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Abstract 
 

The roller-type residual film collector is the main machine type for collecting residual films. The scarifying tooth harrow 
bears the largest resistance among all the components of the entire machine, and it directly affects the quality and 
efficiency of the residual film collector. In this study, the arithmetic optimization algorithm- variational mode 
decomposition - bidirectional long short-term memory (AOA-VMD-BiLSTM) model was proposed to improve the 
working condition identification accuracy of the scarifying tooth harrow. First, the locations of three scarifying tooth 
harrow monitoring points were analyzed, the arithmetic optimization algorithm was introduced to optimize the variational 
mode decomposition (VMD) parameters, and the optimal parameter combination of the three monitoring points was 
acquired. Second, the reconstructed signal for the three monitoring points on the scarifying tooth harrow after VMD 
decomposition was subjected to two-way updating and recursion with bidirectional long short-term memory (BiLSTM) 
as the core of the model, and iterative training of the scarifying tooth harrow under four working conditions was 
performed. Last, the new sample set and the original dataset were imported into two deep learning models, namely, 
BiLSTM and long short-term memory (LSTM), followed by a comparative validation of the training results of VMD-
BiLSTM, VMD-LSTM, BiLSTM, and LSTM models. Results demonstrate that among the models, VMD-BiLSTM 
exerts the best processing effect on complex signals and has a higher convergence rate, better convergence stability, and 
higher accuracy. In the VMD-BiLSTM diagnostic model, each performance index can exceed 97.3%. This model 
performs better than VMD-LSTM, BiLSTM, and LSTM models and realizes intelligent classification under four signal 
conditions of the scarifying tooth harrow: no load, normal operation, mild overload, and serious overload. The proposed 
method provides great significances for improving the intelligence and technical monitoring levels of residual film 
collectors and provides a reference for follow-up R&D of intelligent residual film collectors. 
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1. Introduction 
 
During the operation of a roller-type residual film collector, 
the most critical component, the scarifying tooth harrow, 
bears the largest force, including the ground supporting 
surface and soil resistance, among all the components of the 
entire machine. The normal operation of the scarifying tooth 
harrow directly affects the follow-up work and film 
collection efficiency of the machine. Hence, stress–strain 
monitoring of the scarifying tooth harrow is necessary 
because it alerts the driver when the machine works 
abnormally. Traditionally, the faults in residual film 
collectors are diagnosed and identified based on the 
experience of the driver [1]. Accurately judging the fault 
type is difficult, and due to complicated field operation 
procedures, the agricultural machinery fails to identify the 
fault through simple detection methods. This situation has 
resulted in stringent requirements on the accuracy and 
timeliness of the fault diagnosis of residual film collectors. 
In actual strain measurement, strain signals are nonlinear and 
nonstationary and have a large amount of noise because of 
the complex operating environment. So it is difficult to 
accurately identify the earth heaping phenomenon of the 
scarifying tooth harrow from these signals.With the rapid 

development of sensor, monitoring, and diagnosis 
technologies, intelligent fault diagnosis based on multisensor 
information fusion has elicited extensive interest and has 
been widely studied [2]. Existing studies have proposed the 
remote distributed agricultural machinery fault diagnosis 
system [3] and the constraint-based clogging identification 
algorithm [4] and have analyzed fault types and phenomena 
by training based on deep learning [5]. Fault diagnosis and 
load feedback control systems have been designed , and 
mechanical analysis and fault diagnosis have been 
conducted via stacked denoising autoencoders [6], random 
forest, and support vector machines [7,8]. Existing research 
shows that most monitoring systems remain at the test stage 
and cannot be promoted and applied in large areas. At 
present, fault diagnosis of residual film collectors is being 
increasingly investigated. Despite the ability to acquire the 
monitoring information of working conditions, existing fault 
diagnosis systems still have low fault diagnosis and 
identification accuracies and exhibit minimal output 
subordinate feedback and application after the fault 
diagnosis of agricultural machinery [9]. In addition, the 
intelligent development of residual film collectors is slow, 
monitoring systems have been rarely studied, and how to 
fuse multiple sensors and transmit monitoring data in a real-
time accurate manner remains to be further explored. 
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Given the earth heaping situation of the scarifying tooth 
harrow of a roller-type residual film collector, three 
monitoring points were set in the current study, variational 
mode decomposition (VMD) parameters were optimized via 
the arithmetic optimization algorithm (AOA), and the 
reconstructed signal after VMD decomposition was 
subjected to two-way updating and recursion to establish a 
fault diagnosis model. Next, the effectiveness and accuracy 
of the model were verified through datasets to provide an 
experimental basis for further research on the intelligent 
development of roller-type residual film collectors. 
 
 
2. State of the Art 
 
Given the complex transmission, numerous mechanical 
structures, and poor working conditions of residual film 
collectors, serious clogging accidents occur; these accidents 
affect the normal operation of the machines and cause 
economic losses to farmers. The key components, such as 
film pick-up roller, scarifying tooth harrow, and stripping 
roller, of residual film collectors are prone to failure during 
the working process. Traditionally, faults are judged mainly 
by experience or addressed only after their occurrence. 
Intelligent analysis methods for the fault diagnosis of 
residual film collectors are lacking. Late-stage operation and 
maintenance can be supported by appropriate agricultural 
machinery monitoring and diagnostic methods to solve this 
problem. Jaumann et al. [10] proposed two deep learning 
models for intelligent condition monitoring of disc mowers 
to inform the machine operator when a fault occurs. Da et al. 
[11] from Saint Paul University in Brazil used six dual-plate 
differential impact sensors to form an array for measuring 
the grain yield, and their approach effectively reduces the 
noise interference caused by vibration. Virk et al. [12] 
reported that variable sowing based on a prescription map 
can realize variable sowing regulation in accordance with 
the differences in the nutrients and geographical locations of 
planting environments; the approach results in reduced costs 
and increased production. Mouzen et al. [13] designed a 
depth monitoring system to measure soil compactness online. 
This system, which combines a balance wheel and a 
displacement sensor, can reflect the change in tillage depth 
at high speeds. In the abovementioned studies, the status 
parameters of machines were intelligently monitored via 
sensor and information processing technologies, so 
agricultural machinery has developed toward intelligent and 
automated directions. China’s agricultural machinery 
monitoring systems developed late, but considerable 
progress has been achieved in the operating status 
monitoring and fault diagnosis of different agricultural 
machineries, and specific breakthroughs have been achieved. 
However, the developed monitoring devices have poor 
adaptability and stability. Zhang et al. [14] designed a 
monitoring system for the feed of a combined harvester that 
consists of three parts: vehicle terminal, mobile terminal, 
and information perception module. The system can obtain 
the feed information of the combined harvester during 
operation in an accurate, real-time manner, but the system is 
noisy, and the harvester operates unstably. Yin et al. [15] 
proposed a tillage depth detection method based on attitude 
estimation of a subsoiling unit. The system can collect 
information on tillage depth, operation speed, position, and 
course in real time, but system tillage depth detection via 
field experiments still has errors. Xia et al. [16] presented a 
method of monitoring the tillage depth in real time by using 

angular-displacement and tilt sensors to solve the poor 
surface flatness and unstable tillage depth caused by 
machine rolling. The results showed that the system 
accuracy is high. Zhou et al. [17] studied a set of field 
operation monitoring systems for a chain-rake residual film 
collector, which sends an alarm when an overload fault 
occurs in the machine and monitors the operating area. 

The abovementioned monitoring systems are mainly 
used in combined harvesters and seeders, but they have high 
working requirements and low diagnostic accuracy during 
fault diagnosis. At present, the techniques for residual film 
collectors, especially for the monitoring and identification of 
different working conditions for the scarifying tooth harrow 
of residual film collectors, are lacking. In this study, the 
reconstructed signal from three monitoring points after 
VMD decomposition was subjected to two-way updating 
and recursion with bidirectional long short-term memory 
(BiLSTM) as the core of the model. Then, iterative training 
was performed under four working conditions (no load, 
normal operation, mild overload, and serious overload) of 
the scarifying tooth harrow to realize the intelligent 
classification of the four working condition signals. This 
study is crucial for improving the intelligent and technical 
monitoring levels of residual film collectors in China and 
can be used as a reference for subsequent R&D of intelligent 
residual film collectors. 
 The remainder of this study is organized as follows: In 
Section III, the basic algorithm principle and the selection of 
detection points are briefly introduced, and fault diagnosis 
models are established. In Section IV, the dataset is imported 
into BiLSTM and long short-term memory (LSTM) deep 
learning models to acquire an improved training model, 
followed by a comparative analysis of the training results 
obtained through VMD-BiLSTM, VMD-LSTM, BiLSTM, 
and LSTM models. Then, the accuracy and loss value curves 
of the four diagnosis models are obtained, the models are 
verified, and a confusion matrix is generated. In Section V, 
the study results are summarized, and relevant conclusions 
are presented. 
 
 
3. Methodology 
 
3.1 Selection of monitoring points for the scarifying tooth 
harrow 
When the machine operates normally, the scarifying tooth 
harrow performs scarification forward at a uniform speed, 
and the scarifying tooth is inserted 80 mm beneath the 
ground surface to bear soil resistance and the supporting 
force formed by the soil. The weight of the entire machine is 
2 t, and 80% of the force acts on the scarifying teeth during 
the operation of this machine. Thus, the counterforce of the 
gravity of the machine applied on the scarifying teeth is 16 
kN. The total number of the scarifying teeth is 11, each of 
which bears a supporting force of 1,454 N. The specific soil 
resistance is 60 kPa. The soil resistance, F, borne by the 
scarifying teeth can be solved with the calculation formula 
of specific soil resistance as follows: 
 

 
                                            (1) 

 
where K is the specific soil resistance in kPa; η stands for 
ploughing efficiency, which has a value of 0.7; a is the 
tillage depth of a single buried component in m; and b is the 
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single-furrow breadth in m. F = 0.0672 kN is calculated with 
K = 60 kPa, a = 0.08 m, and b = 0.02 m. 
 In this study, the scarifying tooth harrow was subjected 
to a static characteristic analysis through ANSYS. Q235 
ordinary carbon steel was applied as a constraint to the 

endplates on both sides of the cross beam. Supporting force 
and soil resistance were applied to the tip of the scarifying 
teeth, as shown in Fig. 1. 
 

   
a. Maximum deformation                                                                                        b. Transient strain cloud picture 

Fig. 1. Static analysis of the scarifying tooth harrow 
 

 
The figure indicates that under the normal working 

condition, the largest deformation was at the tip of the 
scarifying teeth, and the maximum transient strain was at the 
junction between the cross beam and connecting plates on 
both sides, which was a strain-sensitive site. The pre-
experiment showed that the operating condition of the 
scarifying teeth could be effectively reflected if the strain 
gauge was placed at the junction between the middle of the 
cross beam of the scarifying tooth harrow and the two sides. 
Hence, the three monitoring points were distributed, as 
shown in Fig. 2. 
 

 
Fig. 2. Schematic of scarifying tooth monitoring locations 
 
3.2 Basic algorithm principle 
AOA is a metaheuristic optimization algorithm proposed in 
2021 to achieve global optimization in accordance with the 
distribution characteristics of arithmetic operators [18, 19]. 
The algorithm steps are as follows: 

(1) Search stage: r1 > MOA indicates the global search 
stage, and r1 < MOA represents the local development stage. 
r1 is a random number between 0 and 1. The calculation 
equation is as follows: 
 

                  (2) 
 
where Max and Min represent the maximum and minimum 
values of the acceleration function (1 and 0.2), respectively; 
t is the current number of iterations; and T stands for the 
total number of iterations. 

(2) Exploration stage: Global exploration is realized 
through multiplication and division operations. When 
r2 < 0.5, the division operation-based exploration strategy is 
executed; and when r2 ≥ 0.5, the multiplication operation-
based exploration strategy is implemented. The calculation 
equation is as follows: 

 

     
(3)

 

 
where r2∈[0,1]; c is the control parameter of the search 
process and has a value of 0.499; and  is the minimal value. 
The probability calculation formula of the mathematical 
optimizer is as follows: 
 

                                       (4) 

 
where α is a sensitive parameter that defines the local 
development accuracy during the iteration, and it has a value 
of 5. 

(3) Development stage: Local development is realized 
through addition and subtraction. It is formulated by the 
following equation: 
 

      
 (5) 

 
where r3∈[0,1]. 
 VMD is a process of decomposing signal f(t) into a 
series of intrinsic mode function (IMF) components via 
Wiener filtering, Hilbert transform, and frequency mixing. 
The original signal f(t) is decomposed into k IMF 
components by constructing and solving the constrained 
variation problem, and penalty factor α, namely, the 
Lagrange multiplier, is introduced to transform the 
constrained variation problem into an unconstrained 
variation problem [20,21]. k and α are two key parameters in 
VMD. 
 BiLSTM is a combination of two LSTMs with different 
directions [22]. LSTM consists of three special structural 
gates, namely, forget, input, and output, and implements 
information transmission by using specific tanh network 
layers, as indicated in Literature [23]. In the current study, 
the signal reconstructed from the stress–strain signal of the 
scarifying tooth harrow after VMD was subjected to two-
way updating and recursion, followed by iterative training 
under four working conditions of the scarifying teeth. The 
BiLSTM network structure is shown in Fig. 3.  
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Fig. 3. BiLSTM structure 

 
 We defined the operation of states in the following way: 

 
                         (6) 

 
                      (7) 

 
                              (8) 

 

where  and  denote the memory cell states of forward 
and backward LSTMs at time t, respectively, and  and 

 represent the weight coefficients of the forward and 
backward matrix unit states, respectively. 

In this study, the reconstructed signal for the three 
monitoring points after VMD was subjected to two-way 
updating and recursion with BiLSTM as the core of the 
model. Next, iterative training was performed under four 
working conditions of the scarifying tooth harrow. 
 
3.3 Establishment of fault diagnosis models 
(1) Optimization of VMD parameters through AOA 

Location updating was implemented for the VMD 
parameters [k, α] by using AOA. With the minimum value of 
envelope entropy as the fitness function, the modal number 
(k) and penalty factor (α) of VMD suitable for the signals at 
different monitoring points were calculated through 
optimization. After repeated experiments, the population 
size was set to 100, the number of iterations was set to 20, 
the lower boundary was set to [0, 1], and the upper boundary 
was set to [3600,10]. 
(2) Working condition identification model (AOA-VMD-
BiLSTM) for the scarifying tooth harrow. 

 

 
Fig. 4. Working condition identification flowchart 

 
The flowchart of the working condition identification 

model is displayed in Fig. 4. The specific steps are as 
follows: 

Step 1) Different working conditions were simulated. 
The strain signals at the three monitoring points on the 
scarifying tooth harrow were collected by a DH5922N 
dynamic signal testing analyzer, and the algebraic value of 

strain was converted into a strain value to obtain the sample 
signal. 

Step 2) The k and α values optimized through AOA 
were selected, and the signal f(t) at the three monitoring 
points under different states of the scarifying tooth harrow 
was decomposed into 3k stable signal IMF components with 
different characteristics via optimized VMD. 

( , 1, 1)t t t tC LSTM x h C= - -
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Step 3) The threshold was set. The m IMF components 
strongly correlated with the original signal at each 
monitoring point were subjected to signal reconstruction in 
accordance with the Pearson coefficient to form a new 
sample dataset, which was divided into training and test sets. 

Step 4) A BiLSTM model was constructed, and the 
training data were inputted. A model with improved 
performance was acquired by parameter adjustment. 

Step 5) The effectiveness and accuracy of the AOA-
VMD-BiLSTM model for the scarifying tooth harrow were 
verified using the dataset. 
 
 
4. Result Analysis and Discussion 

 
4.1 Data processing under different working conditions 
of the scarifying tooth harrow 
The signal was denoised, and the VMD parameters were 
optimized by AOA with envelope entropy as the fitness 
function to effectively classify the working conditions of the 
scarifying tooth harrow. After optimization, the optimal 
parameter combinations of the three monitoring points were 
obtained, as shown in Table 1. 

 

Table 1. Optimal parameter combinations 
Optimal parameter k α 
Monitoring point 1 7 3,465.5404 
Monitoring point 2 3 345.7084 
Monitoring point 3 7 3,122.1502 

 
The optimal parameter combination was substituted into 

VMD, the signals of the three monitoring points were 
decomposed into a series of stable signal IMF components 
with different characteristics, and the stress and strain 
signals at monitoring point 3 were analyzed, as shown in 
Fig.5. Next, the correlation degree with the original signal of 
the corresponding monitoring point was calculated through 
the Pearson correlation coefficient method, the threshold 
value was set to 0.8, and the signal of the strongly correlated 
IMF component was reconstructed, as shown in Fig. 6. The 
reconstructed signal of the serious overload signal at 
monitoring point 3 had evident frequency characteristics, 
indicating that the noise part of the data was removed 
through the reconstruction of the strongly correlated IMF 
component, and the operating state characteristics of the 
scarifying tooth harrow were preserved. 

 

 

 
Fig. 5. Signal IMF component of Channel 3 
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Fig. 6. Comparison of the situation before and after the serious overload 
signal at monitoring point 3 

 
Excel files were created for the data of each state, and 

5,000 nonrepetitive data points were evenly obtained from 
each monitoring point in a continuous time range. Therefore, 
the original data of each state contained 15,000 original data 
points, and the data points did not change after 
reconstruction. The new sample dataset in the four states 

contained 4 × 3 × 5,000 = 60,000 data points, the data were 
labeled, and all samples were dislocated and divided into 
training and test sets at a proportion of 7:3. The dataset 
grouping is shown in Table 2. 

 
Table 2. Dataset grouping 
Working conditions of 
the scarifying tooth 
harrow 

Dataset 
Label Training set Test set 

No load 10,500 4,500 1 
Normal operation 10,500 4,500 2 
Mild overload 10,500 4,500 3 
Serious overload 10,500 4,500 4 

 
4.2 Data and analysis of four diagnosis models 
The new sample set and the original dataset were 
respectively imported into BiLSTM and LSTM deep 
learning models for training to acquire an improved training 
model. The training results of VMD-BiLSTM, VMD-LSTM, 
BiLSTM, and LSTM models were comparatively analyzed. 
After 50 iterations, the accuracy and loss value curves of the 
four fault diagnosis models were obtained as the 
experimental output results, as shown in Fig. 7 
. 

          
a. Accuracy curve                                                                                         b. Loss value curve 

Fig. 7. Training results 
 

        
a. VMD-BILSTMB                                                                           b. VMD_LSTM 

Fig. 8. Confusion matrix of VMD-BiLSTM and VMD-LSTM models 
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a. BiLSTM                                                                                          b. LSTM 

Fig. 9. Confusion matrix of BiLSTM and LSTM models 
 

 
Fig.7(a) indicates that initially, the VMD-BiLSTM 

model converged and iterated rapidly. After 200 training 
iterations, the accuracy curve gradually stabilized and 
reached a high value. Before 500 training iterations, the 
VMD-LSTM model converged slowly. Its accuracy 
fluctuated considerably, stabilized, and fluctuated again 
within small values. The LSTM and BiLSTM neural 
network models experienced serious dispersion after 150 
training iterations, and their accuracy was unstable and 
fluctuated considerably, which affected the judgement 
results substantially. The convergence effect did not improve 
even after 2,000 iterations. The accuracy of the BiLSTM 
neural network model was higher than that of the LSTM 
model and had smaller fluctuations. 

The training results of the four neural network models in 
Fig.7(b) indicate that the four models became stable after 
500 training iterations. After 200 training iterations, the loss 
value of the VMD-BiLSTM model reached zero, and the 
convergence result was stable. The VMD-LSTM model 
converged slowly and exhibited stability only after 500 
training iterations; its loss value was large and fluctuated 
around 0.5. The loss values of the BiLSTM and LSTM 
models were approximate and much greater than those of the 
two other models, leading to reduced accuracy. 

In summary, the VMD-BiLSTM and VMD-LSTM 
models performed well in processing complex signals, and 
the former had a higher convergence rate, better 
convergence stability, and higher accuracy than the latter. 
The dataset was inputted into the four models, and a 
confusion matrix was generated to verify that the models 
could reflect the working condition of the scarifying tooth 
harrow comprehensively. 

Fig.8 shows that the overall accuracy of the training 
result obtained by VMD-BiLSTM was 99.1%. After the 
same dataset was imported, the overall accuracy of the 
training result of the VMD-LSTM model became 97.3%. On 
the basis of the results, this model was subjected to 
incomplete identification under normal operation and mild 
soil heaping conditions, and its effect was slightly poorer 
than that of the VMD-BiLSTM model. 

As shown in Fig. 9, the overall accuracies of the training 
results of the BiLSTM and LSTM models were 84.5% and 
80.8%, respectively. The identification effect of LSTM 
under the mild-overload condition was poorer than that 
under normal operation. Moreover, 65.5% of the data were 
identified under no-load and mild-load conditions, and the 

proportion of data identified under the mild-overload 
condition was large. 

The four confusion matrix diagrams indicate that the 
identification accuracy of the proposed diagnosis model for 
the operating status of the scarifying tooth harrow was 
elevated substantially, indicating a good working condition 
identification performance. 

The training results obtained by the four diagnosis 
models regarding the different working condition data of the 
scarifying tooth harrow were comparatively analyzed using 
the same dataset, as indicated in Table 3. Each performance 
index of the VMD-BiLSTM diagnosis model exceeded 
97.3% and was better than those of the three other models. 
The model realized the intelligent classification of the no-
load, normal-operation, mild-overload, and serious-overload 
signals of the scarifying tooth harrow. 

 
Table 3. Index comparison of the different models 
Evaluation index VMD-

BiLSTM 
VMD-
LSTM BiLSTM LSTM 

Accuracy (%) 99.1 97.5 84.1 80.8 
Precision (%) 97.3 98.1 95.7 87.7 
Recall (%) 99.8 98.7 91.2 98.7 
Harmonic average (%) 98.6 98.4 93.4 92.8 

 
 

5. Conclusions 
 

In actual strain measurement, the strain signal is nonlinear 
and nonstationary with abundant noise due to the complex 
operating environment, so accurately identifying the soil 
heaping phenomenon of the scarifying tooth harrow is 
difficult. In this study, the AOA-VMD-BiLSTM model was 
proposed to identify the working condition of the scarifying 
tooth harrow. After iterative training under four working 
conditions, the following conclusions were obtained. 

(1) AOA can obtain the optimal parameter combination 
for the three monitoring points of the scarifying tooth harrow 
after signal denoising and optimization on the basis of the 
optimized VMD parameters. 

(2) The accuracy and loss value curves of the VMD-
BiLSTM, VMD-LSTM, BiLSTM, and LSTM models are 
acquired by comparatively analyzing the training results of 
the four fault diagnosis models. The results reveal that 
among the four models, VMD-BiLSTM processes the 
complex signals the best, with faster convergence, better 
convergence stability, and higher accuracy. 
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(3) The processing effect and accuracy of VMD-
BiLSTM exceeds 97.3%, and VMD-BiLSTM is superior to 
VMD-LSTM, BiLSTM, and LSTM. The model realizes the 
intelligent classification of the no-load, normal-operation, 
mild-overload, and serious-overload signals of the scarifying 
tooth harrow. 

In this study, theory is combined with simulation 
experiments, and the field experiments are reduced while 
still ensuring the dynamic performance of the system. The 
experiment cost is also reduced. This study caters to the 
networking development needs of mechanical intelligence 
systems and has high practical importance. However, the 
interference of factors in real experiments should be further 
considered if the proposed optimization algorithm is adopted. 

In future research, high-performance processors may be 
employed to perform real-time identification of working 
conditions by using algorithm models to achieve stable 
results. 
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