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Abstract 
 

Given the high saturation, strong nonlinearity, and tight coupling characteristics of the magnetic paths in a switched 
reluctance motor (SRM), accurately modeling flux-linkage is challenging, thus leading to excessive torque ripple during 
SRM torque control. In order to enhance the precision of the SRM flux-linkage model, a neural network-based method for 
the parameter identification of SRM’s nonlinear flux-linkage model was proposed in this study. Logistic mapping elements 
were incorporated into the feedback layer of the diagonal recurrent neural network (DRNN), and chaotic control parameters 
were designed. Then, the construction of an analytical model of the nonlinear exponential flux-linkage function using the 
chaotic diagonal recurrent neural network (CDRNN) was established. By utilizing sample data of flux-linkage, current, and 
angular position, the parameters of this model were estimated, thus achieving a precise nonlinear exponential function 
model of the flux-linkage. Results show that, the integration of logistic mapping in the CDRNN feedback layer effectively 
prevents the local minima typically associated with conventional DRNN. The maximum error in the identified flux-linkage 
is less than 0.01 Wb, and the accuracy reached 95%. Compared with the DRNN method, the CDRNN approach 
demonstrates significantly reduced errors and higher model precision. This study offers valuable insights for enhancing the 
performance of SRM torque ripple control. 
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1. Introduction 
 
In the context of sustainable development strategies, motor 
drive systems powered by electricity have shown extensive 
potential in new energy vehicles, aerospace, and other sectors. 
However, complex working environments have imposed 
demands for high efficiency, high power density, wide speed 
regulation ranges, and high reliability [1, 2]. Among the 
various motor drive technologies, the switched reluctance 
motor drive system (SRD) offers significant advantages, 
including high startup torque, low startup current, numerous 
controllable parameters, flexible and convenient control, and 
no risk of direct short-circuiting [3]. The switched reluctance 
motor (SRM), which is the core component of the SRD, is 
characterized by a simple structure where the rotor is 
composed of silicon steel sheets with high magnetic 
permeability, along with concentrated windings on the stator 
and no permanent magnetic materials. Functionally, the SRM 
operates independently in each phase, thus ensuring that a 
single- phase fault does not affect the operation of other 
phases [4, 5]. These advantages make the SRM particularly 
suitable for harsh operational conditions, such as high speed, 
high temperature, and an environment requiring frequent start 
and reversal. Despite their benefits, the magnetic saturation 
and nonlinearity of SRM result in significant torque ripple. 
This outcome adversely affects performance, especially in 
applications with low rotational inertia where torque ripple 
can cause noticeable speed fluctuation, thus limiting further 
industrial application and development of SRM [6]. 

To meet the high-performance and high-precision 
requirements of these specific applications, reducing SRM 
torque ripple through optimized control algorithms has 
become a focal point of research. Establishing an accurate 
SRM model is fundamental for analyzing and predicting 
motor performance and suppressing motor torque ripple. The 
SRM model primarily includes flux-linkage and torque 
models, with the torque model being derivable from the flux-
linkage model. Thus, flux-linkage modeling is key to SRM 
nonlinear modeling [7]. Given SRM’s unique double-salient 
pole structure and the principle of “minimum magnetic 
reluctance” operation, its magnetic inductance and other 
parameters exhibit high nonlinearity with respect to current 
and rotor position. This highly nonlinear relationship 
complicates the magnetic path with high saturation and strong 
coupling, thus posing significant challenges in developing 
accurate flux-linkage models for SRM [8]. 

In response, scholars have extensively studied SRM flux-
linkage modeling using various methods, such as linearization, 
finite element analysis, and intelligent modeling [9, 10]. 
However, the inability to obtain accurate flux-linkage models 
continues to result in excessive torque ripple in SRM torque 
control systems. Given that SRMs are increasingly been 
applied in complex environments with multiphysical field 
coupling and high-precision control requirements, the 
demand for highly accurate flux-linkage models in SRM 
torque control systems has become increasingly pronounced. 
Addressing the limitations caused by magnetic saturation in 
flux-linkage modeling to achieve high-precision SRM torque 
ripple control has emerged as a pressing challenge. 
Consequently, accurately identifying the parameters of 
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SRM’s nonlinear flux-linkage models and enhancing model 
computational efficiency to suppress torque ripple in SRM 
systems hold significant engineering value. 

To this end, this study uses a neural network to identify 
the parameters of the SRM’s nonlinear flux-linkage 
exponential model. It integrates logistic mapping elements 
into the feedback layer of the diagonal recurrent neural 
network (DRNN), designs a chaotic control parameter, and 
establishes an identification system for chaotic diagonal 
recurrent neural network (CDRNN)-based nonlinear flux-
linkage model. Utilizing flux-linkage, current, and angular 
position sample data, the parameters of the nonlinear 
exponential flux-linkage model are estimated to address 
issues of slow training speed and susceptibility to local 
minima in the neural network. This approach not only 
supports the development and optimization of SRM torque 
control applications but also serves as a reference for 
enhancing the precision of such systems.  
 
 
2. State of the art  
 
The flux-linkage of SRM, which is critical parameters 
affecting the rotor position and current, exhibits high 
nonlinearity, thus complicating the acquisition of precise 
SRM analytical model. Consequently, scholars worldwide 
have conducted in-depth studies on nonlinear modeling 
techniques for SRM. For instance, Song [11] utilized 
polynomial and piecewise functions to characterize flux-
linkage properties; this process requires significantly fewer 
data than lookup table and neural network methods but with 
limited modeling precision. Liu [12] reconstructed flux-
linkage characteristics for an entire cycle using a fuzzy logic 
system based on data from the torque equilibrium method; 
this method achieves high precision but without a functional 
expression, which is disadvantageous for controller design. 
Furthermore, Yang [13] represented a flux-linkage model 
using the Fourier series and fitted the coefficients with 
arctangent and exponential functions, a process that is 
renowned for its complexity and limited accuracy. In addition, 
Wang [14] proposed an approach using the mind evolutionary 
algorithm (MEA) to optimize the initial weights and 
thresholds of a backpropagation (BP) neural network; this 
method enhanced the network’s training process to achieve 
higher accuracy and speed in the SRM electromagnetic model 
but failed to provide an analytical model. Li [15] developed a 
normalized flux-linkage modeling method that considers 
magnetic saturation and structural factors, which does not 
require detailed measurement or simulation data of SRM 
modeling; the model was validated using finite element 
methods, but it overlooks certain physical parameters during 
the linear normalization process. Aydemir [16] employed a  
nonlinear autoregressive network with exogenous inputs 
neural network (NARX NN) to estimate the phase flux-
linkage of SRM; the model eliminated the issue with online 
phase resistance changes by estimating phase flux-linkage 
from real-time phase current measurements, but it could not 
establish a mathematical relationship for the flux-linkage. 
Marcelo [17] introduced a drift cancellation technique to 
mitigate sensor calibration and noise errors in estimating flux-
linkage, validated through simulation and experimental 
results, but did not analyze the model's application to control 
techniques. Anupam [18] considered the effects of rotor pole 
height on air-gap permeability using a new flux-linkage 
calculation method that derived expressions for aligned and 
misaligned rotor positions based on magnetic material 

characteristics. However, the flux-linkage model was not 
been discussed. Rocca [19] used interpolation techniques 
based on second-order Frohlich-Kennelly equations to fit the 
saturated flux-linkage curve; they were been validated 
through finite element analysis and physical prototypes but 
did not provide a comprehensive flux-linkage equation. 

To address the issue of excessive torque ripple during 
low-speed operation, Dang [20] designed a D-Sigmoid 
activation function to construct a neural network inductance 
model and introduced a torque bias preprocessing method to 
accelerate the correction of inductance model parameters, 
thereby suppressing torque ripple. However, the proposed 
method based on online neural network calculations involves 
substantial computational effort and is unsuitable for real-
time SRM control. Uddin [21] divided the SRM stator teeth 
into saturable and nonsaturable linear segments whose 
thickness varies with rotor position, thus enhancing the 
accuracy of flux-linkage calculations but complicating 
calculations that are dependent on SRM’s geometric shape. 
Meanwhile, Hao [22] proposed an air-gap flux-linkage model 
analysis method based on winding functions and the current 
distribution to predict SRM’s nonlinear transient torque, 
which did not require initial flux-linkage data and was 
numerically validated using finite element methods. However, 
the proposed method also did not define the relationships 
among geometric shapes, rotor positions, and magnetic 
saturation. Stuikys [23] introduced a multibranch magnetic 
circuit calculation method using a finite element analysis of 
SRM geometric profiles to refine flux-linkage curves, thus 
effectively enhancing the estimation accuracy of flux-linkage; 
however, the applicability of the proposed method is limited 
by variations in SRM models. Li [24] analyzed phase 
inductance using Maxwell’s equations under specific 
boundary conditions, a process that involves substantial 
engineering calculations. Cai [25] simplified the 
mathematical model to convert the saturated incremental 
inductance of an SRM into unsaturated inductance; this model 
reconstructs the full-cycle unsaturated inductance but 
overlooks specific details during dynamic changes in 
inductance, thus failing to reflect the strong nonlinearity of 
inductance fully. Li [26] presented a distribution control 
method, a common SRM control approach that disregards 
magnetic saturation and edge effects, using only a linear 
inductance model; it solves phase currents through a torque-
current inverse model but does not consider the substantial 
modeling errors caused by the strong nonlinear inductance 
characteristics.  

The aforementioned studies primarily involved the use of 
equivalent magnetic circuit modeling for SRM flux-linkage. 
On the one hand, these studies typically applied general linear 
and quasilinear modeling methods. These methods reduced 
the complexity of mathematical formula derivation and 
associated calculations but ignored mutual inductance effects 
because of changes in the relative positions of stators and 
rotors, which significantly deviated from actual results. On 
the other hand, methods based on neural networks failed to 
address the issue of local minima during network training, 
thus preventing the acquisition of precise SRM flux-linkage 
analytical models. This study introduces logistic mapping 
elements into the feedback layer of the DRNN and designs 
chaotic control elements. Moreover, it proposes a method 
based on the CDRNN for identifying parameters of the SRM 
nonlinear exponential flux-linkage model. Utilizing the 
generalization capability of the DRNN, the proposed 
methodological model without reliance on prior experience or 
theoretical knowledge. It enhances the generalization 
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performance of the nonlinear exponential flux-linkage 
analytical model and prevents the DRNN from falling into 
local minima, thus ensuring modeling accuracy and laying a 
foundation for precise SRM torque ripple control. 

The remainder of this study is organized as follows. 
Section 3 provides a brief overview of the exponential 
function-based SRM nonlinear flux-linkage model by 
incorporating logistic mapping elements into the DRNN 
feedback layer, designing chaotic control parameters, and 
constructing a CDRNN-based exponential flux-linkage 
parameter identification structure. Section 4 identifies flux-
linkage model parameters based on empirical SRM flux-
current-angle sample data, thereby validating the accuracy of 
the flux-linkage model obtained. Section 5 summarizes the 
study by highlighting the improvements in the identification 
accuracy of SRM flux-linkage parameters achieved through 
the CDRNN identification algorithm, thus obtaining a precise 
SRM flux-linkage analytical model that is beneficial for the 
subsequent precise control of SRM torque. 
 
 
3. Methodology  

 
3.1 Exponential flux-linkage model for SRM 
Based on the principles of electromechanical energy 
conversion, the SRM can be viewed as a two-port device 
consisting of one electrical port and one mechanical port. 
Ignoring iron losses and mutual inductance between phases, 
the energy conversion of the SRM is illustrated, as shown in 
Figure 1. 
 

 
Fig. 1. Schematic diagram of electromechanical energy conversion in an 
SRM 
 
Where  represents the voltage (V) of phase j; 
represents the resistance (Ω) of phase j;  represents 

the flux-linkage linkage (Wb) of phase j;  represents the 
current (A) of phase j;  represents the rotor’s angular 
position (°);  represents the electromagnetic torque of the 
motor (Nm);  represents the load torque (Nm);  
represents the coefficient of viscous friction;  represents 
the moment of inertia of the motor ( ). 

According to the basic principles of circuitry, the voltage 
balance equation for phase j of the motor is given by 

 

                                                    (1) 

 
The mechanical motion equation for the motor’s rotor can 

be expressed as 
 

               (2) 

 

where  represents the rotor’s angular velocity (rad/s) and 
m denotes the number of phases in the motor. 

The induced electromotive force at the electrical port and 
the electromagnetic torque at the mechanical port are coupled 
through the magnetic field, thus facilitating energy transfer. 
The electromechanical energy conversion process within a 
working cycle of the motor can be described by the magnetic 
flux-current coordinate plane. Given that the rotor of the 
switched reluctance motor has a salient pole structure, its 
flux-linkage varies not only with the current cycle but also 
with the rotor position cycle. Moreover, it can be described 
using magnetic flux-current-rotor angle coordinates. For an 
m-phase switched reluctance motor, ignoring mutual 
inductance between windings, the electromagnetic torque of 
the motor can be considered generated solely by a single 
winding, thus resulting in the electromagnetic torque for 
phase j of the SRM as 

 

                  (3) 

 
where  represents the magnetic coenergy (J) of 
phase j of the motor. 

As derived from Equation (3-3), the nonlinearity of 
electromagnetic torque is primarily due to the nonlinearity of 
the motor’s flux-linkage linkage. Hence, the establishment of 
a reasonable flux-linkage model must be examined. This 
study utilizes an exponential function-based SRM flux-
linkage model, which is presented as follows: 

 

         (4) 

 
where  represents the saturation flux-linkage linkage;  
is the number of rotor poles; a and b are coefficients of the 
function , with a > b. 

By substituting Equation (4) into Equation (3), the 
instantaneous torque of the motor can be calculated as 
  

  

(5) 

 
Thus, to derive the analytical model of SRM’s 

electromagnetic torque, the parameters , a, and b must be 
estimated from the flux-linkage model in Equation (4). 
 
3.2 Principles of flux-linkage model parameter 
identification 
The DRNN connection layer includes a feedback unit, where 
the output of neurons in the connection layer forms part of the 
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input for the next time axis, thus incorporating the load state 
from the previous time axis. This configuration overcomes the 
inability of the deep neural network (DNN) to map dynamic 
load characteristics fully, thus making the DRNN particularly 
adept at identifying the nonlinear characteristics of SRM flux-
linkage models. However, similar to the DNN, the DRNN can 
fall into local minima traps because of their hidden layers. To 
overcome this issue, the CDRNN was designed to identify the 
parameters of the nonlinear SRM flux-linkage model. The 
CDRNN incorporates logistic mapping items into the DRNN 
feedback layer by utilizing chaotic search properties for 
global optimization to prevent falling into local minima. 

Using the obtained SRM magnetic flux-current-angle 
data, the CDRNN is employed to estimate , a, and b from 
Equation (4). The structure for estimating the parameters of 
the nonlinear flux-linkage model using CDRNN is shown in 
Figure 2. 

In the diagram, the CDRNN neural network continuously 
adjusts its weights based on the discrepancy between the 
measured flux-linkage linkage  and the calculated 
values from the nonlinear flux-linkage model , as well 
as input data that has been delayed, such as current, angle, and 
flux-linkage. This adjustment continues until the error 
performance requirements are met, thereby estimating the 
parameters to be identified ( , a, b). The solid and dashed 
arrows traversing the neural network module represent the 
dynamically adjusting network weights. 

 

 
Fig. 2. Structural diagram for estimating nonlinear flux-linkage model 
parameters using CDRNN 
 
3.3 CDRNN and stability analysis 
The structure of the CDRNN incorporating logistic chaos 
mapping is shown in Figure 3. 
 

 
Fig. 3. Structure of the CDRNN incorporating logistic chaos mapping 

As depicted, the CDRNN consists of an input layer, a 
hidden layer, a connection layer, and an output layer. Under 
the influence of logistic mapping inputs to the connection 
layer, chaotic motions occur in the hidden layer, thus 
preventing the network output from falling into local minima. 
The CDRNN algorithm is described by 

 

       

(6) 

 
where  is the input layer vector;  is the output of the 
CDRNN;  and  are the output vectors of the 
intermediate hidden layer and its delayed version by one 
sampling period, respectively;  is the sigmoid function; 

, , and  are the network weights for the 
CDRNN’s input layer, connection layer, and output layer, 
respectively; a is the chaos control coefficient, which ranges 
from 0 to 4;  is the logistic mapping function. 

The network output error is defined as 
 

                          (7) 
 
where  is the desired network output;  represents the 
system disturbance error. 

Based on the network output error, the performance index 
of the CDRNN identification is defined as 

 

                                   (8) 

 
The weight update algorithm for the output layer of the 

CDRNN is designed as 
 

                            (9) 

 
where  represents the normalization factor for the 
output layer;  is the adaptive learning rate for the output 
layer;  is the error control item for the output layer; 

 is the network output error 
vector. 

The hidden layer network weight update algorithm for the 
CDRNN is given by 
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     (10) 

 
where =min( )≠0, where t denotes time;  
is the normalization coefficient for the hidden layer;  is 
the adaptive learning rate for the hidden layer;  is the 
error control item for the hidden layer. 

The input layer network weight update algorithm for the 
CDRNN is structured as 

 

      

     (11) 

 
where  represents the normalization coefficient for the 
input layer;  is the adaptive learning rate for the input 
layer;  is the error control item for the input layer.  
Note: The excitation function of the hidden layer is 

, and its derivative  is 
positive. According to the characteristics of neural networks, 
the weights for the input, hidden, and output layers are all 
within the range of 0 to 1. Therefore, the normalization 
coefficients , , and  are all positive. 

 
 

4. Result Analysis and Discussion 
 

To estimate the three parameters to be identified in the flux-
linkage model, sample data of flux, current, and angle for the 
SRM must be obtained. As shown in Figure 4, the principle 
of flux-linkage detection for a single phase of the SRM 
assumes identical winding parameters per phase and 
disregards mutual inductance between phases. The SRM is 
fixed to the base of the test rig with an indexing plate, which 
allows the adjustment of the rotor’s positional angle by 
manipulating the indexing plate’s handle. The host computer 

uses the Real-Time module in MATLAB/Simulink and a PCI 
interface data acquisition card for data communication, thus 
controlling the switching of power tubes for the phase 
windings and collecting voltage and current data. 
 

 
Fig. 4. Schematic diagram of flux-linkage eetection for SRM phase 
windings 
 

The SRM flux-linkage measurement system is shown in 
Figure 5. The flux-linkage detection of the SRM utilizes a step 
voltage method where a step voltage is applied to the motor’s 
phase winding when the initial flux-linkage is zero. This 
process involves the real-time monitoring of voltage and 
current and uses Euler’s method for numerical integration to 
calculate flux-linkage. During the flux test, the rotor’s 
positional angle is fixed because the designed SRM is a three-
phase 12/8 structure with a rotor angle period of 45°. Given 
that the phase winding’s flux-linkage is symmetric within one 
period, flux-linkage data can be sufficiently collected from 0° 
to 22.5°. Therefore, the angle at which the flux-linkage 
reaches its maximum within an angle period, which is when 
the salient poles of the stator and rotor align, is defined as 
22.5°. A PWM generator is designed using 
MATLAB/Simulink to control the opening of power tubes 
and simultaneously collect voltage and current data from the 
phase windings. After a sampling session ends, the PWM 
generator stops, the power tubes are turned off, and Simulink 
saves the collected voltage and current data to the MATLAB 
workspace. To ensure that the initial value of flux-linkage is 
zero for digital integration, the circuit’s switch is 
disconnected after sampling. Once the winding has fully 
discharged, the next data sampling occurs. The rotor angle is 
sampled at 1.5° intervals, thereby obtaining 16 sets of data. 

 

 
Fig. 5. SRM Flux-Linkage Measurement Experimental System 
 

A model for identifying nonlinear flux-linkage parameters 
using CDRNN based on Figure 2 is established in 
MATLAB/Simulink. It utilizes the experimentally obtained 
flux-current-angle data to identify the parameters , a, and 
b. Figure 6 illustrates the changes in parameters during the 
CDRNN identification process. As shown, the performance 
error of the CDRNN eventually converges to zero, thus 
indicating stability throughout the identification process. At 
the start of identification, to avoid falling into local minima 
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due to significant errors, chaotic control parameter a is used 
to induce chaotic behavior in the network by utilizing its 
chaotic ergodicity for optimization. Once the performance 
error falls within the set desired range, the chaotic control 
parameter is turned off to accelerate the convergence of the 
identification process. The learning rates for the input, hidden, 
and output layers of the CDRNN are dynamically adjusted, 
thus indicating that the designed neural network can 
adaptively change based on the error control items set for each 
layer. Hence, the network’s generalization capability is 
effectively enhanced. The results demonstrate that the 
proposed CDRNN can autonomously modulate chaos, thus 
significantly improving the network’s convergence speed and 
generalization performance. 

 

 
Fig. 6. Changes in parameters during the CDRNN identification process 
 

Figure 7 presents the results of the parameter 
identification of the flux-linkage model. At the start of the 
identification, given the significant initial errors, the network 
is made to enter a chaotic state by adjusting the logistics 
control parameter a. It utilizes the chaotic ergodicity to search 
globally for optimal points, which effectively prevents the 
network from getting stuck in local minima. Approximately 
one second into the operation, when the network performance 
error reaches the preset desired value, the chaotic control 
parameter is automatically turned off. This setting allows the 
parameter identification to enter a converging state in less 
than two seconds, thus effectively accelerating the 
convergence of the identification process. By averaging the 
steady-state portion of the identified parameters, the flux-
linkage model parameters are estimated to be , 
a = 0.0297, and b = −0.0057. 

 

Fig. 7. Results of flux-linkage model parameter identification 
 

Angles and currents were input into the flux-linkage 
model at intervals of 0.5° and 0.5A, respectively, to obtain the 

corresponding fluxes. The flux-current-angle surface, as 
shown in Figure 8, transitions smoothly and is continuous 
without any breaks within the range of inputs. Thus, it 
accurately reflects the variations in flux-linkage with respect 
to angle and current. 

 

 
Fig. 8. Flux-current-angle surface 
 

To verify the effectiveness of the model parameters 
identified by the CDRNN, the flux-linkage obtained from the 
CDRNN identification model was compared with the flux-
linkage measured experimentally, and a flux-linkage error 
surface was plotted. Figure 9 shows the flux-current-angle 
error surface, where the maximum flux-linkage error does not 
exceed 0.01 Wb, the maximum flux-linkage is 0.2 Wb, and 
the accuracy is 95%. This outcome demonstrates that the 
proposed flux-linkage analytical model has high precision. 

 

 
Fig. 9. Flux-current-angle error surface 
 

To validate further the accuracy of the flux-linkage curves 
identified using the CDRNN-based parameter identification 
method proposed in this study, the flux-linkage calculations 
under varying currents were performed at stator and rotor pole 
positions of 10.5° and 19.5°, respectively. Then, they were 
compared with DRNN estimated data and experimental data. 
As shown in Figures 10 and 11, the results indicate that at 
lower currents (0-10A), the flux-linkage calculations obtained 
through CDRNN identification closely match the 
experimental data, whereas the DRNN-identified flux-linkage 
begins to show significant errors starting from 5A. As the 
current increases, the errors in flux-linkage calculations using 
CDRNN are noticeably smaller than those using DRNN, thus 
demonstrating higher model accuracy. 

 

 
Fig. 10. Comparison of flux-linkage curves at a fixed position of 10.5° 
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Fig. 11 Comparison of flux-linkage curves at a fixed position of 19.5° 

 
5. Conclusions 
 
In response to the challenges of high saturation, strong 
nonlinearity, and strong coupling in SRM magnetic circuits, 
this study introduced a CDRNN featuring a feedback layer 
with logistics mapping items. A control model for identifying 
the nonlinear flux-linkage model of SRM based on the 
CDRNN was established, and parameters of the flux-linkage 
nonlinear model were identified using SRM flux-current-
angle sample data. The following conclusions could be drawn: 

(1) The inclusion of logistic mapping and chaotic control 
parameters in the DRNN’s feedback layer can prevent the 
standard DRNN from falling into local minima, thus ensuring 
convergence of the identification process. 

(2) Compared with experimentally measured flux-linkage, 
the flux-linkage identified by the CDRNN had a maximum 

error of no more than 0.01 Wb and a maximum flux of 0.2 Wb, 
thus achieving an accuracy of 95%.  

(3) Flux-linkage identified by DRNN exhibited 
significant errors starting at a current of 5A. As the current 
increased, the CDRNN provided notably smaller errors in 
flux-linkage calculations, thus resulting in enhanced model 
accuracy.  

This study designed a control system for identifying 
parameters of the SRM nonlinear flux-linkage model based 
on the CDRNN, thus obtaining a relatively accurate SRM 
nonlinear flux-linkage model. This model has practical 
significance for improving precise torque control in SRM. 
Given the lack of a related test platform for SRM torque 
control, the obtained flux-linkage model could not be verified 
through experiments. Therefore, future work will involve 
conducting SRM torque control experiments and refining the 
nonlinear flux-linkage model to understand the nonlinear 
characteristics of SRM magnetic circuits more accurately. 
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