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Abstract 
 

Deep learning models enable state-of-the-art accuracy in computer vision applications. However, the deeper, 
computationally expensive, and densely connected architecture of deep neural networks (DNN) have limitations for 
deploying the model on resource-constraint embedded IoT devices. We propose an efficient neural network compression 
framework that performs filter pruning, fine-tuning and 8-bit quantization to reduce computational complexity, inference 
time, and memory footprint. Furthermore, reducing the bit widths of activation and weights helps design a compact 
deployment model on resource-limited IoT devices such as smartphones. The proposed system is evaluated extensively on 
the CIFAR-10 dataset for Resnet34 and VGG16 models. In addition, we examine the efficacy of a larger model. The result 
shows that pruning followed by quantization compresses the neural network and compared to the baseline model, achieved 
an accuracy of 78.01% for Resnet34 and 82.34% for Vgg16 after pruning and quantization which is <1% of marginal loss 
in accuracy compared to the baseline model. Further, 80x unique parameters from the weight matrix of the model are 
reduced using k-means clustering along with 8-bit quantization. The study demonstrates that the pruning process had a 
minimal impact on ResNet34's accuracy, while VGG16 maintained its accuracy even after pruning. Both models showed 
a reduced memory footprint after applying k-means clustering and 8-bit quantization, making them more efficient for 
inference tasks without sacrificing performance significantly. Applications like Smart Traffic Management and 
autonomous vehicles involve deploying edge devices with cameras and sensors at intersections and roadsides to monitor 
and analyze real-time traffic conditions. The proposed optimized model can be employed for efficient object recognition 
and classification of vehicles, pedestrians, and traffic signs. 
 
Keywords: Deep Learning, Edge clusters, heterogenous, Pruning, Quantization 
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1. Introduction 
 
Convolutional neural networks (CNNs) are the neural 
network suits for image and video recognition tasks. CNNs 
consist of multiple layers of convolutional and pooling 
operations, which are designed to extract features from the 
input data. Many computer vision applications have shown 
considerable success with convolutional neural networks.  
 CNNs are well-suited for edge computing due to their 
efficiency in feature extraction, real-time inference 
capabilities, reduced data transmission requirements, and 
potential for model optimization. Edge devices process data 
locally, reducing the need for data transmission to remote 
servers [1-3], leading to low latency and enabling real-time 
inference, which is critical in applications where quick 
responses are essential, such as autonomous vehicles, 
robotics, and real-time monitoring systems. Transmitting 
large amounts of data to centralized servers can strain network 
bandwidth. Bandwidth usage is optimized by processing data 
locally on edge devices and only sending necessary results [4-
5]. In addition, edge computing helps to maintain data privacy 
[6] and enhances data security [7], as data is less susceptible 
to interception during transmission [8]. Hence deploying deep 
learning models on edge devices offers numerous advantages, 
including improved performance, reduced latency, enhanced 
privacy, better resource efficiency, and the ability to operate 
offline. This approach expands the scope of intelligent 

applications in various domains, enabling more responsive, 
secure, and efficient systems for the benefit of end-users and 
society. 
 Despite these advantages, deploying deep learning 
models on edge devices presents several challenges [9-10]. 
Edge devices often have limited processing power, memory, 
and energy resources. Deep learning models are 
computationally intensive and optimizing them for efficient 
execution on resource-constrained devices is a significant 
challenge [11]. Deep learning models are large, making them 
difficult to fit within the limited memory of edge devices. 
Reducing the memory footprint without sacrificing accuracy 
is crucial for successful deployment. Deep learning 
computations is a power-hungry, and edge devices, especially 
battery-operated ones, must manage power consumption 
efficiently to extend battery life. Deep learning models 
require optimization techniques like model pruning, 
quantization, and compression to run efficiently on edge 
devices. Addressing these challenges requires a combination 
of algorithmic improvements, hardware advancements, and 
careful system design. As the technology evolves, deploying 
deep learning models on edge devices will play a vital role in 
enabling intelligent and efficient applications in various 
domains. However, enormous computational cost of CNNs 
makes it very slow to run the model on resource-constrained 
devices such as mobile phones. It’s essential to reduce the 
computational cost and accelerate the inference of CNN.  
 Neural network compression and acceleration [12-13] in 
CNN refers to techniques that aim to reduce the 
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computational complexity and memory footprint of CNN 
models. This is typically done by reducing the number of 
parameters in the model, or by using more efficient 
algorithms for training and inference. 
 One common method for model compression is pruning 
[14], which involves removing redundant or unnecessary 
weights from the model. This can be done by identifying and 
removing weights that have little impact on the model's 
performance, or by using techniques such as structured 
pruning, where groups of weights are pruned together. Neural 
network pruning is a technique used to reduce the size and 
complexity of a neural network by removing unnecessary 
weights and neurons. This can be useful for reducing the 
memory and computational requirements of a model and can 
also improve its generalization performance. Pruning can be 
applied to CNNs by removing unimportant weights and 
neurons from the network, which can improve the model's 
performance and reduce its computational requirements. 
 Weight pruning [15-16] in CNN refers to the process of 
removing certain weights from the network that are deemed 
unnecessary for the task at hand. This can be done by 
identifying and removing weights that have the smallest 
magnitude or absolute value. The goal of weight pruning is to 
reduce the number of parameters in the network, making it 
more efficient and faster to train. Filter pruning [17] in CNN, 
on the other hand, refers to the process of removing certain 
filters from the network that are not contributing much to the 
final output. This can be done by identifying and removing 
filters that have the smallest magnitude or absolute value. The 
goal of filter pruning is to reduce the number of filters in the 
network, making it more computationally efficient and easier 
to interpret. Both weight pruning and filter pruning can be 
used together to achieve a more compact and efficient CNN 
model. It is important to note that the specific pruning 
techniques and the criteria for selecting which weights or 
filters to remove may vary depending on the task and the 
architecture of the network. Another approach is to use low-
precision data types for the model's weights and activations. 
This reduces the storage requirement of the model and can 
also speed up computation. Quantization is a popular method 
that reduces the precision of the weights and activations to 8-
bit or less. 
 Knowledge distillation [18] is a technique to train to 
mimic the predictions of a larger, more complex model. This 
allows the smaller model to achieve similar performance with 
fewer parameters. Other methods include weight sharing, 
where multiple copies of a weight are used across the model, 
and model compression frameworks such as TensorFlow Lite 
and OpenVINO, which provide tools for optimizing and 
deploying CNN models on a variety of hardware platforms. 
The aforementioned techniques can overcome the challenges 
[19] of deploying deep learning on edge devices. 
 Our contributions to this paper are as follows. First, we 
developed a baseline model of Resnet34 and Vgg16 to 
understand the efficacy of the proposed system. We apply 
filter pruning for CNN compression to prune the redundant 
filters; the model achieves comparable performance with 
much fewer parameters. Further, we used 8-bit quantization 
to reduce the model complexity still. Finally, we evaluated the 
model on the CIFAR10 dataset with Resnet34 and Vgg16 
models to demonstrate the high effectiveness of our proposed 
approach.  
 
 
2. Background and Related Work 
 

Edge computing enables data processing and analysis closer 
to the data source, at the network's edge. AI and ML 
algorithms analyze and make decisions based on data 
collected at the edge. This algorithm is integrated into edge 
devices to enable real-time decision-making and automation. 
Edge intelligence is the ability of IoT devices to process and 
analyze data locally instead of sending everything to a central 
location for processing. As shown in Table 1, edge 
intelligence can be significantly improved by utilizing 
technologies like RFID, Edge computing, Cloud computing, 
and IoT, which make it possible to gather, store, and analyze 
data from numerous sources in real time. This permits quick 
decisions and responses in various fields, including 
manufacturing, healthcare, and retail. Organizations can use 
these technologies to enhance overall operations, lower 
expenses, and increase efficiency. 
 
Table 1. Technology advancement on the path of edge 
intelligence 

Technology 
advancements 

Year of 
introduction 

Applications 

RFID 1983 Vehicle parking, library 
management 

Edge 1990 Smart meter 
Cloud 1996 Email 

IoT 1999 Smart building 
NFC 2003 Home automation 
Mist 2011 Healthcare 
Fog 2012 Environmental control systems 

Edge 
Intelligence 

Interest rate 
increased 
after 2016 

Autonomous vehicle 

 
 
 The 5G networks will allow faster data transfer and low-
latency communication between edge devices and the cloud, 
making it possible to process the data. IoT devices, such as 
sensors and cameras, are becoming increasingly prevalent at 
the edge. IoT devices collect data, which is later analyzed and 
used to make decisions. Containerization and virtualization 
technologies allow for the deployment of software and 
applications at the edge, making it possible to run complex 
algorithms and processes at the edge. Edge gateways allow 
for managing, monitoring, and controlling edge devices and 
the data they collect. They also enable data transmission to 
the cloud for further analysis. Low-power chips and 
processors enable edge devices to operate with low power 
consumption, making it possible to deploy edge devices in 
remote or hard-to-reach areas. 
 Several techniques for model compression in deep neural 
networks include pruning, quantization, and low-rank 
factorization. Pruning involves removing neurons or 
connections in a neural network deemed less critical for the 
task. The pruning process analyzes the network weights and 
removes those with a minor magnitude. Quantization reduces 
the precision of the weights of a neural network, typically 
from 32-bit floating point to 8-bit or 16-bit integers. Hence 
leads to a significant reduction in memory usage and 
computation, but at the cost of some loss in accuracy. Low-
rank factorization techniques such as Singular Value 
Decomposition (SVD) and Tucker Decomposition can also 
compress neural networks by approximating a weight matrix 
with a low-rank matrix, reducing the number of parameters in 
the model. Another popular method is knowledge distillation, 
which uses a large, pre-trained model (the teacher) to guide 
the training of a smaller model (the student). The student 
model is trained to mimic the output of the teacher model on 
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a given dataset, which can lead to a smaller model with 
similar or even better performance. 

The author [20] discusses the various network 
compression techniques and presents the strengths of 
combining pruning and quantization. The author [21] 
proposed a compression algorithm performing weight 
pruning and quantization jointly and then completed the fine-
tuning. The author [22] compressed the model using the 
Bonsai algorithm and achieved significant improvement in 
results in terms of accuracy and model size. The article [23] 
details storage reduction, energy efficiency and high 
inference time algorithms using pruning, quantization, and 
Huffman coding. This article [24] focuses on improvement in 
efficiency and prediction speed and reduces the model size 
without overfitting. This article [25] briefed on designing an 
optimized model using a fused tile partitioning approach, 
weight pruning proved the improvement in inference latency. 
The author [26] proposed a network compression strategy 
using Bayesian optimization for pruning ratio selection, 
reduced the model size, and achieved better accuracy. The 
author [27] focuses on bit-width reduction of activation and 
weights for model compression. Further author explored the 
decline of bits to 3-bit and 2-bit and demonstrated the model's 
effectiveness. To reduce the deep learning model the author 
used quantization with knowledge distillation [28] and 
designed a robust model. The paper [29] compressed the 
model through reinforcement learning to apply pruning, 
mapping weights and quantize bit width and achieved 
significantly good compression rate. The author proposed 
pruning and quantization [30] on ResNet-18 and VGG-16 on 
CIFAR-100 focusing on energy optimization. The article 
proposed joint exploration [31] on pruning and quantization 
for acceleration of DNN models. The author proposed One-
shot Pruning-Quantization for pretrained model [32] 
measured compression rate on ImageNet with few deep 
learning models. 
 
 
3. Proposed System 
 
Model compression is essential for deploying models on 
devices with limited resources, such as smartphones or IoT 
devices, and can also improve the speed and efficiency of 
training and inference. 
 The figure 1 depicts the proposed model flowchart to 
design a compact optimized DNN model. The key steps 
involved in the proposed system are Filter pruning, fine 
tuning, k-means clustering and 8-bit quantization. 
 
3.1 Filter Pruning: Filter pruning is a technique used to 
reduce the number of parameters in a CNN to make it more 
efficient. It removes filters in a convolutional layer with a low 
magnitude of weights. The threshold is a value used to 
determine which filters to prune. Remove the filters or set 
them to zero for the weights below the threshold. Hence it 
reduces the model's complexity without compromising the 
model's accuracy. Stochastic gradient descent (SGD) is a 
widely used optimization algorithm for training neural 
networks. It helps to update the model's parameters by 
computing the gradient of the loss function for the parameters. 
SGD is often used with other techniques, such as filter 
pruning and thresholding, to improve the model's efficiency 
further. 
 
3.2 Fine Tuning: After filter pruning, the pruned model may 
experience a drop in accuracy due to the removal of some 

filters. Fine-tuning is performed to recover or improve the 
model's performance. Finetuning is adjusting the parameters 
of a pre-trained neural network to adapt it to a new task or 
dataset. Fine-tuning can be adding new layers to the network, 
adjusting the existing layers, or finetuning the parameters of 
the pre-trained network. Finetuning is often used to transfer 
the knowledge learned by a pre-trained network to a new task 
or dataset, allowing the network to perform better on the new 
task without needing to be trained from scratch. Filter pruning 
and finetuning improve the performance and efficiency of 
neural networks. 
 

 
Fig. 1. Flowchart of proposed model  
 
 
3.3 K-means Clustering: After fine-tuning, k-means 
clustering is applied to quantize the weights of the CNN. K-
means clustering is a technique used in data mining and 
machine learning to group similar data points. An 
unsupervised learning method divides a dataset into k 
clusters, where k is a user-defined parameter. Additionally, 
based on reducing the distance between each data point and 
the cluster centroid, which is the average value of all the data 
points in the cluster. The algorithm updates the mean of each 
cluster after iteratively assigning each data point to the cluster 
with the nearest mean. The centroids are then revised using 
the updated cluster data points. Until the centroids stop 
changing or we have completed the maximum number of 
iterations, this process is repeated. 
 
3.4 8-bit Quantization: Further, apply 8-bit quantization, 
reducing the precision of the weights and activations in a 
neural network from 32-bit floating point to 8-bit integers. 
Hence significantly reduces the memory and computational 
requirements of the network, allowing it to deploy on 
resource-constrained devices such as smartphones or 
embedded systems. 8-bit quantization can significantly 
reduce the model size and computational requirements, 
making it possible to deploy DNNs on devices with limited 
resources. However, it is essential to note that there may be a 
trade-off in accuracy, and the quantization process should be 
carefully optimized to minimize any loss in accuracy. 
By combining filter pruning, fine-tuning, k-means clustering, 
and 8-bit quantization, the proposed system aims to create a 
more efficient and lightweight deep learning model suitable 
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for deployment on resource-constrained edge devices while 
maintaining acceptable accuracy. 
 
 
4. Experiment and Results 
 
The proposed model is implemented using python and torch, 
a deep-learning framework for model training and inference. 
PyTorch provides functionality to perform pruning and 
quantization on a trained model with an optim package for 
optimization algorithm, dataloader API for loading data and 
for iterations, KMeans clustering from sklearn and user-
defined code for pruning and quantization. The Table 2 
depicts the hyper-parameter consideration for evaluation.  
 
Table 2. Hyper-parameter consideration for the baseline 
model 

Parameter Value 
Learning Rate 0.1 
Weight decay rate 0.0005 
Epochs 56 
Repeat with different seed 3 
Quantizer Stochastic Gradient Descent 

(SGD) 
momentum 0.9 
gamma 0.1 

 
 For evaluating our proposed model, we use CIFAR-10 
dataset, a widely used dataset for image classification tasks in 
machine learning and computer vision. It consists of 60,000 
32x32 color images in 10 classes, with 6,000 images per class. 
There are 50,000 training images and 10,000 test images. The 
classes are airplane, automobile, bird, cat, deer, dog, frog, 
horse, ship, and truck. The dataset is commonly used to train 
and evaluate the performance of deep learning models. 
 We measure training accuracy, validation error accuracy, 
validation loss. Training accuracy in a neural network refers 

to the percentage of accurate predictions made by the network 
during the training phase on the input data set. It measures 
how well the network can learn and adapt to the patterns in 
the training data and can be used as a metric to evaluate the 
network's performance and the training process's 
effectiveness. Training Accuracy is measured with following 
formula.  
 
Training Accuracy = ("#$%&%&'	)$*$	+,##-+*./	+.$00%1%-))	

(",*$.	&345-#	,1	*#$%&%&'	)$*$)
X100 

 
 Validation error accuracy in a neural network measures 
the ability to effectively predict or classify new, unseen data 
(validation data) based on the training data. It is calculated by 
comparing the network's predictions for the validation data 
with the actual labels or outputs for that data and determining 
the correct percentage of predictions. A high validation error 
accuracy indicates that the network performs well on the 
validation data. In contrast, a low validation error accuracy 
indicates that the network may be overfitting or underfitting 
the training data. 
 Validation loss in a neural network is a measure of 
network performance on a validation dataset. This dataset is 
separate from the training dataset and evaluates the network's 
generalisation ability to new data. The validation loss is 
calculated by comparing the network's predictions to the 
actual values in the validation dataset and calculating the 
difference, typically using a loss function such as mean 
squared error. The lower the validation loss, the better the 
network predicts unseen data. 

Training loss measures how well a neural network 
can learn from the training data. It measures the difference 
between the predicted output of the network and the actual 
output. Training Loss is measured with following formula. 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝐿𝑜𝑠𝑠 =
1

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑖𝑛	𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑠𝑒𝑡(𝑁𝑇)7𝐿𝑜𝑠𝑠(𝑇𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑙𝑎𝑏𝑒𝑙)
67

89:

𝑓𝑜𝑟	𝑖𝑡ℎ	𝑑𝑎𝑡𝑎	𝑖𝑛	𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑠𝑒𝑡 

 
 Validation loss in a neural network is a measure of how 
well the model performs on a validation dataset, a set of data 
used to evaluate the model's performance during the training 
process. We calculate the validation loss by comparing the 

model's predictions to the actual values in the validation 
dataset. Validation Loss is measured with following formula.  
 

 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝐿𝑜𝑠𝑠 =
1

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑖𝑛	𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝑠𝑒𝑡(𝑁𝑉)7𝐿𝑜𝑠𝑠(𝑇𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑙𝑎𝑏𝑒𝑙)
!"

#$%

𝑓𝑜𝑟	𝑖𝑡ℎ	𝑑𝑎𝑡𝑎	𝑖𝑛	𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝑠𝑒𝑡 

 
 Validation accuracy in a neural network refers to the 
model's accuracy when evaluating a validation dataset. 
Validation Accuracy is measured with following formula.  
 
Validation Accuracy = (;,3&*	,1	<$.%)$*%,&	)$*$	+,##-+*./	+.$00%1%-))	

(",*$.	&345-#	,1	)$*$	%&	<$.%)$*%,&	0-*)
X100 

 
 A baseline model is developed with the following 
hyperparameters as shown in Table 2. 
 
 Figure 2 depicts the Resnet34 baseline model training 
accuracy, and validation error accuracy gradually increases as 
the number of epochs grows. Hence the graph indicates the 
effective prediction or classification of input data. Figure 3 
depicts the VGG16 baseline model training accuracy, and 
validation error accuracy gradually increases as the number 

of epochs grows. Hence the graph indicates the effective 
classification of input data. 
 After the baseline model construction, we prune and 
retrain the model. In the process we identify the important 
connections to acquire the information from the data and 
remove the redundant weights along with known amount of 
compression rate. Removing the filter based on magnitude of 
the connections having weights and gradients lesser than the 
threshold value. Assumption considered here is weights with 
less magnitude are consider as less important and having 
larger magnitude is considered as more important. After 
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pruning, we perform retraining to recover the accuracy of the 
model.  
 As shown in Figure 4 as the model is trained, the training 
loss decreases, indicating that the model is improving. 
Likewise, the validation loss also reduces as the model is 
trained.  

 
Fig. 2. Baseline Resnet34 model training accuracy and validation error 
accuracy 
 

 
Fig. 3. Baseline VGG16 model training accuracy and validation error 
accuracy 
 

 
Fig. 4. Training loss and Validation Loss after pruning for Resnet34 
model. 
 
 As shown in Figure 5 Validation accuracy increases as 
epochs grows. A higher validation accuracy indicates that the 
model performs well on the validation dataset. 

 
Fig. 5 Validation accuracy after pruning for Vgg16 model. 
 
 As shown in Figure 6 as the model is trained, the training 
loss decreases, indicating that the model is improving. 
Likewise, the validation loss also reduces as the model is 
trained. The reduced validation loss indicates model is not 
overfitting.  

 
Fig. 6. Training loss and Validation Loss after pruning for Vgg16 
model. 
 
 Figure 7 indicates model likely to perform well on unseen 
data. The lower validation accuracy demonstrates that the 
model may not perform as well and may need further tuning 
or adjustments. 

 
Fig. 7. Validation accuracy after pruning for Vgg16 model. 
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 Our experimental results show that considering the 56th 
epoch, Resnet34 achieved an accuracy of 78.563% before 
pruning and 79% of accuracy after pruning. Hence from the 
overall result we observed for the Resnet34 model, compared 
to the baseline after pruning, there is a marginal reduction of 
accuracy (<1%) on the CIFAR 10 dataset.  Resnet34 model 
archives 86% of training accuracy and 79% of validation error 
accuracy for the baseline model.  
 Vgg16 achieved an accuracy of 83.55% before pruning 
and 83.55% of accuracy after pruning for 56th epoch. Hence 
Vgg16 maintains the same accuracy even after pruning the 
model compared to the baseline model. The Vgg16 model 
achieves 89.45% of training accuracy and 83% of validation 
error accuracy for the baseline model. 
 Next, we perform k-means clustering and 8-bit 
quantization reduces the memory footprint and speeds up the 
inference of the model by maintaining 78.01% of accuracy for 
Resnet34 model and 82.34% of accuracy for Vgg16 model.  
Quantization reduces around 80x unique parameters.  
 Figure 8 indicates the reduction in the number of 
parameters in each layer of the Vgg16 model. More number 
parameter reduction leads to reduced complexity and faster 
inference in a compact optimized model. 

 
Fig. 8.  Percentage of weight reduction for Vgg16 after pruning and 
quantization. 
 
 

5. Conclusion 
 
Model optimization is crucial when working with resource 
constraint devices, such as mobile devices or Internet of 
Things (IoT) devices, because these devices have limited 
computational resources and storage capabilities. Optimizing 
the model can reduce its size of the model and make it more 
efficient in terms of memory usage and computation time. We 
developed a compact model to optimize the time and space 
requirement of the deep learning model. Furthermore, we 
further explored the capability of filter pruning and 8-bit 
quantization to reduce the model complexity with marginal 
loss in accuracy.  
 To evaluate the proposed system, we considered the 
Resnet34 model and compared it with the baseline after 
pruning; there is a marginal reduction of accuracy (<1%) on 
the CIFAR 10 dataset. Resnet34 model archives 86% of 
training accuracy and 79% of validation error accuracy for the 
baseline model. Vgg16 maintains the same accuracy even 
after pruning the model compared to the baseline model. The 
Vgg16 model achieves 89.45% of training accuracy and 83% 
of validation error accuracy for the baseline model. After the 
quantization, the Resnet34 model maintains 78.01% accuracy 
and 82.34% accuracy for the Vgg16 model. Further 
quantization reduces around 80x the unique parameters of the 
model. Hence enables easy deployment of the CNN model on 
resource-constraint IoT devices. Our findings suggest that 
both the pruned models demonstrate promising results in 
maintaining accuracy and reducing model size through 
quantization. These results open up possibilities for deploying 
complex CNN models on IoT devices with limited resources, 
paving the way for efficient and practical real-world 
applications in computer vision. In future research, we want 
to explore the potential of transfer learning on various datasets 
and practical deployment of the pruned and quantized models 
on actual resource constrained IoT devices. Exploring model 
combination techniques, such as model stacking or 
knowledge distillation, might lead to even more compact and 
accurate models. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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