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Abstract 
 

Antenna optimization using machine learning is a rapidly evolving field that leverages the power of artificial intelligence 
to design and improve antenna systems. Antenna optimization is a process of modifying antenna parameters to achieve 
desired performance metrics, such as gain, bandwidth, radiation pattern, and impedance matching. This paper presents a 
review of the most advanced development in antenna design and optimization by using machine learning techniques. The 
aim of this survey is to focus on different machine learning optimization techniques and their optimization capability with 
efficiency challenges. A deep outline from literature survey on optimization of antennas using machine learning are 
presented and listing various optimization algorithms and procedures that are applied to produce desired antenna 
characteristics and specifications. Firstly, a brief introduction of machine learning and its algorithms, later a quick 
explanation of antenna optimization process followed by an arranged introduction of different types of printed antenna 
designs using machine learning algorithm are reported. The methods emphasized in this survey have probably an effect on 
the imminent advancement of antennas for a variety of wireless applications. 
 
Keywords: Microstrip Antenna, Optimization, Machine Learning, Evolutionary Algorithm, Wireless Communication. 
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1. Introduction 
 
In modern wireless communication systems, design of 
antenna arrays and their optimization, integration, and 
fabrication are turn into more complication. Traditionally, 
antenna optimization has been done through multiple 
approaches. One of them has trial-and-error approach, where 
engineers manually tweak antenna parameters until the 
desired performance has been achieved. This approach is 
time-consuming, resource-intensive, and often limited by 
human expertise. Nowadays, a huge requirement of compact, 
multiband, and wideband for higher data rate with low loss 
antenna for advanced applications of wireless 
communication. To design and analyze of desired antennas in 
[1], few methods are applied for numerical validations 
specifically: finite difference time domain (FDTD) [2,3], 
finite element method (FEM) [4,5], and method of moments 
(MoM) [6,7]. A modified FDTD method is applicable for 
thorough analysis of more than one dielectric interfaces [8]. 
The method of moments needs accurate computation of the 
impedance matrix for calculating precise values of currents, 
impedance, and resonance frequency of the rectangular 
shaped and nonrectangular shape patch antennas [9]. Antenna 
design and simulation are widely preferred easily available 
commercial Computational Electromagnetics (CEM) 
software such as Advanced Design System (ADS), high-
frequency structure simulator (HFSS), Computer Simulation 
Technology (CST), and Integral Equation Three-Dimensional 
(IE3D). All CEM software tools are very efficient, but due to 
absence of few significant features, limited performance 
achieved. For example, ADS have lack of 3D structures 
modelling, IE3D have no facilities of structures modelling 

with finite details, and the expanded structure of antenna 
simulation takes large time in HFSS and CST. The fullwave 
electromagnetic simulation for antenna design and 
optimization is very time consuming and leads to various 
limitations. Now days efficiency and optimization ability of 
existing antenna optimization techniques is the main 
limitation to report an extensive background of antenna 
design challenges. To overcome the limitation, different 
algorithms of machine learning (ML) have been considered 
for optimizing various parameters of antennas for different 
applications [10-13]. Machine learning offers a more efficient 
and effective way to optimize antennas by leveraging data-
driven models and algorithms. Machine learning can 
automatically learn from large amounts of data and find 
patterns and correlations between antenna parameters and 
performance metrics. This enables engineers to design better 
antennas in less time and with fewer resources. Machine 
learning algorithm for antenna optimization has been broadly 
presented to step up the design procedure of antennas and 
arrays for different applications. Various ML techniques, 
such as Gaussian Process Regression (GPR), Support Vector 
Machine (SVM) and Artificial Neural Networks (ANNs), 
have been employed to develop alternate models of antenna 
to predict quick outcomes. In [14] a model is generated by 
using variable-fidelity electromagnetic (EM) simulations and 
co-Kriging. A genuine approach of combining sampled 
accurate EM data and densely sampled coarse-discretization 
in one model has been applied to design low-cost antenna. 
Another approach has been proposed for low optimization 
cost with little updated responses of antenna [15]. In [16], a 
multi objective model of an antenna has been designed by 
using kriging interpolation of coarse-discretization simulation 
data and known as multi-objective evolutionary algorithm. A 
complete performance evaluation of various miniature UWB 
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antenna based on optimization techniques has been studied in 
[17]. 
 In recent decades, many literatures reported various ML 
optimization algorithm such as ANNs, SVM and GPR have 
been developed for optimization of antenna parameters. The 
implementation and complex problems are easily handled by 
gaussian process (GP) than ANN and SVM. As per definition, 
deep learning algorithms and Convolutional Neural Network 
(CNN), includes convolutional calculations and a deep 
structure. Literature [18] presented a deep GP model by 
combining the structural CNN with GP. In this paper design 
parameters can reduce to decrease the training sample data 
and increase the designing efficiency with steady accuracy. 
Letter [19] presents a huge shaped-beam reflectarray design 
by using a new technique based on SVR. This technique used 
to find reflection coefficients for fast designing of reflectarray 
for direct broadcast satellite application. Paper [20] reported 
a multi-objective optimization model of antenna by using 
nested kriging algorithm with effective. To overcome the 
limitation of optimization efficiency for the designing of 
electromagnetic (EM) device and machine, a new technique 
named parallel surrogate model-assisted evolutionary 
algorithm has been proposed in [21] by using mutation 
operators in a parallel computing environment. In [22] various 
ML algorithm have been employed to analyse and optimize 
the performance of different antennas. A nano antenna has 
been optimized in [23] to achieve minimum loss and 
maximum radiation efficiency. To analyse aperiodic array 
with uniform excitation, a novel multi-objective optimisation 
technique known as non-dominated sorting and local search 
(NSLS) has been proposed [24,25]. To improve efficiency a 
three stage multi-fidelity-simulation-model assisted antenna 
design optimization outline has been presented in [26]. This 
outline is employed on SADEA and creating SADEA-II. A 
brief study in literature [27,28] demonstrates various printed 
antenna designs by utilizing ANN and other machine learning 
approaches. Paper [29] proposed a technique utilizing neuro-
fuzzy networks to evaluate the antenna’s resonance frequency 
of. A new type of ANN has been described in [30] for the 
analysis of antenna parameters. A dual band H-shaped patch 
microstrip antenna has been designed by applying machine 
learning techniques [31] to achieve compactness. An 
evolutionary algorithm known as Particle Swarm 
Optimization (PSO) has been used to design stacked patch 
antenna in [32] with the neural networks approach for the 
application of satellite communication. 
 Several limitations of the EM simulations and 
evolutionary algorithms (high computational cost, low 
efficiency, and large optimization time) restrict the antenna 
usages in many applications. To overcome this, an advance 
method named surrogate model assisted differential evolution 
for antenna synthesis (SADEA), has been reported in [33]. A 
new ML technique based on the modified K-nearest 
neighbour (KNN) algorithm incorporates advanced 
simulation methods with more features from data sets has 
been presented in [34]. A reflect array antenna has been 
analysed through ANN in [35] and a tunnel-based ANN has 
been developed for the analysis of antenna parameters in [36]. 
Nowadays many literatures present a thorough survey on the 
current development in antenna design optimization and 
emphasized on various methods that include optimization 
ability and efficiency problems using machine learning [37-
43]. It provides a brief note on ML algorithm and various 
types of microstrip antenna. It also supports to researchers 
having least expertise in ML in the field of antenna and desire 
to utilize ML algorithm in study. Literature [44] reported an 

optimization of microstrip antenna parameters using ANN for 
X band (8-12 GHz) and Ku band (12-18 GHz) applications. 
An advanced Machine-learning-assisted optimization method 
has been reported for antenna optimization with maximum 
gain 7.4 dBi in [45]. Research paper [46] proposed a new 
design of isotropic antenna by using machine learning 
algorithm. Structured supervised learning, which is an 
alternative of neural networks, proposed in [47] to design 
patch antenna for the Ku EM band. In [48], ANN has been 
utilized for the design of multi-slot microstrip antenna and 
compared with simulated results by using IE3D software. 
Optimization using ANN of a frequency reconfigurable 
planar antenna with metasurface superstrate has been reported 
in [49]. A modelling using the Gaussian Process Regression 
(GPR) of electromagnetic band gap two-port multiple-input 
and multiple-output (MIMO) fractal antenna has been 
presented in [50]. 
 Present study provides a broad report on different 
optimization process that can be applied on designing of an 
antenna with desired parameters. This report gives a quick 
knowledge of different types of ML techniques and types of 
microstrip antenna. It helps to researchers in optimization of 
antenna who would like to apply ML algorithm for antenna 
design. In starting of the paper, a brief overview on ML, types 
of ML and different literatures on ML are presented. 
Following section elaborates optimization models, ML 
algorithms and evolutionary algorithms for efficient 
computation to design an antenna. To attract the attention of 
reader, next section includes the in-depth outlines on different 
printed antenna designs and optimization using ML and 
organized according to the type of the antenna. Next section 
investigates another aspect of the literature, where ML has 
been utilized to improve the optimization characteristics of an 
antenna for different applications. Concluding explanations 
has been presented in the last section. All the segments of this 
paper are briefly expressed and listed with recommended 
literatures as per requirement. Antenna optimization using 
machine learning algorithms presents a promising and 
evolving field with significant scope and opportunities. 
Machine learning algorithms can optimize antenna 
parameters to enhance performance metrics such as gain, 
bandwidth, and radiation pattern. ML algorithms enable 
antennas to adapt to changing environmental conditions, 
ensuring optimal performance in dynamic scenarios, like 
mobile communication or satellite systems. ML can aid in 
designing multifunctional antennas that can efficiently 
operate across multiple frequency bands and communication 
standards. ML algorithms can improve the beamforming 
capabilities of antenna arrays, optimizing radiation patterns 
for better signal reception and transmission. It can be applied 
to mitigate interference in crowded wireless environments, 
ensuring reliable communication in the presence of 
competing signals. Antenna optimization is vital for satellite 
communication systems, and ML can contribute to improving 
link quality, data rates, and overall system efficiency. With 
the advent of 5G and future communication technologies, ML 
can play a key role in optimizing antennas to meet the 
demanding requirements of high data rates, low latency, and 
massive device connectivity. There is an opportunity to 
develop novel machine learning algorithms tailored 
specifically for antenna optimization, considering the unique 
challenges and requirements of the domain. Explore the 
integration of deep learning techniques for more complex 
optimization tasks, leveraging neural networks to model 
intricate relationships in antenna design. Develop algorithms 
that allow antennas to adapt in real-time to changing 
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conditions, providing continuous optimization for improved 
communication quality. Contribute to the development of 
standards and best practices for applying machine learning to 
antenna optimization, ensuring consistency and reliability 
across different applications. Identify and explore 
commercial applications of machine learning-optimized 
antennas, such as in consumer electronics, automotive 
communication systems, and IoT devices. 
 
 
2. Machine Learning Overview 
 
Machine learning is the field of computer algorithms 
combined with dataset, that supports systems to understand 
automatically and improve from past data. It is a part of 
artificial intelligence (AI) that allows software applications to 
analyse the data accurately. Machine learning algorithms 
permits the computers to process the data and assess 

autonomously without any human support or program. Such 
assessment is made by obtaining significant fundamental 
samples in complex data. Several research have been 
surveyed on emerging applications of ML, like antenna 
design and optimization [51-53]. Classification of ML has 
been done into three basic categories; supervised, 
unsupervised and reinforcement learning, according to input 
and output data types to solve the various problems. One other 
learning methods like Semi supervised [54] has been formed 
to apply hybrid approach for solving beyond the original 
observation range. In [55] a brief comparison between 
Supervised and Unsupervised Learning Algorithms has been 
explained for Pattern Classification. A review on Feature 
Selection of Supervised, Unsupervised, and Semi-Supervised 
has been reported in [56, 57]. A detailed study and analysis of 
basic learning processes with different ML algorithm are 
listed in Figure 1 with diagrammatic representation.  

 
Fig. 1. Brief description of various types of Machine Learning  
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2.1 Supervised Learning 
Supervised learning applies labelled data to train the machine 
[58]. The labelled data indicates, a few input data is used as a 
training data that provides the accurate output. To resolve the 
various problems related to real-world such as fraud 
detection, spam filtering, risk assessment, image 
classification etc., supervised learning model supported 
efficiently. Several literatures have been reported different 
applications analysed by supervised learning algorithm such 
as, detection of Network Intrusion [59], Recognition of 
Human Activity in Ambient Assisted Living Environment 
[60], Earth Science [61] and diagnosis of abnormal voltage 
[62]. Based on problem types, supervised learning categories 
in two kinds of algorithms, namely classification and 
regression. If the output variables are categorical, like 
positive-negative, yes-no, true false etc. then classification 
algorithms are employed. Decision trees, logistic regression, 
random forest and SVM are some common classification 
algorithms explained in [63]. If there are some relations 
between input and output variables are exist, then regression 
algorithms are employed [64-66]. Various common 
regression algorithms have been explained in literatures like 
linear regression [67,68], regression trees, non-linear 
regression, bayesian linear regression, support vector 
regression [69-71] and polynomial regression. 
 
2.2 Unsupervised Learning 
Unsupervised learning applies unlabelled data to train the 
machine.  The unlabelled data indicates, the input data 
without corresponding output values and applied after finding 
hidden patterns of dataset. Unsupervised learning is mostly 
used for complicated problems as compared to supervised 
learning. Literature [72] reported detection of zero-day 
attacks using Unsupervised Algorithms. Paper [73] 
investigates different techniques and applications of 
Unsupervised Machine Learning in Networking. Some other 
applications like early fault detection [74], iron mining [75], 
Network Intrusion Detection [76, 77] and deep convolutional 
neural networks enhancement [78, 79] have been reported and 
studied in various papers. Based on dataset types 
unsupervised learning is classified into two categories: 
Clustering and Association. In clustering, inherent groups are 
created from given dataset to predict output. Association is 
applied to discover the links between variables in the big 
dataset. Several common unsupervised learning algorithms 
are neural networks, principal and independent component 
analysis, K-means clustering, K-Nearest Neighbours (KNN), 
hierarchal clustering, Apriori algorithm, anomaly detection 
and singular value decomposition. 
 
2.3 Reinforcement Learning 
Reinforcement learning applies feedback based automatically 
learning technique. During the learning process, an agent 
learns to perform in a situation by executing the actions and 
seeing the results either positive or negative rewards for the 
actions. The main objective of reinforcement learning is to 
maximize the positive rewards by enhancing the performance. 
There are two types of reinforcement learning: Positive and 
Negative. The positive reinforcement learning increases the 
strength and the frequency of the expected performance.  The 
negative reinforcement learning increases the strength of 
specific performance that will stop or avoid negative rewards.  
Reinforcement learning mostly utilized in game-playing and 
robotics [80,81]. Figure 2 illustrates different machine 
learning approaches to solve the problems.  

 

 
Fig. 2. (a) Supervised Learning Graph, (b) Unsupervised Learning Graph, 
and (c) Reinforcement Learning Process 

 
 

3. Machine Learning Algorithms  
 
To predict the output, observe the hidden patterns from 
dataset and maximize the positive feedback from experiences, 
machine learning algorithms are applied by programming. 
Different ML algorithms are used for different problems 
according to the complexity [82-88]. For example, linear 
regression can be used for predictions like sales, salary, 
age, stock market prediction, the KNN algorithm can be used 
for Text mining, Agriculture, Finance, Medical, Facial 
recognition, and Gaussian process regression can be used for 
process monitoring and fault detection. Some trendy Machine 
Learning Algorithms are listed below. 

 
Ø Artificial neural network [89, 90]  
Ø Support vector machine [91] 
Ø Gaussian process regression [92-94] 
Ø Linear regression  
Ø Least absolute shrinkage and selection operator [95] 
Ø Kriging regression [96-98] 

 
 A neural network is a data processing system contains 
many simple, highly interconnected processing elements in an 
architecture encouraged by the brain system.  Paper [89] 
provides a brief discussion on neural networks and defines 
applications to a variety of real-world problems. Article [90] 
gives some ANN implementations with basic theory of ANN 
and its specific applications.  Article [91] proposed an 
effective deep learning approach STL-IDS based on the self-
taught learning (STL) framework to reduce the training and 
testing time. A method has been proposed in [92] by using 
Gaussian process regression to model spatial functions for 
mobile wireless sensor networks. An investigation of the 
Gaussian process approach for classifying multisource and 
hyperspectral remote sensing images has been reported in 
[93]. [94] summarize different ML algorithms which are not 
based on neural networks for the analysis of accuracy of the 
final model. Paper [95] modify the selection process of 
LASSO to explicitly leverage combinatorial sparsity models 
through the combinatorial selection and least absolute 
shrinkage operator. [96] provides progressive tutorial on 
regression, kriging, and stochastic kriging. The co-kriging-
based antenna structure optimization algorithm has been 
proposed in [97]. Paper [98] proposed a cost-efficient 
Gradient Enhanced Kriging modeling of dielectric resonator 
antenna structures for considerable reduction of the model 
setup cost. 
 
 
4. Machine Learning for Antenna Design  
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The need of antennas for various applications expanding from 
electromagnetic to thermal going through mechanical or 
space limits is increased for recent technology development. 
Printed antennas become a most favourable class of antennas 
to build an advanced device for communication systems, due 
to their notable merits such as cost-effective, easy fabrication, 
compactness, conformable, and adequate gain.  Several 
literatures reported the use of machine learning in the design 
process of an antenna. The machine learning techniques speed 
up the design process of an antenna by providing high 
accuracy, minimum error, less execution time, accurate 
prediction of the antenna operation, good computational 
efficiency, and minimum number of required simulations. 
Following steps are involved in the process of antenna 
optimization using machine learning: 
 

1. Data collection: The first step is to collect data on 
the performance of the antenna. This can be done 
through simulations or measurements of the 
antenna's radiation pattern, gain, and other relevant 
metrics. 

2. Feature extraction: The data collected in step 1 is 
then processed to extract relevant features that 
describe the antenna's performance. These features 
can include parameters such as frequency, 
bandwidth, and polarization. 

3. Model training: Once the features have been 
extracted, a machine learning algorithm is trained on 
the data to learn the relationship between the 
antenna parameters and the performance metrics. 

4. Optimization: With a trained machine learning 
model, the antenna design can be optimized by 
using the model to predict the performance of 
different antenna configurations. The optimization 
process typically involves exploring the design 
space using techniques such as genetic algorithms or 
reinforcement learning. 

5. Validation: Finally, the optimized antenna design is 
validated using simulations or measurements to 
ensure that it meets the desired performance metrics. 
 

 The antenna optimization using machine learning 
algorithms provides a powerful tool for engineers to design 
and optimize antennas with improved performance 
characteristics. To evaluate the accuracy of the machine 
learning model and the optimization algorithm, it is essential 
to calculate the error or loss function, which measures the 
difference between the predicted and actual values of the 
performance metrics. There are several types of error 
functions that can be used depending on the nature of the 
problem and the objectives of the optimization. 
 One common error function used in antenna optimization 
is the mean squared error (MSE), which is the average of the 
squared differences between the predicted and actual values 
of the performance metrics. The MSE is a widely used metric 
in machine learning because it is differentiable, convex, and 
easy to interpret. The Mean Squared Error is calculated as: 
 

MSE =
∑ (y! − y"))#$
!%&

n 																																																															(1) 
 
Where   y!: Actual value for the ith observation 

x!: Predicted value for the ith observation 
n: Total number of observations 

 

 Another popular error function in antenna optimization is 
the mean absolute error (MAE), which is the average of the 
absolute differences between the predicted and actual values 
of the performance metrics.  
 

MAE =
∑ abs(y! − x!)$
!%&

n 																																																									(2) 
 
Where   y!: Actual value for the ith observation 

x!: Calculated value for the ith observation 
n: Total number of observations 

 
 The MAE is more robust to outliers than the MSE and is 
less sensitive to small changes in the predicted values. Other 
error functions that can be used in antenna optimization 
include the cross-entropy loss, the hinge loss, and the KL-
divergence. These error functions are often used in 
classification and regression problems and can be adapted to 
the antenna optimization problem by encoding the constraints 
and objectives of the problem in the loss function. Overall, the 
choice of error function depends on the specific problem and 
the objectives of the optimization. The error function should 
be chosen carefully to balance accuracy, robustness, and 
computational efficiency. 
 This section focuses on optimization process, 
conventional and evolutionary optimization algorithm of 
machine learning for antenna design. The papers reviewed in 
this section are categorized in three area: optimization 
modelling methods, machine learning optimization 
techniques and evolutionary computation algorithms. 

 
4.1 Optimization of Antennas 
Machine learning based antenna optimization prefers specific 
and evolutionary algorithm which are based on the 
optimization characteristic, efficiency, simplification, and 
robustness. There are various modelling methods are used to 
optimize the design of an antenna with good optimization 
outcomes. Some models namely, Single-objective 
optimization, multi-fidelity optimization, multi-objective 
optimization and yield-driven optimization that are used for 
different antenna optimization problems. Antenna 
optimization modelled as single-objective optimization 
problems to maximization of the isotropic gain has been 
presented in [99]. To enhance optimization efficiency of an 
antenna, multi-fidelity optimization is used to model the 
problem of antenna design. This technique uses high-fidelity 
expensive and precise models and to remove unwanted 
solutions, low-fidelity, imperfect and inadequate models 
[100]. In [101], a conventional multi-objective optimization 
problem has been illustrated and studied. This paper reported 
a design of compact planar antenna with low value of 
reflection coefficient in desired operating bands using multi-
objective optimization. Paper [102] depicts statistical 
analysis-based yield-driven optimization for the analytical 
evaluations of deviations. Due to this probability of assumed 
and nominal design performance specifications of a 
fabricated prototype is increases.  
 
4.2 Machine Learning Optimization Techniques  
Design of an antenna must have some important parameters 
like implementation, usability, and cost-efficient. 
Optimization is the process of making a model as good as it 
can be. Optimization using machine learning is one of the 
important methodologies to get improved results of designed 
model by comparing various solutions using iteration. 
Optimization process, design a model with minimum 
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production cost and maximum production efficiency. 
Antenna optimization consists proper range of functions, 
design parameters, variables, and limitations. There are 
several approaches to using machine learning for antenna 
optimization, including reinforcement learning, genetic 
algorithms, and neural networks. Reinforcement learning 
involves training an agent to make decisions based on 
feedback from the environment. Genetic algorithms mimic 
natural selection to evolve antenna designs over multiple 
generations. Neural networks use deep learning techniques to 
model the relationship between antenna parameters and 
performance metrics. Several literatures are discussed 
antenna optimization using machine learning for different 
applications. There are different ML techniques are illustrated 
which can optimize an antenna design parameter: 

• Gradient descent [103] 
• Adaptive moment estimation 
• Levenberg-Marquardt algorithm [104] 
• Bayesian regularization [105] 

 
4.3 Machine Learning Evolutionary Algorithms  
An optimization process is required to calculate nearest 
optimal values of design parameters of antenna. Use of 
evolutionary algorithms are new approach to applying 
machine learning in antenna design. Evolutionary Algorithms 
play an important role in computing sciences. It allows to 
achieve nearest solutions to optimization problem and 
implicated in real selection. To improve the performance 
characteristics of an antenna for space communication and 
faster computations, evolutionary algorithms are effectively 
employed in machine learning techniques. Figure 3 illustrates 
block diagram of antenna optimization process using ML 
algorithm. 
 Some standard evolutionary algorithms like, particle 
swarm optimization and differential evolution, covariance 
matrix adaptation evolution strategy, genetic algorithms and 
simulated annealing have been explained in [106]-[112] for 
antenna design and optimization. 
 

 
Fig. 3. Antenna optimization process using ML algorithm. 
 
5 Printed Antennas Using Machine Learning 

 
This section provided a comprehensive survey of several 
papers on antenna design using machine learning. An antenna 
fabricated by using lithographic methods on a printed circuit 
board is known as Printed antenna or microstrip antenna. It 
has several advantages like mechanical durability, 
conformability, small sizes, and low manufacturing costs. 
They are generally used at microwave frequencies for both 
the military and commercial applications.  There are various 
size and shapes of printed antennas are available which are 
optimized using different optimization techniques of machine 
learning. Some common types of printed antennas are 
rectangular patch, circular patch, fractal, slotted, MIMO, 

Dipole, ultra-wide band, multiband antennas etc. In following 
section some of the printed antenna types, design, and 
optimization based on literature survey are described in brief. 
Figure 4 listed various printed antenna types, shapes, feeding 
techniques and their applications in different fields.  

 
Fig. 4. Printed antenna types, shapes, feeding techniques and 
applications. 
 
5.1 Rectangular Patch Antenna 
The most utilized printed antenna is a rectangular patch 
antenna as shown in figure 5 that appears like a truncated 
microstrip transmission line. A CAD model of square shaped 
patch antenna is designed by using Neural network in [113]. 
To obtain and analysed the exact resonant frequency of a 
rectangular patch antenna, ANN has been used in paper 
[114,115]. Another research based on ANN technique has 
been reported in [116] include calculation of the rectangular 
shaped patch length and width of an antenna by training 
through Bayesian Regularization and Levenberg Marquart 
algorithms.  Particle Swarm Optimization (PSO) optimization 
process has been studied in [117] for the designing of ANN 
based printed antenna. To calculate the size of slots and air 
gap of an antenna, an ANN based synthesis model has been 
presented in [118]. Radiation patterns of an antenna has been 
analysed in [119] by using a tunnel-based ANN. In [120], an 
analysis of an antenna has been done by using both ANN and 
SVM algorithm. A brief comparison between the results of 
two advanced nonlinear ML algorithms depicts superiority of 
SVM over the ANN. To calculate the resonant frequency of 
rectangular shaped patch antenna designed by ANN in [121], 
uses various algorithm like feed forward back propagation, 
resilient back propagation, Levenberg Marquardt and radial 
basis functions.  
 

 
Fig. 5. (a) Rectangular Patch Antenna, (b) Circular Patch Antenna, (c) 
Dipole, (d) different shaped patch, (e) Slotted Patch and (f) Array 
Structure.  
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5.2 Circular Patch Antenna 
A multilayer circular microstrip antenna has been optimized 
using training algorithm named Levenberg - Marquardt to 
train the Multi- Layer Perceptron Neural Networks in [122]. 
In paper [123] delta-bar-delta, extended delta-bar-delta, 
quick-propagation, directed random search and genetic 
algorithms have been utilized to train the Multi- Layer 
Perceptron Neural Networks. This paper proposes electrically 
thin and thick circular printed antennas by evaluating the 
resonant frequency, characteristic impedance and the 
effective permittivity using only one neural model. Another 
paper [124] developed multilayer perceptron based on neural 
network for circular patch antenna design to determine feed 
position. A circular patch antenna model has been optimized 
in [125] by using Quasi Newton model of Artificial Neural 
Network. To determine all performance constraints like S11, 
Voltage Standing Wave Ratio (VSWR), resonant frequency, 
impedance bandwidth and antenna gain of circular patch 
antenna a Neuro-Computational approach has been applied in 
[126].  

 
5.3 Dipole 
An input impedance of dipole antenna has been optimized 
using synthesis ANN with FDTD method in [127] for 
practical applications. This ANN model employs a hetero-
associative memory on input and output data for the 
computation of fault toleration. In addition, a latest 
randomization method for the optimization of antenna 
parameters has been reported. Another new SYNTHESIS-
ANN model in [128] has been generated for solving the 
intensive problems and optimization of microwave devices.  
5.4 Fractal Antenna 
An ANN based method has been applied and projected in 
[129] to design a double band fractal antenna by calculating 
return loss, resonance frequency and antenna gain. Paper 
[130] developed, an advanced square shaped fractal antenna 
using Advanced C and optimized by ANN. A quasi-fractal 
patch antenna model efficiently synthesized by using 
multilayer perceptrons ANN with one hidden layer and 
resilient backpropagation training algorithm in [131]. A PSO 
based ANN has been developed in [132] by utilizing 
hybridized algorithm to optimize a miniaturized circular 
fractal antenna resonate at 2.45 GHz. Another custom-made 
fractal antenna illustrated in [133]. In this article, proposed 
antenna has been designed by using ANNs and PSO 
technique. For the biomedical applications, a miniaturized 
giuseppe peano and cantor set fractals-based hybrid fractal 
antenna reported in [134]. Also, a relative analysis of three 
different ANNs has been done to assess the truly excellent 
kind of ANN for the evaluation of proposed antenna.  
 
5.5 Various Shaped Patch Antenna 
A deep neural network has been applied in [135], to compute 
the resonance frequency of a printed antenna with E–
shaped resonating patch. Paper [136] proposes a small size 
microstrip antenna radiated in frequency range from 
0.4856GHz to 7.8476 GHz. In this article a regression-based 
machine learning has been employed to calculate resonant 
frequency, slot dimensions and patch dimensions at dominant 
mode. A Gaussian process regression-based method 
developed in [137] for the precise computation of resonant 
frequencies of proposed dual-band microstrip antennas. In 
[138], optimization of a designed antenna has been described 
by using Gaussian process regression with a genetic algorithm 
(GA) structure. To achieve desired performance parameters 
of a dual-band double T-shaped monopole antenna, some 

modern ML techniques including least absolute shrinkage and 
selection operator, ANNs, and KNN have been used to 
optimization process in [139].  
 
5.6 Slotted Antenna 
Literature [140] depicts a model using neural network for 
calculating the various performance parameters like; 
resonance frequencies, antenna gains, antenna directivities, 
antenna efficiencies for dual-band slotted microstrip 
antennas. Reported model of neural network has been 
applicable for all varied dimensions of slot and incorporated 
air-gap. A knowledge-based neural network model proposed 
in [141] to obtain desired values of resonance frequency, 
antenna gain, directivity, and radiation efficiency of a dual-
band antenna for accurate prediction of slot-size, that has been 
presented on the radiating patch. A significant drop in training 
attempts has been achieved, due to prior knowledge of neural 
model.  In [142], a neural networks prototype developed for 
calculating the desired size of slot on the patch and air-gap 
between the ground plane and substrate. A slot loaded 
rectangular microstrip antenna has been reported in [143] and 
modelled by using support vector regression method. 
Article [144] illustrates desired calculation using SVM 
formulation for evaluating different characteristics of slotted 
microstrip antenna like resonant frequency, antenna gain, 
directivity, and radiation efficiency with modified ground 
plane.  
 
5.7 Ultra-wideband Antenna 
A compact monopole antenna with coplanar waveguide feed 
has been analysed and optimized by using machine learning 
techniques to speed up the process of antenna design in article 
[145]. This article approaches to five algorithms for the 
designing of band-notch antenna named as decision tree, 
random forest, XGB regression, KNN, and ANN. In paper 
[146], ANN has been used to analyse and predict the 
impedance bandwidth and notch frequency of an ultra-
wideband (UWB) antenna. A multi-adaptive neuro-fuzzy 
inference system has been developed in [147] for calculating 
the impedance bandwidth and notch frequencies of proposed 
slotted UWB antennas. Article [148] proposes an 
optimization process that was achieved by utilizing a self-
organizing multi-objective genetic algorithm and apply on a 
ring monopole microstrip antenna design by predicting 
impedance bandwidth, S11 and central frequency deviation. 
This antenna is applicable for ultra-wideband operations. To 
improve a multi-objective evolutionary algorithm, a machine 
learning application has been reported in [149] that is used to 
predict the nature of fitness function for the accurate design 
of UWB antenna. 
 
5.8 Array Antenna 
An array antenna is defined as a set of multiple linked 
antennas that will work simultaneously as an individual 
antenna. Usually, an array is used to obtain high gain, path 
diversity characteristics, interference reduction, beam 
steering, and for radio direction finding. A robust GA along 
with rapid neural network method has been developed for 
optimization of a proposed wideband aperiodic linear phased 
antenna array in [150]. This paper presents a modern nature-
based (GA-NN) technique that can design and estimate the 
performance parameters with desired element positions in 
given band of operation and scanning range to reduce the 
element VSWRs and sidelobe levels. A novel beamformer 
neural networks-based antenna array has been reported in 
[151]. A new variant of invasive weed optimization known as 
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modified adaptive dispersion has been used to train the 
optimized datasets in neural networks training process. In 
paper [152] a simulation-based Machine Learning method for 
an antenna optimization has been reported, that provides a 

large multi-dimensional parameter optimization within an 
appropriate Time. A brief investigation on different antenna 
design using machine learning is also listed in Table 1. 

 
Table 1. Different design process of antenna using machine learning and evolutionary algorithm. 

Ref.  Antenna Type ML 
Algorithm  

Results Compared To Evolutionary Algorithm Optimization 
Parameters/ 
Performance 
Parameters 

[108] Microstrip antennas and arrays Differential 
Evolution 
(DE) 

Simulated and measured results Self-Adaptive DE, DE, 
Biogeography-based DE, 
modified DE, Improved DE, 
Harmonic Search DE 

Antenna parameters 

[109] Log-periodic antenna -- Evolutionary algorithms DE, PSO, Taguchi, invasive 
weed, adaptive invasive weed 

Dipole lengths and 
spacing, dipole wire 
diameters /Antenna 
gain, VSWR, front-
to-back ratio 

[113] Rectangularpatch antennas ANN IE3D electromagnetic 
simulator 

-- Dielectric constant, 
substrate 
thickness/resonant 
frequency 

[114] Rectangular microstrip antenna ANN Conventional simulations Multilayer perceptron modular 
neural network 

Resonant frequency 

[115] Rectangular microstrip antenna ANN -- -- Parameters of 
antenna 

[116] Rectangular patch antenna ANN Theoretical value Bayesian regularization and 
levenberg marquart  

Length and width of 
antenna 

[117] Rectangular or Circular Microstrip 
Patch Antenna 

ANN Conventional simulations and 
measured antenna values 

ANN Optimized by PSO 
Algorithm 

-- 

[118] Rectangular or circular microstrip 
patch antenna 

ANN Measured results -- Slot-Size, Airgap/ 
Resonance 
Frequencies, Gains, 
Directivities, 
Antenna 
Efficiencies, and 
Radiation 
Efficiencies  

[119] Multi-slot hole-coupled microstrip 
antenna 

Tunnel-
based ANN 

IE3D software, 
analytical and experimental 
results 

GA Radiation patterns, 
resonant frequency  

[120] Rectangular patch antenna SVM Theoretical results 
and ANN results 

-- Resonant 
frequency, 
impedance 
bandwidth and input 
impedance  
 
 
 

[121] Rectangular patch antenna ANN Standard formula and 
experimental results 

-- Dielectric constant, 
thickness of 
substrate, patch 
width and 
length/resonant 
frequency 
 

[122] Multilayer circular microstrip anten
na 

ANN Measured and calculated result
s 

Levenberg – marquart algorith
m 

Resonant frequency
   

[123] Circular patch antenna Neural 
models 

Experimental results Delta-bar-delta, extended delta-
bar-delta, quick-propagation, 
directed random search and GA 

Resonant 
frequency, 
characteristic 
impedance, and 
effective 
permittivity 

[124] Circular microstrip antenna MLP neural 
network 
Radial basis 
function  

Experimental results -- Feed position  

[125] Circular microstrip antenna  ANN Experimental results Quasi newton model Resonant frequency 
[126] Circular microstrip antenna ANN Simulated, measured and 

theoretical results 
Neurocomputational models Return loss, VSWR, 

resonant frequency, 
bandwidth, gain and 
antenna efficiency 

[127] Printed dipole antenna 
 

ANN Finite-difference time-domain 
results 

Synthesis ANN Input impedance 

[129] Elliptical fractal patch antenna ANN Simulated results obtained 
using IE3D software 

-- Resonant 
frequency, return 
loss and gain  

[130] Square fractal antenna ANN Simulated using HFSS -- Antenna 
parameters/ 
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resonance 
characteristics  

[131] Quasi-fractal patch antenna Multilayer 
perceptrons 
ANN 

Simulated and measured results Efficient resilient 
backpropagation algorithm 

Thickness and size 
of antennas 

[132] Circular fractal antenna PSO based 
selective 
ANN 

Simulated, desired, and 
experimental results 

-- -- 

[133] Custom-made fractal antennas ANN and 
PSO 

Simulation and experimental 
results 

-- fractal antenna 
parameters/ 
operational 
frequencies 

[134] Hybrid fractal antenna ANN Simulated, and experimental 
results 

Firefly algorithm  Feed position  

[135] E–shaped patch antenna  Deep neural 
network 

 Deep neuro-computing model  Resonant frequency 

[136] Square patch antenna GPR Simulated and measured -- Slot size and patch 
dimensions/ 
resonant frequency 

[137] Dual-band microstrip antennas GPR  -- Resonant 
frequencies 

[138] Dual-band CPW-fed slot antennas GPR Moment-method-based 
simulations 

GA Several tunable 
geometries 

[139] Dual-band double t-shaped 
monopole antenna 

Least 
absolute 
shrinkage 
and 
selection 
operator, 
ANN and 
KNN  

Results obtained from high-
frequency structure simulator  

-- -- 

[140] Slotted microstrip antennas Neural 
network 
model 

Simulated, predicted, and 
measured results 

-- Resonance 
frequencies, gain 
and radiation 
efficiencies 

[141] Microstrip antennas Knowledge-
based neural 
networks 
model 

Measured, and simulated -- Resonance 
frequencies, gain 
and radiation 
efficiencies 

[142] Microstrip antenna ANN Simulated values -- Slot-size, air-
gap/ resonance 
frequencies, gain 
and radiation 
efficiencies 

[143] Rectangular microstrip antenna Support 
vector 
regression 

ANN model -- Slots position, slots-
size  

[144] Slotted microstrip antennas SVM Simulated and computed values -- Resonant 
frequency, gain, 
directivity, and 
radiation efficiency 

[145] Band-notched monopole antenna Decision 
tree, random 
forest, XGB 
regression, 
KNN, and 
ANN 

ANN -- Antenna’s 
dimensions 

[146] UWB antenna ANN Simulated and experimental 
results 

-- Impedance 
bandwidth and 
multi-band notch 
frequencies 

[147] Slotted UWB antenna Multi-
adaptive 
neuro-fuzzy 
inference 
system 

HFSS GA and PSO Bandwidth and 
notch frequencies 

[148] UWB antenna Multi-
objective 
genetic 
algorithm  

HFSS results with the real 
prototype antenna  

-- Return loss, 
bandwidth and 
central frequency 
deviation 

[149] UWB microstrip antenna -- Simulated result Adaptive evolutionary 
algorithm 

Return loss, 
bandwidth and 
central frequency 
deviation 

[150] Aperiodic linear arrays -- -- Nature-based design technique 
(includes robust GA optimizer 
and rapid neural-network 
estimation procedures) 

Optimal element 
positions  

[151] Antenna array Neural 
networks 

-- Modified invasive weed 
optimization (modified adaptive 
dispersion) 

-- 
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 A comprehensive survey on various antenna designs by 
using advanced methods of antenna design through machine 
learning, deep learning, and ANN listed in table 1 provide 
better results than conventional methods. After significant 
work has been done in the field of antenna optimization using 
machine learning algorithms, researchers can explore several 
advanced and forward-looking directions to push the 
boundaries of knowledge and address emerging challenges. 
Explore the integration of machine learning with other 
optimization techniques, such as genetic algorithms, 
simulated annealing, or reinforcement learning. Hybrid 
approaches may provide synergies that outperform individual 
optimization methods.  
 
 
6 Constraints and Overcomes 
 
Table 2 listed various parameters of recently proposed 
antenna models using different ML algorithm. However, 
machine learning algorithms have been used to optimize 
antennas, there are some constraints to this approach. Here are 
some potential constraints: 
 

1. Limited Data: The performance of machine 
learning algorithms depends heavily on the amount 
and quality of data used for training. However, for 
antenna optimization, it may be challenging to 
collect and label enough data to train the algorithm 
effectively. 

2. Complexity: Antenna optimization using machine 
learning algorithms can be a complex process that 
requires expertise in both antenna design and 
machine learning. The algorithm must be carefully 
designed to account for the various parameters that 
impact antenna performance, such as resonance 
frequency, polarization, and radiation pattern. 

3. Computational Cost: Antenna optimization using 
machine learning algorithms can be 
computationally expensive, especially for large and 
complex antenna designs. This may limit the 
practical application of the approach in some 
situations. 

4. Interpretability: Machine learning algorithms are 
often criticized for their lack of interpretability. It 
can be challenging to understand why a particular 
antenna design is optimal, which can limit the 
ability to make design decisions based on the results 
of the algorithm. 

 
 Overall, while machine learning algorithms have the 
potential to optimize antennas, their limitations mean that 
applied algorithm may not always be the best approach for 
specific antenna. Other optimization techniques may be more 
appropriate in some cases. Here are some ways to improve the 
process of microstrip antenna optimization using machine 
learning algorithms: 
 

1. Data Augmentation: To address the issue of 
limited data, we can use data augmentation 
techniques to increase the size of the training 
dataset. This can be done by generating synthetic 
data from existing data using techniques such as 
rotation, translation, and scaling. 

2. Feature Engineering: Feature engineering 
involves selecting or designing features that are 
relevant to the problem at hand. In the case of 
antenna optimization, this might involve selecting 
or designing features that capture key antenna 
parameters such as frequency, radiation pattern, and 
polarization. Effective feature engineering can help 
improve the accuracy of the machine learning 
algorithm. 

3. Ensemble Methods: Ensemble methods involve 
combining multiple machine learning models to 
improve their performance. For example, we could 
train multiple neural networks with different 
initializations and combine their outputs to obtain a 
more robust and accurate solution. 

4. Transfer Learning: Transfer learning involves 
leveraging knowledge from one domain to another. 
In the case of antenna optimization, this might 
involve using a machine learning algorithm that has 
been trained on a related problem, such as image 
classification, and fine-tuning it for antenna 
optimization. 

5. Explainability: To improve the interpretability of 
the machine learning algorithm, we can use 
techniques such as feature importance analysis and 
visualization. These techniques can help us 
understand which features are most important for 
antenna optimization and how the algorithm is 
making its decisions. 

 
 Generally, by addressing these issues and incorporating 
these techniques, we can improve the process of microstrip 
antenna optimization using machine learning algorithms.  

 
Table 2. List of recently optimized antenna model using different ML algorithm. 

References Antenna Types Frequency (GHz) Dataset ML Algorithm Error  
[50] Two-Port MIMO 

Antenna 
2.43–2.50 GHz 125 GPR RMSE less than 

0.0001%  

[136] Square Patch 
Antenna 

0.48–7.84 3822 GPR RMSE are 0.0087% 

[143] Rectangular 
Microstrip 
Antenna 

2.15 198 SVR Average Error 0.40% 

[144] Slotted Antenna 1.75 and 2.50 GHz 198 SVM Average Error 0.79% 
[145] Band-Notched 

Monopole Antenna 
2.9 and 21.6 GHz 766,413 KNN Mean Square Error 

0.290% 
[147] Slotted RMSA 2–3.17/9.1–14/0–

4.84/0–4.39/0–3.51 
1195 MANFIS-PSO Error is >1% 

[166] U-shaped Slotted 
Antenna 

2-10.75 956 ANN Average Relative 
Error 1.59% 
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[167] Square Patch MSA 5.9206–25-7625 125 GPR Average Error is 
0.400281% 

 
 
7 Machine Learning for Antenna Applications 
Machine learning approaches have been depicting great 
outcomes in many antenna applications like 5G, biomedical, 
textile, Global Positioning System (GPS), satellite 
communication system and smart homes and cities. Its 
exceptional abilities to process on real problem statements 
and get hands-on experience with accurate data make it more 
appropriate for applications. By applying machine learning, 
the antenna is used for many civilian uses and further wireless 
applications. Additional, body-centric communication 
systems also utilize machine learning to improve their 
capabilities. 
 
7.1 Machine learning for millimeter wave  
Machine learning can be used to optimize the design of 
antennas for wireless communication systems such as 5G, 
IoT. In electromagnetic spectrum the frequency range of 
millimeter wave covers 30 to 300 GHz (10 to 1 mm 
wavelength range). The millimeter wave frequency range are 
widely used for the data transmission and sensing systems. It 
provides good flexibility and capability, due to large range of 
unlicensed bandwidth. Different field of applications uses 
millimeter wave technology that will come under the 
millimeter wave range. Nowadays, wireless applications are 
utilizing millimeter wave antennas designed by using 
machine learning algorithms to achieve large flexibility. 
Literatures [153,154] reported optimization of antennas using 
Machine learning tools for 5G application.  

 
7.2 Machine learning for body-centric communication 
Antennas are increasingly used in medical applications such 
as imaging and wireless sensing. Machine learning can be 
used to optimize the design of these antennas to improve their 
performance, such as reducing the power required for wireless 
sensing. Currently, demand of body-centric communication 
systems has been increased in different areas and applications 
such as biomedical, security, identification, sports, smart 
phones etc. Wearable antennas are the most important 
elements for the body-centric communication systems. Some 
of the research papers [155, 156] proposes wearable antennas 
and experimentally analysed using machine learning 
algorithms. 
 
7.3 Machine learning for satellite communication 
Antennas are critical components in aerospace applications, 
such as radar systems and satellite communication. Machine 
learning can be used to optimize the design of these antennas 
to improve their performance and reduce their size and 
weight. Satellite communication consist of two main 
modules: first is the ground portion that contains fixed or 
mobile transmission/reception system, and supplementary 
equipment, second is the space portion, that is the satellite. A 
satellite travels around the Earth in orbit and transferring 
information from one place to another. Nowadays, machine 
learning based antennas are designed for satellite 
communication to deliver signals to a station. Various 
literatures [157,158] propose different works on satellite 
applications using machine learning. 
 
7.4 Machine learning for textile communication systems 
Demand of wearable antennas in biomedical applications is 
increases due to its flexibility, durability, and washability. 

These wearable antennas are fabricated with textile materials 
and essential for emerging wireless textiles communication 
systems. In textiles systems, communication has been with 
the help of wearable antennas with external devices. Several 
papers [159-162] are focused on sensors and techniques using 
machine learning that have being more useful to design the 
flexible textile system. 

 
7.5 Machine learning for global positioning system  
Antennas are also important in automotive applications, such 
as GPS, Bluetooth, and cellular communication. Machine 
learning can be used to optimize the design of these antennas 
to improve their performance in challenging environments 
such as urban canyons and tunnels. The GPS is mostly used 
to obtain the accurate geographical position in civil and 
military applications. The microstrip antennas are mostly 
used in GPS due to compact size and good radiation 
properties. Due to the requirement of circular polarization 
property in receiver antennas of GPS, microstrip antennas is 
needed. The purpose of machine learning in GPS application 
has been illustrated in [163-165] with detailed explanation. 

 
7.6 Smart homes and cities 
Antennas are increasingly being used in smart home 
applications such as home automation, security systems, and 
entertainment systems. Machine learning can be used to 
optimize the design of these antennas to improve their range, 
data rate, and energy efficiency. Antennas are also important 
components in smart city applications, such as traffic 
management, air quality monitoring, and public safety. 
Machine learning can be used to optimize the design of these 
antennas to improve their performance in challenging 
environments, such as urban canyons and high-rise buildings. 
 In all these applications, machine learning can help 
engineers optimize antenna designs more efficiently and 
effectively than traditional methods. By automating the 
optimization process using machine learning, engineers can 
save time and resources while also exploring a wider range of 
design options to find the best antenna configuration for a 
given application. While the integration of machine learning 
into antenna applications offers numerous benefits, careful 
consideration of the associated challenges is crucial.  Machine 
Learning dependent Broadband Millimeter-Wave SIW 
Cavity-Backed slot antenna has been proposed. But some 
issues like requirement of substantial amounts of labelled data 
for training, long duration of development, and the cost. 
Antenna optimization based on an ANN method for detecting 
GPS spoofing signals may be faced problem of high error-
susceptibility and a lack of capable resources. 
 

 
8 Conclusion 
 
A thorough discussion on machine learning algorithms in 
antenna design optimization has been reported in this paper. 
Due to fast processing speed of the antenna design with 
minimum errors and high accuracy, machine learning 
techniques are mostly studied. A concise study has been given 
on various machine learning types and evolutionary 
algorithm. In this survey, a thorough investigation has been 
done on various antenna designs by recently developed 
machine learning optimization techniques for improved 
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results. This paper has been discussed general approaches to 
antenna optimization using evolutionary ML algorithm, 
which are appropriate for antenna parameters with high and 
multiple specifications. These algorithms are proposed for 
different modern antenna design due to their simplification, 
robustness, and optimization ability. Applications of antennas 
in various fields like telecommunications, aerospace, 
automotive, medical and textile are explored. In all these 
applications, machine learning can help engineers optimize 

antenna designs to meet the specific requirements of smart 
applications, such as low power consumption, high data rate, 
and reliable communication.  
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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