 33−34−35−36−37 7−4−10−32−28 
Size in kW (Bus) - 1725.6 1668.4 
APLRI (%) 31.88 52.26 63.95 
RPLRI (%) 24.3 48.38 55.73 
Vmin (p.u.) 0.9342 0.9670 0.9700 

FWA [3] 

Open Switches 7−14−9−32−28 33−34−35−36−37 7−14−11−32−28 
Size in kW (Bus) - 1793.7 1684.1 
APLRI (%) 30.93 56.24 66.89 
RPLRI (%) 22.39 55.13 62.78 
Vmin (p.u.) 0.9413 0.9680 0.9713 

GA [46] 

Open Switches 33−34−9−36−28 33−34−35−36−37 7−34−10−32−28 
Size in kW (Bus) - 1604.4 1963.3 
APLRI (%) 30.15 50.60 62.92 
RPLRI (%) - - - 
Vmin (p.u.) 0.9310 0.9605 0.9766 

RGA [46] 

Open Switches 7−14−9−32−37 33−34−35−36−37 7−12−9−32−27 
Size in kW (Bus) - 1777 1774 
APLRI (%) 31.20 51.84 63.33 
RPLRI (%) 24.3 - - 
Vmin (p.u.) 0.9315 0.9687 0.9691 

FF [70] 

Open Switches - 33−34−35−36−37 8−9−28−32−33 
Size in kW (Bus) - - 1773.8 
APLRI (%) - - 63.51 
RPLRI (%) - - 59.35 
Vmin (p.u.) - - 0.9735 

 
 In the same way, the performance of MFDA is compared 
to that of ISCA [2], HSA [46], and FWA [3] at the heavy 

loading condition. The outputs are summarized in Table 11. 
In cases 2, 3, and 4, the results indicate that the APLRI% and 
RPLRI% achieved by the MFDA are significantly superior to 
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those obtained by the ISCA [2], HSA [46], and FWA [3] in 
cases 2, 3, and 4. Thus, the MFDA achieves better results than 
other algorithms on all three measures. Figure 8, 9, and 10 
displays the voltage profiles of light, nominal, and heavy for 

all the cases like the base case, light, nominal, and heavy load 
conditions attained by the proposed MFDA. 
 

Table 12. For a 33-bus with a heavy load, MFDA is compared against other algorithms. 
Method Description Case 2 Case 3 Case 4 
MFDA Open Switches 7−9−14−32−37 33−34−35−36−37 6−11−14−16−28 

Size in kW (Bus) - 3566.4 3567 
APLRI (%) 33.87 64.15 73.17 
RPLRI (%) 27.40 63.64 70.15 
Vmin (p.u.) 0.8967(32) 0.9359 (33) 0.9574 (14) 

ISCA [2] Open Switches 7−14−9−32−37 33−34−35−36−37 7−9−14−28−31 
Size in kW (Bus) - 3564 2981.2 
APLRI (%) 33.87 63.93 70.81 
RPLRI (%) 27.39 63.39 67.76 
Vmin (p.u.) 0.8967 0.9359 0.9504 

HSA [46] Open Switches 7−14−9−32−37 33−34−35−36−37 7−14−10−28−32 
Size in kW (Bus) - 2716.2 2752.9 
APLRI (%) 33.86 54.63 66.23 
RPLRI (%) 27.39 51.32 61.50 
Vmin (p.u.) 0.8967 0.9437 0.9516 

FF [70] Open Switches 7−14−9−32−28 33−34−35−36−37 7−4−10−32−28 
Size in kW (Bus) - 2923.8 3169.7 
APLRI (%) 33.73 58.57 69.93 
RPLRI (%) 25.63 57.51 65.67 
Vmin (p.u.) 0.9027 0.9484 0.9554 

 
4.4 Bus Systems 
The test system data is taken at [46], [71], [72], [73]; this 
system contains five ties and 68 sectional switches. Figure 12 
exhibits the single-line diagram of the test system. The active 
and reactive power demands and losses are (3.8 MW and 2.69 
MVAr), (225 kW and 102.16 kVAr), respectively, and the 
minimum voltage is 0.9092 (p.u.). 

 
Fig. 12. IEEE-69 bus base configuration 
 
 
 System network setup begins with the base case. Next, 
switches 69, 70, 71, 72, and 73 are opened, causing active 
(kW) and reactive (kVAr) power losses and minimum voltage 
(p.u.) for three loading conditions (51.61, 23.55, 0.9567 (65)), 
(225, 102.16, 0.9092 (65)) and (652.53, 294.26, 0.8445 (65)), 
respectively. 
 The second stage deals only with network reconfiguration 
to attain the best switch states, tabulated in Table 13. From 
Table 13, it is observed that the MFDA finds optimal open 
switches for all three loads (14, 55, 61, 69, and 70), (14, 57, 
61, 69, and 70), and (14, 56, 61, 69, and 70). Table 13 shows 
that real (kW) and reactive (kVAr) power loss decreased to 
(23.61 and 22.09), (98.61 and 92.05), and (267.11 and 248.64) 
for the three loading scenarios. Active and reactive power loss 

index (%) are (54.25 and 6.21), (56.18 and 9.9), and (59.06 
and 15.5) for each load condition. Table 13 shows that 
minimum system voltage has grown dramatically at different 
load levels. VPI (%) is 0.67, 3.37, and 9.45; these findings 
show that the MFDA effectively works for optimum network 
reconfiguration. 
 In the third stage, the system installs the only optimal DG 
to attain the optimal size and location of DG; the obtained 
optimal DG sizes and locations are tabulated in Table 13, and 
this table displays that the MFDA finds the best optimal 
locations for all three loads (17, 61, and 62), (62, 61, and 17), 
and (17, 61, and 62) with real power injection capacities in 
kW (279.8, 380.2, and 380.2), (760.4, 760.4, and 569.7) and 
(932.7, 1216.7, and 1216.7) respectively. Table 13 shows that 
active (kW) and reactive (kVAr) power loss decreases to 
(18.05, 9.06), (74.11, 37.10), and (196.26, 97.84) for the three 
loading conditions. Active and reactive power loss indexes 
(%) are (65.03, 61.52), (67.06, 63.69), and (69.92, 66.75) for 
each loading state. Table 13 shows that minimum system 
voltage has grown dramatically at different load levels. VPI 
(%) is 1.08, 4.8, and 14.26; these findings show that the 
MFDA effectively works for appropriate DG installation.  
 In the fourth stage, reconfiguration and DG installation 
are performed simultaneously for the system to attain an 
optimal state of switches, size, and location of DG; attained 
best switch states, size, and location of DG are summarized in 
Table 13, and this table displays the MFDA attained the best 
open switches for all three load (12, 55, 63, 69, and 70), (12, 
55, 62, 69, and 70), and (12, 55, 62, 69, and 70) and best 
optimal locations for all three loads (61, 62, and 65), (61, 62, 
and 65), and (61, 65, and 62) with real power injection 
capacities in kW (380, 339.6, and 249.2), (760, 688.3, and 
500.8), and  (1217, 806.2, and 1119), respectively. Table 13 
shows that power loss decreases for real (kW) and reactive 
(kVAr) loading conditions by (9.6 and 8.99), (39.1 and 
36.59), and (102.31 and 95.67) for the three loading 
conditions. Active and reactive power loss indexes (%) are 
(81.39, 61.82), (82.62, 64.19), and (84.35, 67.49) for each 
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loading state. Table 13 shows that minimum system voltage 
has grown dramatically at different load levels. VPI (%) is 
1.37, 6.11, and 18.32; these findings show that the MFDA 
effectively works for simultaneous reconfiguration and DG 
installation. 
 

 
Fig. 13. MFDA obtains the bus voltage of 69-bus with a light load in all 
cases. 
 

Table 13. For a 69-bus with different case studies and load levels. 

Case Description Load Level 
Light Nominal Heavy 

Case 1 
TPLoss (kW) 51.61 225 652.53 
TQLoss (kVAr) 23.55 102.16 294.26 
Vmin (p.u.) 0.9567 (65) 0.9092 (65) 0. 8445 (65) 

Case 2 

Open Switches 14−55−61− 69− 70 14− 57− 61− 69− 70 14− 56− 61− 69− 70 
TPLoss (kW) 23.61 98.61 267.11 
TQLoss (kVAr) 22.09 92.05 248.64 
APLRI (%) 54.25 56.18 59.06 
RPLRI (%) 6.21 9.9 15.5 
Vmin (p.u.) 0.9754 (61) 0.9495 (61) 0. 9165 (61) 
VPI (%) 0.67 3.37 9.45 

Case 3 

Size in kW (Bus) 
279.8 (17) 
380.2 (61) 
380.2 (62) 

760.4 (62) 
760.4 (61) 
569.7 (17) 

932.7 (17) 
1216.7 (61) 
1216.7 (62) 

TPLoss (kW) 18.05 74.11 196.26 
TQLoss (kVAr) 9.06 37.10 97.84 
APLRI (%) 65.03 67.06 69.92 
RPLRI (%) 61.52 63.69 66.75 
Vmin (p.u.) 0. 9856 (65) 0.9705 (65) 0.9513 (65) 
VPI (%) 1.08 4.8 14.26 

Case 4 

Open Switches 12−55−63−69−70 12−55−62−69−70 12−55−62−69−70 

Size in kW (Bus) 
380 (61) 
339.6 (62) 
249.2 (65) 

760 (61) 
688.3 (62) 
500.8 (65) 

1217 (61) 
806.2 (65) 
1119 (62) 

TPLoss (kW) 9.6 39.1 102.31 
TQLoss (kVAr) 8.99 36.59 95.67 
APLRI (%) 81.39 82.62 84.32 
RPLRI (%) 61.82 64.19 67.49 
Vmin (p.u.) 0. 9903 (61) 0. 9806 (61) 0. 9687 (61) 
VPI (%) 1.37 6.11 18.32 

 
 
Table 14. For a 69-bus with a light load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 51.60 51.6 51.61 
TQLoss (kVAr) - 23.55 23.55 
Vmin (p.u.) 0.9567 (65) 0.9567 (65) 0.9567 (65) 

Case 2 

Open Switches 69−70−14−56−61 14−69−61−70−55 14−55−61−69−70 
TPLoss (kW) 23.61 23.61 23.61 
TQLoss (kVAr) - 22.08 22.09 
APLRI (%) 54.24 54.24 54.25 
RPLRI (%) - 6.24 6.21 
Vmin (p.u.) 0.9754 (61) 0.9754 (61) 0.9754 (61) 
VPI (%) - 0.67 0.67 

Case 3 
Size in kW (Bus) 

206.7 (65) 
590.3 (61) 
107.6 (27) 

380.2 (12) 
380.2 (62) 
380.2 (61) 

279.8 (17) 
380.2 (61) 
380.2 (62) 

TPLoss (kW) 19.05 18.14 18.05 
TQLoss (kVAr) - 9.02 9.06 
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APLRI (%) 60.08 64.84 65.03 
RPLRI (%) - 61.7 61.52 
Vmin (p.u.) 0.9871 (62) 0.9862 (65) 0. 9856 (65) 
VPI (%) - 0.97 1.08 

Case 4 

Open Switches 69−70−13−56−63 62−69−17−57−12 12−55−63−69−70 

Size in kW (Bus) 
571.5 (61) 
155.5 (62) 
212.9 (64) 

322.78 (61) 
354.06 (62) 
295.97 (65) 

380 (61) 
339.6 (62) 
249.2 (65) 

TPLoss (kW) 9.58 10.02 9.6 
TQLoss (kVAr) - 9.32 8.99 
APLRI (%) 81.43 80.58 81.39 
RPLRI (%) - 60.42 61.82 
Vmin (p.u.) 0.9905 (61) 0.9894 (61) 0. 9903 (61) 
VPI (%) - 1.45 1.37 

 
 
Table 15. For a 69-bus with a nominal load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 224.96 225 225 
TQLoss (kVAr) - 102.165 102.16 
Vmin (p.u.) 0.9092 (65) 0.9092 (65) 0.9092 (65) 

Case 2 

Open Switches 69−70−14−56−61 15−55−61−69−70 14−57−61−69−70 
TPLoss (kW) 98.59 98.60 98.61 
TQLoss (kVAr) - 92.04 92.05 
APLRI (%) 56.17 56.18 56.18 
RPLRI (%) - 9.91 9.9 
Vmin (p.u.) 0.9495 (61) 0.9495 (61) 0.9495 (61) 
VPI (%) - 3.01 3.37 

Case 3 

Size in kW (Bus) 
408.5 (65) 
1198.6 (61) 
225.8 (27) 

760.4 (12) 
760.4 (62) 
760.4 (61) 

760.4 (62) 
760.4 (61) 
569.7 (17) 

TPLoss (kW) 77.85 74.4 74.11 
TQLoss (kVAr) - 36.93 37.10 
APLRI (%) 65.39 66.93 67.06 
RPLRI (%) - 63.85 63.69 
Vmin (p.u.) 0.9740 (62) 0.9717 (65) 0.9705 (65) 
VPI (%) - 4.27 4.8 

Case 4 

Open Switches 69−70−13−55−63 12−19−69−63−57 12−55−62−69−70 

Size in kW (Bus) 
1127.2 (61) 
275.00 (62) 
415.90 (65) 

1000.9 (61) 
410.60 (62) 
461.60 (65) 

760 (61) 
688.3 (62) 
500.8 (65) 

TPLoss (kW) 39.25 39.73 39.1 
TQLoss (kVAr) - 37.48 36.59 
APLRI (%) 82.55 82.34 82.62 
RPLRI (%) - 63.31 64.19 
Vmin (p.u.) 0.9796 (61) 0.9798 (61) 0. 9806 (61) 
VPI (%) - 5.9 6.11 

 
 
Table 16. For a 69-bus with a heavy load, MFDA is compared against other algorithms. 
Case Description FWA [3] ISCA [2] MFDA 

Case 1 
TPLoss (kW) 652.42 652.52 652.53 
TQLoss (kVAr) - 294.26 294.26 
Vmin (p.u.) 0.8445 (65) 0.8445 (65) 0. 8445 (65) 

Case 2 

Open Switches 69−70−14−56−61 14−55−61−69−70 14−56−61−69−70 
TPLoss (kW) 267.08 267.11 267.11 
TQLoss (kVAr) - 248.63 248.64 
APLRI (%) 59.06 59.06 59.06 
RPLRI (%) - 15.51 15.5 
Vmin (p.u.) 0.9165 (61) 0.9165 (61) 0. 9165 (61) 
VPI (%) - 9.15 9.45 

Case 3 Size in kW (Bus) 
653.700 (65) 
1917.70 (61) 
361.300 (27) 

1216.8 (12) 
1216.8 (62) 
1216.8 (61) 

932.7 (17) 
1216.7 (61) 
1216.7 (62) 
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TPLoss (kW) 206.49 196.74 196.26 
TQLoss (kVAr) - 97.32 97.84 
APLRI (%) 68.35 69.85 69.92 
RPLRI (%) - 66.93 66.75 
Vmin (p.u.) 0.9568 (62) 0.9530 (65) 0.9513 (65) 
VPI (%) - 12.66 14.26 

Case 4 

Open Switches 69−70−13−57−63 69−70−14−55−62 12−55−62−69−70 

Size in kW (Bus) 
1817.6 (61) 
509.50 (62) 
634.20 (65) 

1600 (61) 
510.9 (62) 
634 (65) 

1217 (61) 
806.2 (65) 
1119 (62) 

TPLoss (kW) 102.97 104.5 102.31 
TQLoss (kVAr) - 100.68 95.67 
APLRI (%) 84.21 83.99 84.32 
RPLRI (%) - 65.79 67.49 
Vmin (p.u.) 0.9685 (61) 0.9638 (61) 0. 9687 (61) 
VPI (%) - 16.57 18.32 

 
 The performance of the MFDA is compared across all 
cases of ISCA [2], HSA [46], FWA [3], GA [46], and RGA 
[46] at the nominal loading conditions, and the outcomes are 
provided in Table 17. In case 2, as shown in the table, APLRI 
produced by the MFDA is 56.18%, identical to those gained 
by ISCA [2]. The MFDA produces superior outcomes 
compared to HSA [46], FWA [3], GA [46], and RGA [46]. 
RPLRI produced by the MFDA algorithm is 9.9% identical to 
those gained by ISCA [2] and FWA [3] and worse than HSA 
[46]. The minimum voltage obtained by the MFDA is 0.9495, 
identical to those gained by ISCA [2] and FWA [3]. The 
MFDA produces superior outcomes compared to HSA [46], 
GA [46], and RGA [46]. Thus, the MFDA achieves better 
results than other algorithms on all three measures.  
 In case 3, APLRI obtained by the MFDA is 67.06%, 
which is better than ISCA [2], HSA [46], FWA [3], GA [46], 
and RGA [46]. The value of RPLRI obtained from the MFDA 
is 63.69%, which is better than ISCA [2], HSA [46], and FWA 
[3]; thus, the MFDA achieves better results than other 
algorithms on all three measures. 
 In case 4−APLRI obtained by the MFDA is 82.32%, 
which is better than ISCA [2], HSA [46], FWA [3], GA [46], 
and RGA [46]. The value of RPLRI obtained from the MFDA 
is 64.19%, which is better than ISCA [2], HSA [46], and FWA 
[3]; thus, the MFDA achieves better results than other 
algorithms on all three measures. 
 

 
Fig. 14. MFDA obtains the bus voltage of the 69-bus at nominal load in 
all cases. 
 

 
Fig. 15. MFDA obtains the bus voltage of 69-bus with a heavy load in 
all cases. 

 
Table 17. For a 69-bus with a nominal load, MFDA is compared against other algorithms. 
Method Description Case 2 Case 3 Case 4 

MFDA 

Open Switches 14−57−61−69−70 69−70−71−72−73 12−55−62−69−70 
Size in kW (Bus) - 2090.49 1949.14 
APLRI (%) 56.18 67.06 82.62 
RPLRI (%) 9.9 63.69 64.19 
Vmin (p.u.) 0.9495 (61) 0.9705 (65) 0. 9806 (61) 

ISCA [2] 

Open Switches 61−69−14−55−70 69−70−71−72−73 12−19−69−63−57 
Size in kW (Bus) - 2281.2 1873.1 
APLRI (%) 56.18 66.93 82.34 
RPLRI (%) 9.91 63.85 63.31 
Vmin (p.u.) 0.9495 (61) 0.9717 0.9798 

HSA [46] 

Open Switches 69−18−13−56−61 69−70−71−72−73 69−17−13−58−61 
Size in kW (Bus) - 1773.2 1871.8 
APLRI (%) 55.85 61.43 82.08 
RPLRI (%) 12.08 58.45 64.13 
Vmin (p.u.) 0.9428 0.9677 0.9736 
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FWA [3] 

Open Switches 69−70−14−56−61 69−70−71−72−73 69−70−13−55−63 
Size in kW (Bus) - 1832.9 1818.2 
APLRI (%) 56.17 65.39 82.55 
RPLRI (%) 9.91 61.97 63.48 
Vmin (p.u.) 0.9495 0.9740 0.9796 

GA [46] 

Open Switches 69−70−14−53, 61 69, 70, 71, 72, 73 10, 15, 45, 55, 62 
Size in kW (Bus) - 1947.1 2029.2 
APLRI (%) 54.08 60.66 73.38 
RPLRI (%) - - - 
Vmin (p.u.) 0.9411 0.9687 0.9727 

RGA [46] 

Open Switches 69−17−13−55−61 69−70−71−72−73 10−16−14−55−62 
Size in kW (Bus) - 1786.8 2065.4 
APLRI (%) 55.42 61.04 80.32 
RPLRI (%) - - - 
Vmin (p.u.) 0.9428 0.9678 0.9742 

 In the same way, the performance of MFDA is compared 
to that of ISCA [2], HSA [46], and FWA [3] at the heavy 
loading condition. The outputs are summarized in Table 18 
above. In cases 2, 3, and 4, the results indicate that the 
APLRI% and RPLRI% achieved by the MFDA are 
significantly superior to those obtained by the ISCA [2], HSA 
[46], and FWA [3] in cases 2, 3, and 4. Thus, the MFDA 
achieves better results than other algorithms on all three 
measures. Figure 13, 14, and 15 displays the voltage profiles 
of light, nominal, and heavy for all the cases like the base 
case, light, nominal, and heavy load conditions attained by the 
proposed MFDA. The convergence curve of the light, 
nominal, and heavy load conditions are shown in Figures 16 
(a), 16 (b), and 16 (c) for the cases. 

 
(a2) 

 
(b2) 

 
(c2) 
(a) 

 

 
(a3) 

 
(b3) 
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(c3) 
(b) 

 
(a4) 

 
(b4) 

 
(c4) 
(c) 

Fig. 16. (a) convergence curve of the light, nominal, and heavy load 
conditions for case 2, (b) convergence curve of the light, nominal, and 
heavy load conditions for case 3 and (c) convergence curve of the light, 
nominal, and heavy load conditions for case 4. 

 
 

Table 18. For a 69-bus with a heavy load, MFDA is compared against other algorithms. 
Method Description Case 2 Case 3 Case 4 
MFDA Open Switches 14−56−61−69−70 69−70−71−72−73 12−56−62−69−70 

Size in kW (Bus) - 3366.07 3142.24 
APLRI (%) 59.06 69.92 84.32 
RPLRI (%) 15.5 66.75 67.49 
Vmin (p.u.) 0.9165 (61) 0.9513 (65) 0.9687 (61) 

ISCA [2] Open Switches 14−55−61−69−70 69−70−71−72−73 69−70−14−55−62 
Size in kW (Bus) - 3650.4 2744.9 
APLRI (%) 59.06 69.85 83.99 
RPLRI (%) 15.51 66.93 65.79 
Vmin (p.u.) 0.9165 0.9530 0.9638 

HSA [46] Open Switches 69−18−13−56−61 69−70−71−72−73 69−18−13−58−61 
Size in kW (Bus) - 2960.7 3382.8 
APLRI (%) 58.4 64.66 83.96 
RPLRI (%) 17.48 61.82 62.24 
Vmin (p.u.) 0.9048 0.9478 0.9592 

FWA [3] Open Switches 69−70−14−56−61 69−70−71−72−73 69−70−13−55−63 
Size in kW (Bus) - 2932.7 2961.3 
APLRI (%) 59.06 68.35 84.21 
RPLRI (%) 15.50 65.09 67.01 
Vmin (p.u.) 0.9165 0.9568 0.9685 

 
 
5 Conclusions 
 
This article provides an efficient implementation of MFDA 
for simultaneous ONR and ODG installation. First, the 
viability of the recommended technique has been 
demonstrated by considering six typical sixteen benchmark 
functions that each have unique features. The power losses 
were reduced using ONR, ODG, and simultaneous ONR and 
ODG installation. Among these three ways, simultaneous 
ONR and ODG installation was better at lowering PL and 

raising the VP. In the case of simultaneous ONR and ODG 
installation for nominal loading conditions, the MFDA found 
the best solution, which reduced power loss by 71.2% for 33 
bus systems and 82.62% for 69 bus systems. It improved the 
minimum voltage to 0.9724 for 33 bus systems and 0.9806 for 
69 bus systems. The investigation also showed that the 
MFDA is the most reliable and efficient technique for 
simultaneous ONR and ODG installation of both test systems. 
The optimal solutions found by the MFDA also had a better 
VP and the lowermost PL than those found by other 
approaches that have been previously discussed. The MFDA 



K. Kalyan Kumar and G. Nageswara Reddy/Journal of Engineering Science and Technology Review 17 (2) (2024) 77 - 96 

 94 

can be an excellent way to deal with ONR, ODG installation, 
or simultaneous ONR and ODG installation. 
 

This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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