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Abstract 
 

A fault in a power system is an anomalous state that must be recognized as soon as feasible. To minimize the repercussions 
of the fault, such as damages occurred to the device, loss of tangible assets and loss of human resources, it is critical to 
notice the problem promptly. In a power distribution system, there are several approaches for detecting different types of 
faults. In this paper, a neoteric approach using Bayesian optimized Convolutional Neural Network is used to detect and 
classify different symmetrical as well as unsymmetrical faults in power distribution systems. The effectiveness of the 
proposed CNN model is validated for an IEEE 13 bus radial distribution system grid modeled (and simulated) in PSCAD. 
Time series of the measured 3-phase fault currents (for eleven different categories of faults) are used to create training & 
testing data. This data has been imported in MATLAB software to develop a CNN classifier (whose hyper-parameters are 
optimized by using a Bayesian optimizer) for faults in power distribution system, under distinct fault situations by varying 
fault resistance, faulty node and fault inception angles. Findings of simulation clearly indicate that proposed model has 
very high categorizing accuracy and is superior and competitive to other techniques available in literature.  
 
Keywords: Bayesian optimization, Convolutional Neural Network (CNN), Fault classification, Hyper-parameters, Radial distribution 
systems. 
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1. Introduction 
 
Distribution systems are consistently exposed to danger of 
short circuit faults which lead to power loss. The relaying 
system's crucial stages of fault detection and classification must 
be completed successfully and quickly in order to clear faults 
so that speedy restoration may be accomplished. Techniques 
used for fault diagnosis in transmission grids cannot be used 
immediately for distribution grids on account of their 
structural complexities like non-homogeneity, presence of 
laterals etc. [1]. Moreover, the standard relaying techniques are 
becoming ineffective due to shifting fault current levels as 
distributed generators (DGs) are used more frequently in 
distribution networks. The chance of relay operations on non-
faulted phases can be decreased with accurate real-time fault 
classification, which can allow superior grid operation.  The 
practical objective of online fault classification is made 
possible by dispersed measurement equipment in smart 
distribution grids. 
 To take into account the complexities and uncertainties of 
distribution system, many researchers have been using 
machine learning based fault diagnosis systems for 
distribution networks using knowledge from the data 
corresponding to different conditions. Among them, 
W.H.Chen et.al. [2] have explored and demonstrated the 
fuzzy logic-based (FL) techniques for precise classifications 
of faults type in distributed power system. In [3], figures 
gathered by alarms & protective relays in power network have 
been evaluated by J. C. S. desouza et. al. utilizing Neuro fuzzy 
methods. D. Thukaram et. al. first utilized SVM (Support 
Vector Machines) to categorize distinct kinds of fault, and 
then an ANN (Artificial Neural Network) is used to locate the 

problem site [4]. L. C. Acacio et. al. [5] have used and 
compared the accuracy of different neural network structures 
for detection of single L-G (line to ground) faults. N. Wang 
et. al. [6] have utilized a SVM (support-vector-machine) and 
PCA (principle-component-analysis) for fault classification 
taking into account the impact of measurement noise as well 
as loading conditions. Hosseini et.al. [7] have used the data 
evaluated by smart meter as input of a multi-label SVM, for 
detecting defective lines in power distribution system.  
 Also, a mix of signal processing as well as machine 
learning is used by many researchers for distribution system 
fault detection, e.g., by using spectral properties of 
observations, feature extracted data is delivered to an artificial 
neural network (ANN) for distinct faults’ classification [8]. In 
[9], a fault diagnosis scheme using ART (Adaptive 
Resonance Theory) neural network combined with time-time 
(T-T) transform is developed. S. Jana et. al. [10] have 
combined the concepts of wavelet entropy and artificial 
neural network for diagnosis of distribution grid faults. Fuzzy 
logic technique has also been employed in tandem with DWT 
(Discrete Wavelet Transform) for precise identification of 
distinct kind of faults [11 - 13]. J. Zhang et. al. [14] have used 
an adaptive neuro-fuzzy inference system combined with 
wavelet transform technique for diagnosing faults in a 
distribution grid. For the same problem, a new classifier 
called Robust Semi-Supervised Prototypical Network 
(RSSPN) based on Prototypical Network architecture and 
semi-supervised learning is proposed by T. Zheng et. al. [15]. 
For classification of single phase to ground faults, a multilabel 
classification model using 8-D feature space and a 14-label 
fault-type space is proposed by Y. Liang et. al. in [16]. For 
performing highly efficient fault data analysis, a kNN (k 
Nearest Neighbor) based fault identification model for single-
phase-to-ground faults is proposed by J. Zhu et. al. [17]. The 
eigenvectors in this model are the wavelet energy ratio, the 
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variance of the wavelet coefficients, and the wavelet power 
produced by decomposing transient components. 
 Latest innovations in field of machine/deep learning, have 
cached imaginations of academia and business equally. A 
major advancement in this field is effective deployment of 
CNN (Convolutional Neural Networks) as well as transfer 
learning algorithms in range of image processing as well as 
image recognition-related tasks [18]. CNN, with its deep 
architecture eliminates the requirement of feature extraction 
as it extracts features from set of training data (which is in the 
form of raw images) [19] It learns automatically the mid and 
high-level abstractions using raw data [20]-[22]. It consists of 
a series of three types of layers, i.e., convolve, pooling and 
ReLu (Rectified linear unit) layers. It is widely used in the 
computer vision and gives high image recognition accuracy 
[23]. A novel transfer learning framework based on a pre-
trained LeNet-5 convolutional neural network is proposed by 
Shakiba et. al. [24] for fault diagnosis in transmission lines.  
 Md. Omaer et. al. [25] have proposed an extreme learning 
machine-based model for making a fast and accurate system 
for automatic fault classification on transmission lines. 
CatBoost classifier algorithm is used by V N. Ogar et. al. [26] 
as a machine language tool to train datasets for fault 
classification. A. Moradzadeh et. al. [27] have demonstrated 
the capabilities of SVM (support vector machine), DT 
(decision tree), k-NN (k-Nearest Neighbors), CNN 
(convolutional neural network), LSTM (long short-term 
memory) and Convolutional LSTM in categorizing the type 
and location of transmission line faults. A deep learning 
algorithm is used by P. Rai et. al. [28] for fault classification 
in the distributed networks integrated with DGs. Using 
Principal Component Analysis (PCA) and softmax 
regression, automated fault detection and classification is 
achieved by P. Chopra et. al. [29] using vibration and acoustic 
signals generated from the IC engines. The proposed 
technique does not require any hand-engineered feature 
extraction, as usually done and no pre-filtering is required on 
noisy industrial data [46]. In the recent years, deep learning 
methods have been adopted widely for fault diagnosis in 
Shipyard Power Systems [30]-[34].   
 Since the execution of deep/machine learning models has 
strong dependence on the choice of their hyper parameter’s 
values [35]-[36], so, there is a need to adopt a strategy for 
hyper parameters’ optimization of the CNN used in this work.  
The majority of past hyper parameter tuning research has 
focused solely on Grid and/or Random Search, [37]-[41]. 
Bayesian Optimization algorithm (using informed search) has 
been utilized in literature [42]-[43] very effectively and 
efficiently for optimizing hyper parameters of various 
machine learning models. Its advantage is that there is not 
sampling of each and every combination (with in search 
space) as done in Grid Search and it is more systematic as 
compared to Random Search. Hence, to enhance the 
classification exactness and efficiency, hyper parameters of the 
CNN used are optimized in this work.  
 Most of the previous works on distribution system’s fault 
have used one or more signal processing techniques like S- 
Transform [1], Wavelet transform [12,13,14], Principal 
component analysis [14], etc. for feature extraction [46] of 
data to be used for training. Some of these methods show poor 
fault classification accuracy and some studies have not 
performed fault classification in detail, e.g., they perform for 
single phase-to-ground faults classification only. Taking 
these research gaps in account, in this work, we propose a 
holistic deep learning-based framework for fault 
classification. The novelty of this work is use of images of 

time series of fault currents by Convolutional Neural 
Networks to identify visual patterns to monitor the state of the 
distribution system and thus to categorize eleven different 
types of faults including symmetrical as well as 
unsymmetrical faults. The main contributions of this work are 
as follows: 
 
1. To develop a PSCAD (4.2 version). model for IEEE 13 

node radial feeder power distribution system to simulate 
and collect time series for  eleven different types of 
faults i.e..(lines (R or Y or B) to Ground (G), i.e., R-G, 
Y-G, B-G; between two lines to Ground, i.e.,  (R-Y-G, Y-
B-G, B-R-G); between two lines, i.e., (R-Y, Y-B, B-R); 
between three lines i.e.,  (R-Y-B); between three lines to 
Ground, i.e.,  (R-Y-B-G). under varying fault resistance, 
node and inception angle values.  

2. Use of a Convolutional Neural Network in MATLAB to 
extract the features of the faults from the time series 
images. 

3. Use of a fully connected neural network structure using 
Softmax activation function for fault classification.  

4. Optimization of the values of CNN’s hyper parameters, 
i.e., Section depth, initial learning rate, momentum, and 
L2Regularization using a Bayesian optimizer. 

5.  A comparison of the proposed technique with state-of-the-
art methods. 

 
 Five sections make up this paper. In Section II, background 
theory is given. Section III explains overall methodology 
employed in this work. In Section IV, simulation results and 
comparison are given followed by conclusion and list of 
references.  
 
 
2. Theoretical Background 
 
2.1 Convolution Neural Network 
Deep learning approaches use neural networks with numerous 
hidden layers and sophisticated designs. With their ability to 
recognize visual details, discriminate noises, and make 
sophisticated judgments, they have revolutionized several 
domains of science and technology. The three most often 
utilized deep learning approaches are Convolutional Neural 
Networks (CNN), Auto encoders, and Generative Adversarial 
Networks (GANs). CNN is a supervised machine learning 
technique for recognizing picture characteristics created by 
spatial correlation. These networks are mostly used to 
investigate data local correlations, and the model is 
insensitive to tiny shifts because the CNN learns the features 
on its own, it can produce accurate classification even without 
comprehensive domain knowledge. [44]. 
 The basic architecture of CNN as shown in Fig. 1, 
includes a number of layers and for increasingly sophisticated 
models, additional layers might be used.  

 
Fig. 1. The basic architecture of CNN 



Garima Tiwari and Sanju Saini/Journal of Engineering Science and Technology Review 17 (2) (2024) 35 - 44 

 
 

37 

 Each layer assists in the extraction of 
characteristics/features through multiple iterations. The 
convolution process helps to save generic features while 
tailoring the deeper network to the task, resulting in features 
which are more relevant and sophisticated. For sample 
reduction, a pooling layer is utilized, which can minimize the 
number of model parameters and, to some extent, prevent 
over fitting [45]. 
 
2.2 Hyper parameter Tuning [30] 
Hyper parameters is a set of parameters utilized in the learning 
and testing process and must be pre-configured prior to the start 
of learning process in contrast to the internal (model) 
parameters (e.g. network’s weights) which are automatically 
adjusted by the machine learning algorithms during learning 
[42]. The learning rate, hidden layers, count of iterations, batch 
size, activation functions, regularization and momentum 
constitute examples of hyper parameters in general. The field 
size of used convolutional layers, pooling layers, as well as the 
step size (which is dealt with help of stride parameter), are 
considered whfen using convolutional neural networks for 
image classification. The parameters may be integer, 
continuous or categorical variables with values ranging from 
lower to the upper bounds, or a combination of the two [44].  
 The hyperparameters used in each model differ depending 
on the problem. There is no such thing as a universal set of 
optimum hyper parameters that applies to all models. We have 
taken into account the learning rate, momentum, regularization, 
and network depth as hyper parameters in this study. The 
learning rate aids in the identification of generic patterns in the 
image, Ideal learning rate might depend on the data and/or 
network to be trained [16].  It's common to begin with a slow 
learning rate [44]. Momentum aids in the scanning of the full 
search region without missing important points. The gradient 
descent with momentum updates prior gradients at a faster rate 
than the traditional gradient descent. Addition of momentum 
with gradient descent reduces noise in the calculations and 
produces better results in less time by smoothening out the 
gradient descent steps [44].  
 Regularization allows the model to generalize more 
effectively without over fitting, allowing us to generate more 
accurate classification results. Network section depth decides 
the depth of the network and therefore helps in identifying the 
unique features of the images. These hyper parameters must be 
set (tuned/optimized) with extreme caution as they have direct 
control over CNN model training and its classification 
accuracy. For this purpose, manual or automatic search may be 
used [43] 
 Manual search is based on the core intuition and experience 
of an expert user with a greater professional background and 
practical experience. As humans are not adept at processing 
data which is high dimensional data and quickly misinterpret or 
fail to catch trends and relationship in hyper parameters, it 
becomes increasingly difficult to manage as the number and/or 
range of hyper parameters (to be tuned) grows [43].  
 To overcome these difficulties, automatic search 
algorithms, such as grid search and random search have been 
proposed [38]. In a high-dimensional search space, random 
search is superior to grid search, but it becomes unreliable when 
training some sophisticated models. To overcome these 
difficulties and make the tuning process more efficient and 
effective, Bayesian optimization based on Gaussian process is 
used for tuning of hyper parameters of CNN as discussed in the 
next section. It optimizes a reward-driven acquisition function 
that balances exploration and exploitation to choose hyper 
parameters intelligently. It also makes use of past data for 

optimizing the search domain's scope and updates the posterior 
distribution as the number of iterations increases [41]. 
 
2.3 Bayesian optimization model  
We have used the Bayesian Optimization paradigm for 
optimizing the hyper parameters of the CNN classification 
model for its computational advantage over strategies like 
random and grid search-based cross-validation. It scales 
effectively with maximum resource utilization, handles noisy 
data well, and achieves global minima by utilizing non-
continuous regions. 
 The workflow involves the usage of a probabilistic 
surrogate model driven by Gaussian process priors for 
modeling the decision search boundary and a smart querying 
strategy that tradeoffs exploration and exploitation. For a 
given function f(x), a Gaussian process model is used as a 
surrogate as given in eqn. 1. 

 
𝑓(𝑥)~𝑁)𝑚(𝑥), 𝑘(𝑥, 𝑥!)-                      (1) 
 
 Where the mean function,𝑚(𝑥) s taken to be zero and the 
Kernel function 𝑘(𝑥, 𝑥!) incorporates our prior belief about 
the model in the search space. In this case, we have used an 
ARD (Automatic Relevance Determination) Matérn 5/2 
kernel as covariance kernel function as given in equation 2. 
 
𝑘(𝑥, 𝑥!) = /1 + √5𝑎 + "

#
𝑎$5 𝑒𝑥𝑝)−√5𝑎-    (2)  

 
where, 
 

𝑎 = 9∑ %&!'&!" (
#

)$
#

*
+,-  for all n hyper parameters. 

 
 For selecting query points, we used the Expected 
Improvement Acquisition function which gives expectation 
of the up gradation over the current optimal value over the 
posterior distribution of the Gaussian Process model as given 
in eqn. 3. 

 
EI(x) = Ef’ [max (0, μf

’(x*)-f(x))]             (3) 
 
 Where the posterior distribution of the surrogate is model 
and is the optimal mean value of the posterior distribution at 
the point.  To find the optimal value of (hyper-parameters of 
CNN), gradient descent-based optimization techniques have 
been employed over the entire search space sequentially. The 
flow chart for Bayesian optimization of CNN 
hyperparameters values is given in Fig. 2. 
 
 
3. Methodology 
 
In this paper, a Convolution Neural network model is used for 
classification of different types of symmetrical and 
unsymmetrical faults in an IEEE 13 node radial feeder, power 
distribution system. Hyper-parameters of the CNN are 
optimized by Bayesian optimization technique based on 
Gaussian process. Overall methodology given in Fig. 3 is 
explained in details in the following subsections: 

 
3.1 Modelling of IEEE 13 node Radial Distribution 

System 
An IEEE 13 node radial test feeder (Single line diagram as 
shown in Fig. 4) is modelled in PSCAD software (4.2 version). 
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Its complete specifications are given in Table 1. Simulink 
model can generate 11 types of faults i.e., lines (R or Y or B) to 
Ground (G), i.e., R-G, Y-G, B-G; between two lines to Ground, 
i.e.,  (R-Y-G, Y-B-G, B-R-G); between two lines, i.e., (R-Y, Y-
B, B-R); between three lines i.e.,  (R-Y-B); between three lines 
to Ground, i.e.,  (R-Y-B-G). IEEE 13 bus system provides a 

good test for most common features of distribution system 
analysis as it contains various components including highly 
loaded 4.16kV feeder, one three-phase voltage regulator along 
with three single-phase units connected in star, different types 
of overhead and underground lines/cables, in-line transformer 
and shunt capacitor bank. 

 
Fig. 2. Flow chart of Bayesian optimization for CNN’s Hyperparameters tuning 
 

 
Fig. 3. Proposed Fault Classification approach 
 

 
Fig. 4.  Single Line Diagram of IEEE 13 Node feeder Distribution 
System 
 
Table 1.  Specifications of IEEE 13 node radial test feeder 

Parameters Specification 
Voltage level 4.16 kV 

System Frequency 60 Hz 
Load types Spot and distributed 

Load Variations ±10% 
 
 

3.2 Collection of fault current data 
 
Different types of faults are applied at 8 different nodes of 
IEEE 13 node test feeder (as mentioned in TABLE 2) in the 
PSCAD Simulink model and time series of three-phase fault 
currents are observed at the corresponding nodes for eight 
different fault resistances and eight different fault inception 
angles (values given in TABLE 2). 
 
Table 2. Different fault Conditions for training 

Parameters Details 
Indices of Faulty Nodes 632,633,634,650 

671,675,680,692 
Fault inception angle (degrees)   10, 35, 60, 85, 110, 135, 160 & 

185       
Fault resistance (ohms)                   0, 0.5, 5, 50, 100, 500, 1000 & 

1500 
Total no. of cases                              5568 

 
 
3.3 Pre-Processing of fault current data  
CNN receives a time series of fault currents and uses the 
Gramian Angular Fields (GAF) method to automatically 
generate images [47]. Instead of using the more common 
Cartesian coordinates, Gramian Angular Field (GAF) depicts 
time series in a polar coordinate system. The temporal 
correlation between each time point is thus represented by 
each GAF. As training and test input data for CNN, these 
RGB images are employed & CNN performs feature 
extraction automatically. Batches of training, validation, test, 
and prediction data are created along with pre-processing 
tasks; such as scaling, rotation, and reflection. Images are 
resized to make them consistent with the input scale of the 
deep learning network. Image data is augmented with 
randomized pre-processing procedures to prevent the network 

Input the time series, 
hyperparameters set, 

objective function, 
acquisition function

Set iteration number, i.e., n=1
Obtain the initial sampling points of hyperparameters, set the point with 
max objective function (classification accuracy) values as the initial best 

point, and store it in set D   

Resample several sampling ponts

Fit Gaussian process model and optimize 
acquisition function 

Add the current best point to set D and update 
the fitting results of Gaussian process

Whether 
n>Nmax

Start 

Construct the time series, 
divide it into training set 

and testing set

Set the value range of the 
hyperparameters to be 

optimized 

Conduct the Bayesian 
optimization 

Determine the optimal 
samples points in set D

Train the CNN algorithm 
with optimal parameters

End 

YesNo

n=n+1

Bayesian 
Optimization
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from over fitting and remembering the precise characteristics 
of the training images. 
 
3.4 Fault type classification using Bayesian optimized 

CNN 
Using the pre-processed fault current data, The CNN model 
is used to predict the correct fault class for an input data. 
Firstly, all the hyper parameters of CNN (to be 
optimized using Bayesian optimization) are chosen and their 
ranges are specified. Also stated is whether selected variable 
is integer and whether the interval should be searched in 
logarithmic space. The training and validation data are used 
as inputs to generate an objective function (e.g., error rate on 
the validation set) for the Bayesian optimizer. In this work, 
Bayesian optimization is performed by minimizing of 
validation set’s classification error (CE), defined by eqn 4. 
 
𝐶𝐸 = ./01233	*56701	89	:;0	<2=0=	<8110<:3>	<32==+9+0?

@8:23	*8.89	<2=0=
	𝑋	100       (4) 

 
 Final chosen CNN model using Bayesian optimized 
hyper-parameter values is trained to minimize loss function 
and then tested on the independent test set. In this work, cross 
entropy loss function [37], as defined by eqn. 5 is used. 
 
𝑙𝑜𝑠𝑠 = − -

B
∑ ∑ 𝑤+𝑡*+𝑙𝑛𝑦*+C

+,-
B
*,-       (5)  

 
where,  
N= Total samples 
K=Total classes 
Wi=weight for ith class, 
 tni=indicator showing how nth sample is related to ith class 
and yni= Probability that the network is associating nth input to 
ith class. 
 
3.5 Implications of the proposed scheme 
The adoption of Bayesian optimized Convolutional Neural 
Networks (CNNs) for fault detection in the field of power 
distribution and smart grid management can have several 
broader implications that positively impact the efficiency, 
reliability, and sustainability of power systems. Here are some 
key implications: 
 
Improved Fault Detection Accuracy: 
Bayesian optimization helps fine-tune hyperparameters, 
enhancing the performance of CNNs. This optimization can 
lead to improved fault detection accuracy, reducing false 
positives and negatives in the identification of faults within 
the power distribution network. 
Enhanced Predictive Maintenance: 
The Bayesian optimized CNN can contribute to more accurate 
predictions of equipment failures. By detecting subtle patterns 
indicative of potential faults, the system aids in implementing 
proactive and predictive maintenance strategies, minimizing 
downtime and reducing overall maintenance costs. 
Increased Grid Reliability: 
Accurate fault detection contributes to overall grid reliability. 
By identifying and addressing faults promptly, the system 
helps prevent cascading failures, ensuring a more resilient 
power distribution network. 
Optimized Operation and Energy Efficiency: 
A reliable fault detection system enables operators to make 
informed decisions, optimizing the operation of the power 
distribution network. Minimizing downtime and reducing 
energy losses associated with faults lead to improved energy 
efficiency. 

Quick Response to Grid Events: 
Bayesian optimization aids in tuning the CNN model for 
faster and more effective responses to grid events. This quick 
response is crucial in minimizing the impact of faults and 
ensuring a more resilient and adaptive smart grid. 
Adaptability to Evolving Grid Architectures: 
The adaptability of Bayesian optimized CNNs allows the fault 
detection system to evolve alongside changes in the power 
distribution infrastructure. This is particularly relevant in the 
context of smart grid technologies, distributed energy 
resources, and evolving grid architectures. 
Facilitation of Grid Modernization: 
By incorporating advanced machine learning techniques, the 
fault detection system contributes to the modernization of 
power grids. This aligns with the broader goal of creating 
intelligent, responsive, and self-healing grids capable of 
meeting the demands of modern energy systems. 
Cost Reduction and Resource Optimization: 
Proactive fault detection and maintenance optimization can 
lead to cost reductions by minimizing equipment failures and 
associated repair costs. Efficient resource allocation, guided 
by the fault detection system, helps optimize manpower and 
financial resources. 
Data-Driven Decision-Making: 
Bayesian optimization enhances the data-driven decision-
making process. By leveraging historical and real-time data, 
the CNN model can adapt to changing conditions, facilitating 
more informed decisions for grid operators and managers. 
Cybersecurity Considerations: 
The integration of advanced fault detection systems should 
also include considerations for cybersecurity. Protecting the 
integrity and confidentiality of the data and model is critical 
to ensure the overall security of the smart grid. 
Technology Leadership and Innovation: 
Embracing state-of-the-art technologies like Bayesian 
optimized CNNs positions power distribution utilities and 
smart grid operators as technology leaders. This fosters a 
culture of innovation and readiness to harness the benefits of 
advanced analytics in the energy sector. 
 In summary, the broader implications of deploying 
Bayesian optimized CNNs for fault detection in power 
distribution and smart grid management extend beyond 
localized improvements. They contribute to the 
transformation of power systems into more intelligent, 
adaptive, and resilient infrastructures, aligning with the 
overarching goals of modernizing energy grids for the future 
 
 
4. Simulation Results and Discussion  
 
This section presents all the simulation procedures and results 
in details. All simulations are performed on a computer with 
Core i5-2.67 GHz CPU with 4 GB RAM. The suggested fault 
classification technique is tested on a PSCAD-modeled IEEE 
13-Node test distribution grid as stated earlier. Eleven (11) 
different types of faults including all types of short circuit 
faults have been simulated. Faulty cases are also simulated by 
varying the locations (at 8 different nodes), fault resistances 
(7 different values) and inception angles (8 different values) 
as given in TABLE 2. There are total of 5568 cases for 11 
types of faults consisting of 5120 [10*8(resistances)*8(nodes 
(locations))*8(inception angles)] cases for 10 different types 
of faults except ABC fault for which 448 cases 
[7(resistances)*8(nodes) *8(inception angles)] are considered 
(avoiding zero fault resistance in this case).  The simulation 
run time of the distribution system model is 1.3 sec in which 
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each fault is made to occur for a time interval from 0.2 sec to 
1 seconds.  
 
4.1 CNN model and Hyper-parameters  
Time series of three phase fault currents are sampled (at a 
sampling frequency of 2000 samples per second) to get 2600 
samples (out of which 400 samples are used for pre-fault, 
1600 samples during the fault, and 600 for post-fault) for fault 
current of each phase.  
 
Table 3. Description of optimized hyper parameters 

Parameters Ranges Optimized 
Values 

Section Depth [1,3] 2 
Initial Learning Rate [0.001,1] 0.0113 

Momentum [0.8,0.98] 0.9225 
L2Regularization [1.0e-10, .01] 0.0022818 

 
 For each case samples of fault currents of each phase are 
placed in a row (one after the other) to get an input vector. 
Taking all the cases together gives input matrix for training, 
which is imported to MATLAB, where images having size of 
40*65*3 are created for each row of this input matrix. The 
resolution of images created by CNN is 4.76 Megapixels. 
There is total 5568 images (one for each case and using 7800 
samples) to be used as input for learning of CNN. Out of 
these, 4176 images (75%) are used as training input dataset, 
749 images (≈ 13%) as validation and 643 images (≈ 12%) 
as testing input dataset for CNN. Output data for CNN model 
is class labels or names of 11 different types of faults [AG, BG, 
CG, ABG, BCG, CAG, AB, BC, CA ABCG, and ABC]. 
 It uses nine convolutional layers, with batch normalization 
and ReLU operations occurring after each one. Sizes of each 
convolutional layer in first, second and third batch of 
consecutive three convolutional layers are 9*40*65(9 filters 
resulting in a 40*65 feature map), 18*20*33(18 filters resulting 
in a 20*33 feature map) and 36*10*17 (36 filters resulting in a 
10*17 feature map) respectively as shown in Fig. 5. After the 
first two batches of consecutive three convolutional layers, a 
max-pooling procedure was performed resulting in output 
dimensions of 9*20*33 & 18*10*17 (halving both height and 
width) respectively. In contrast, an average pooling operation 
was performed after the last batch of three convolutional 
resulting in an output tensor with dimensions 36x3x10. In 
average pooling, for each local region in the input feature map, 

the average value is computed, and that value becomes the 
corresponding element in the output feature map. The number 
of channels remains the same, but the height and width 
dimensions may change based on the pooling operation 
parameters. 
 

 
Fig. 5. CNN Model's architectural layout. 
 
 To get the 11 classification outputs, the final average 
pooling process was followed by a fully connected layer 
consisting of 11 neurons, then a softmax layer of size 
11*1*1(here, each element represents the probability of the 
input belonging to a specific class in a classification task with 
11 classes). The input image's dimensions are 3*40*65, with 3 
denoting the image's depth. Structure of the CNN is obtained 
by extensive hit and trial simulations with a target to maximize 
the classification accuracy. Four hyperparameters of CNN, i.e., 
learning rate, momentum, regularization and network depth 
have been optimized by using Bayesian optimization approach. 
Ranges of these parameters are decided via extensive hit & trial 
simulations & the final optimized values are on the list in Table 
3.                                                       
 
4.2. Fault Classification 
Using optimized hyper parameters, the proposed CNN model 
has been trained. While training, piecewise learn rate schedule 
is used in which learning rate is updated every 40 epochs (i.e., 
learn rate drop period) by multiplying with 0.1(learn rate drop 
factor). Classification accuracy for test data is 99.87% for all 
types of faults as shown in confusion matrix of Fig. 6 and 
training progress of the model is shown in Fig. 7  
 

 
True Class 

    AG 51            100%  
    BG  54           100%  
    CG   53          100%  
 ABG    63         100%  
 BCG     64        100%  
 CAG      53       100%  
    AB       66      100%  
    BC        59     100%  
    CA         63    100%  
  ABC          57   100%  
ABCG          1 59  98.3% 1.7% 

               
 100% 100% 100% 100% 100% 100% 100% 100% 100% 98.3% 100%    
          1.7%     
 AG BG CG ABG BCG CAG AB BC CA ABC ABCG    
Fig. 6. Confusion Matrix for test data 
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Fig. 7. Training Progress Graph of model CNN 
 
 
 As shown in Table 4. It is self-evident that the proposed 
strategy is capable of diagnosing the faults in a distribution grid 
with maximum accuracy and is better than the other techniques 
presented in the literature. Additionally, this method has shown 
positive results regardless of the fault resistance magnitude or 
fault inception angle measure and location of faulty node. 
 
Table 4. Comparison of fault classification results 
Reference no. Year Technique Overall 

Accuracy 
(%) 

Proposed 
Technique 

2023 Bayesian Optimized CNN 99.87% 

[25] 2023 EML (Extreme Learning 
Machine) 

99.09% 

[15] 2022 Robust Semi- Supervised 
Prototypical Network 

(RSSPN) 

     
91.10% 

[24] 2022 LeeNet-5 99.48% 
[26] 2022 CatBoost 

Classifier 
99.54% 

[27] 2022 CNN-LSTM 97.5% 
[28] 2021 CNN 99.66% 
[16] 2021 KNN- Bayesian Method 97% 
[17] 2021 Grid Search, Random 

Search- Bayesian 
Optimization 

98.06% 

[46] 2021 wavelet packet transform & 
SVM 

98.8% 

[29] 2018 PCA 99.54% 
[1] 2018 Hybrid S-transform 99.47% 
[12] 2016 Wavelet-based fuzzy logic 

algorithm 
89.5% 

[14] 2013 Wavelet-based ANFIS 
system 

99.84% 

[9] 2013 Time-time transform based 
ART Network 

99.18% 

[10] 2012 Wavelet-based Neural 
Network 

98.4% 

 
 

5. Conclusion & Discussion 
 
A deep learning approach involving the use of a convolution 
neural network is presented in this paper. The hyper parameters 
of the CNN are tuned using Bayesian optimization and it is 
trained with training data to enable it to take decision for 
distinct faults. From the simulation results, it can be seen that 
the suggested approach has the ability to categorize eleven 

different types of faults for an 11 kV distribution grid with 
99.87% accuracy (shunt capacitor bank for a variety of fault 
location, inception angle, and fault resistance conditions). The 
proposed technique's classification results are shown to be 
superior to many other strategies published in the literature. The 
proposed technique aligns with several industry trends, 
regulatory frameworks, and the evolving landscape in the 
following ways: 
 
Industry Trends: 

a. Advanced Analytics and Machine Learning:  The use of 
Bayesian optimization and CNNs reflects the industry 
trend towards leveraging advanced analytics and machine 
learning for fault detection. These techniques enable 
automated, data-driven decision-making in real-time. 

b. IoT and Sensor Integration: 
 The incorporation of Bayesian optimization with CNNs 

likely involves the utilization of data from sensors and the 
Internet of Things (IoT). This aligns with the trend of 
integrating sensor data for enhanced monitoring and fault 
detection capabilities. 

c. Automation and Predictive Maintenance: 
 Proposed scheme aligns with the trends towards 

automation in optimizing model configurations and the 
broader move towards predictive maintenance in power 
distribution systems. 

 
Regulatory Frameworks: 

a. Reliability and Resilience Standards: 
 Proposed scheme aligns with regulatory standards that 

emphasize the reliability and resilience of power 
distribution networks. These frameworks often 
mandate the use of advanced technologies to enhance 
fault detection and response. 

b. Data Security and Privacy Regulations: 
 As the fault detection system likely relies on data from 

various sources, adherence to data security and privacy 
regulations is crucial. Ensuring compliance with these 
regulations is aligned with the increasing emphasis on 
data protection in the regulatory landscape. 

 
Evolving Landscape of Power Distribution: 

a. Integration with Smart Grid Technologies: Proposed 
scheme can be integrated into smart grid architectures, 
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aligning with the evolving landscape of power 
distribution. Smart grids leverage advanced 
technologies for efficient management, and fault 
detection systems play a vital role in ensuring grid 
stability. 

b. Adaptability to Renewable Energy Integration: The 
evolving landscape involves increased integration of 
renewable energy sources. A fault detection system 
using Bayesian optimization and CNNs should be 
adaptable to handle challenges associated with the 
intermittent nature of renewable energy. 

 In summary, a Bayesian optimized CNN-based fault 
detection system aligns with industry trends by embracing 
advanced analytics, aligns with regulatory frameworks by 
emphasizing reliability and data security, and aligns with the 
evolving landscape by integrating with smart grid technologies 
and adapting to changes in the power distribution paradigm. 
Demonstrating the system's alignment with these aspects 
enhances its acceptance and effectiveness in the context of real-
world power distribution applications 
 In future research, following limitations, potential 
challenges, and considerations associated with the real-world 
deployment, adaptability to diverse environments, and 
scalability of the proposed scheme need to be taken care of: 
 
Limitations: 

a. Data Quality and Quantity: The effectiveness of CNNs 
relies heavily on the availability and quality of labeled 
training data. In real-world scenarios, obtaining diverse 
and comprehensive fault data for training can be 
challenging. 

b. Generalization Across Environments: 
The model's generalizability across diverse power 
distribution environments may be limited. Factors such 
as variations in equipment types, configurations, and 
network structures could impact the model's 
performance. 

c. Hyperparameter Tuning Overhead: Bayesian 
optimization involves tuning hyperparameters, which 
can be computationally expensive. This could pose 
challenges in real-time applications where quick 
responses are crucial. 

d. Sensitivity to Hyperparameter: The performance of 
Bayesian optimization is sensitive to the choice of 
optimization parameters. Suboptimal choices may lead 
to inefficient model training. 

e. Interpretability: CNNs are known for their complexity, 
and Bayesian optimization may further increase the 
model's opacity. Understanding and interpreting the 
decision-making process of such a model might be 
challenging.  

 
Challenges in Real-World Deployment 

a. Integration with Existing Systems: Integrating a new 
fault detection system with existing power distribution 
infrastructure can be complex. Compatibility issues, 
data format differences, and communication protocols 
need to be addressed. 

b. Operational Impact: Implementing a fault detection 
system might disrupt ongoing operations. Minimizing 
downtime during deployment and ensuring a smooth 
transition are critical considerations. 

c. Maintenance and Updating: Continuous maintenance 
and updates are necessary to keep the model effective 
over time. This includes adapting to changes in the 

power distribution network and ensuring the model 
stays relevant. 
 

Adaptability to Diverse Environments: 
a. Variability in Fault Types: 

Power distribution systems exhibit a wide range of 
fault types. Ensuring the model's adaptability to 
diverse fault scenarios, including rare and 
unconventional faults, is essential. 

b. Dynamic Network Topologies: Power distribution 
networks may change topology due to maintenance, 
repairs, or new installations. The model should be 
adaptable to dynamically changing network structure.  

 
Scalability Considerations: 

a. Computational Resources: Bayesian optimization and 
CNNs can be resource-intensive, especially for large-
scale power distribution networks. Scalability requires 
careful consideration of computational requirements 
and potential hardware limitations. 

b. Communication Overhead: 
In a scalable system, the communication overhead 
between distributed components (sensors, computing 
units) must be managed efficiently to avoid delays in 
fault detection responses. 

c. Real-Time Processing: As the size of the power 
distribution network increases, maintaining real-time 
processing capabilities becomes crucial. Ensuring low-
latency responses for large-scale networks may be 
challenging. 

 
Overall Considerations: 

a. Cost Implications: The cost of implementing and 
maintaining the system, including hardware, software, 
and personnel training, should be carefully considered 
in the context of the overall budget and resource 
constraints. 

b. Regulatory Compliance: Compliance with regulatory 
standards and cybersecurity measures is critical. 
Adhering to industry-specific regulations ensures the 
legal and secure deployment of the fault detection 
system. 

c. Continuous Monitoring and Evaluation: 
Continuous monitoring and evaluation of the model's 
performance in real-world conditions are necessary. 
Regular updates and improvements should be part of 
the deployment strategy. 

 
 It's essential to conduct thorough testing and validation in 
real-world conditions to ensure the model's robustness and 
effectiveness in diverse environments. In the future, 
sensitivity of the proposed technique can be investigated in 
the presence of distributed generators and/or noise and/or by 
varying the grid configuration. Calculation of accuracy of this 
algorithm on experimental data can also be done in the future. 
In future, the proposed scheme will be thoroughly tested and 
validated in real-world conditions to ensure its robustness and 
effectiveness in diverse environments. 

 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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