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Abstract 
 

The construction environment of tunnels is complex due to their unique spatial constraints, the diversity of rock 
properties, and the variability of construction machinery, which jointly lead to a substantial amount of noise contained in 
the measured tunnel blast vibration signals, resulting in distortion of the signal characteristics. This study proposed a 
method to analyze the noise reduction effect through the noise reduction objective function index after decomposition 
and reorganization of the original signal to accurately analyze the characteristics of tunnel blasting vibration signals. The 
original signal was decomposed into several intrinsic modal functions (IMFs) with varying frequencies and amplitudes by 
utilizing empirical modal decomposition (EMD) and variational modal decomposition (VMD) for noise reduction. These 
IMFs were then restructured, and noise reduction metrics were employed to analyze the noise reduction effect. Results 
demonstrate that both algorithms can effectively reduce the noise of the original signal at different sampling frequencies. 
The correlation coefficients of the EMD and VMD methods remain above 0.8526 and 0.9940, respectively. With the 
increase in sampling frequency, the VMD method exhibits greater stability in noise reduction processing compared to the 
EMD method, especially at high sampling frequencies. Thus, the noise reduction effect of the VMD method is substantial. 
The proposed method provides a good reference for similar engineering blasting vibration signal noise reduction 
processing. 
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1. Introduction 
 
Blasting technology is widely employed during tunnel 
excavation due to its high efficiency. However, blasting 
operations inevitably have an adverse impact on the 
surrounding environment and buildings [1, 2], therefore, 
accurate monitoring and analysis of blasting vibration 
signals is of considerable importance to ensure construction 
safety and reduce environmental impact. 

A major challenge in the monitoring and analysis of blast 
vibration signals is that the signals often contain large 
amounts of noise. The occurrence of these noises can be 
attributed to a multifaceted range of influencing factors, such 
as instrument errors, reflections transmitted by the medium, 
and disturbances in the construction environment, increasing 
the difficulty in accurately extracting and analyzing the 
signals. Noise reduction processing is a necessary step to 
accurately analyze the characteristics of vibration signals [3, 
4]. Blast vibration signals are nonstationary, which indicates 
that the statistical characteristics of the signal (e.g., mean, 
variance) vary with time. This nonsmoothness limits the 
effectiveness of traditional signal processing methods (e.g., 
fourier transform) in noise reduction processing. 

Blast vibration signals are generally processed using 
empirical modal decomposition (EMD) [5, 6]. The EMD 
method encounters the challenge of modal aliasing. This 
issue manifests itself in the presence of signals exhibiting 
diverse scale distributions within the same Intrinsic Mode 

Function (IMF) component, or signals with similar scales 
but occurring in distinct IMF components. The presence of 
modal aliasing not only leads to a false time–frequency 
distribution but also renders the IMFs physically 
meaningless. Another commonly used signal processing 
method, variational modal decomposition (VMD), 
suppresses modal aliasing by introducing a regularization 
term that constrains the bandwidth or frequency range of the 
modal functions and reduces the spectral overlap between 
different modal functions. Lei et al. [7] adopted the 
algorithm of VMD and improved the accuracy and 
efficiency of signal separation by introducing an 
optimization algorithm to construct the fitness function. This 
algorithm utilizes the energy difference parameter and the 
sample entropy to achieve the optimal adjustment of the 
modal number and the penalty factor. The modal aliasing 
problem of EMD limits its application in the analysis of 
complex signals. The VMD algorithm improves the 
shortcomings of EMD to a certain extent but fails to 
completely separate the signal from the noise. Therefore, 
comparing and analyzing the noise reduction effects of the 
two algorithms for blasting vibration signals is necessary to 
realize the optimal effect of noise reduction processing. 

Based on the above analysis, this study first decomposes 
the blast vibration signals using EMD and VMD. These 
signals are then compared and analyzed by reorganizing the 
IMFs and the noise reduction indexes to obtain the optimal 
noise reduction signals. The proposed method is applied to 
the noise reduction processing of the blast vibration signals 
of the measured tunnels. 
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2. State of the art  
 
Scholars have conducted numerous studies on improving 
EMD and VMD to achieve excellent noise reduction.  

In the process of in-depth investigation of noise 
reduction techniques based on EMD and independent 
component analysis, Jia et al. [8] found that noise can be 
effectively reduced but transient non-smooth features are 
retained. However, they did not quantitatively analyze the 
noise reduction effect of the EMD and VMD methods. Li et 
al. [9] compared and analyzed the wavelet and EMD 
filtering methods and found that each of the two methods 
demonstrated unique advantages in noise reduction. 
However, the specific process of utilizing IMFs was not 
comprehensively explored and elaborated. Zhao et al. [10] 
proposed an improved EMD noise reduction method 
combining EMD thresholding noise reduction and Savitzky–
Golay filtering noise reduction, which was optimized by 
targeting high-frequency and low-frequency modal functions 
(IMFs). Simulation experiments showed that this improved 
method outperforms either the EMD thresholding method or 
the Savitzky–Golay filtering method alone in terms of noise 
reduction performance. However, in-depth comparative 
studies of how EMD and VMD acquire and utilize IMFs 
during signal processing are lacking. Xu [11] proposed 
EEMD as an improved method for the modal aliasing 
problem of EMD when the signal is interrupted. Despite the 
unique advantages of EEMD and VMD in noise reduction 
and modal decomposition, these methods are not further 
optimized to fit the signal characteristics in specific 
application scenarios. The VMD smooth noise reduction 
model proposed by Peng et al. [12] showed noise reduction 
capability in tunnel blasting signals. Regardless of the 
generally successful performance of the VMD model, the 
effectiveness of its application in the special environment of 
small-clearance separated tunnels should be further verified. 
Deng et al. [13] used the particle swarm algorithm and 
wavelet threshold denoising combined with VMD to process 
microseismic signals. However, they did not compare the 
variations, advantages, and disadvantages of the different 
methods for IMF processing. The VMD–SVD–Robust ICA 
method proposed by Li et al. [14] effectively separated the 
mixed signals but lacked application in small-clearance 
separated tunnels. Karan et al. [15] combined VMD and 
BiDLSTM deep learning algorithms to improve prediction 
accuracy but did not compare the differences in IMF 
processing between the methods. Amitha et al. [16] used 
VMD to detect power signal pulse transients but failed to 
improve the VMD technique to obtain effective noise 
reduction. Mohamed et al. [17] improved the accuracy of 
modal identification by integrating independent component 
analysis (ICA) with MEMD for the modal aliasing problem 
in EMD, but the noise reduction effect for specific 
environments was understudied. Mohsen et al. [18] explored 
the application of VMD in detecting localized structural 
damage. The time course of acceleration in a bridge span 
was decomposed into IMFs by VMD. They found that the 
instantaneous frequency and instantaneous amplitude of the 
first-order IMF exhibited irregularities at the damage 
location, which demonstrated the superiority of VMD in 
damage detection compared to the EMD method. However, 
this study was limited in its noise reduction analysis. 
Giaouris et al. [19] investigated the potential of wavelet 
analysis for applications in electric drive systems, especially 

in addressing the problem of corrupted current signals due to 
noise caused by defective sensors. They compared wavelet 
analysis with classical methods and demonstrated the 
advantages of wavelet analysis in handling useful 
information with time-varying high-frequency 
characteristics. However, when the signal contains nonlinear 
and non-smooth characteristics, wavelet analysis may only 
partially extract useful information compared to EMD and 
VMD. Mpoyi et al. [20] utilized EMD and FDM to monitor 
tool wear, but validation was limited to a single method and 
did not compare multiple methods. The hybrid model based 
on EMD and SVR by Redekar et al. [21] performed well in 
the prediction of PV array pollution. However, further 
improvement in noise reduction is necessary to improve the 
accuracy of the prediction model. Shamaee et al. [22] 
proposed an adaptive denoising method based on deep 
learning and the EMD method, using dominant noise to 
enhance the EMD. This method identifies the dominant 
noise through pattern decomposition and a two-step LSTM 
classifier. Subsequently, the detected features were used for 
noise-assisted pattern decomposition, and the most relevant 
components of the dominant noise were adaptively removed. 
The method effectively classified and suppressed white and 
colored noise. However, the robustness and stability of this 
noise reduction method must still be further verified. 

The above studies were mainly based on the 
improvement of two signal processing methods, namely 
EMD and VMD, to obtain satisfactory noise reduction 
effects. However, studies that quantitatively analyze the 
noise reduction effects of the two methods in small-
clearance separated tunnels are still relatively few. In 
particular, comparative studies of how the two methods 
obtain and use IMFs when processing signals lack in-depth 
discussions. In this study, the original signal is decomposed 
into multiple IMFs with different frequencies and amplitudes 
by using two noise reduction methods, namely EMD and 
VMD. These IMFs are then reorganized to obtain the 
optimal noise reduction signal, and the noise reduction 
metrics are used to analyze the noise reduction effect. 

The remainder of this study is organized as follows. 
Section 3 describes the basic principles of EMD and VMD, 
along with the evaluation indexes employed to evaluate the 
noise reduction effect. In Section 4, the noise reduction of 
blast vibration signals is conducted using EMD and VMD 
for this engineering example, and the noise reduction 
processing effects of blast vibration signals under different 
methods are obtained. The final section summarizes the 
study and presents relevant conclusions. 
 
 
3. Methodology  
 
3.1 EMD Rationale 
EMD is a novel method for handling nonstationary signals 
that can decompose the signal based on its inherent time-
scale characteristics without relying on any pre-set basis 
functions. The core of this method lies in empirical mode 
decomposition (EMD), which facilitates the decomposition 
of complex signals into a finite number of intrinsic modal 
functions (IMFs). Each decomposed component of an IMF 
contains localized characteristic signals of the original signal 
at varying time scales [23, 24]. 

Identifying the extreme values and extreme points of the 
signal is essential to identifying the local characteristics and 
fluctuation range of a signal. The upper and lower envelopes 
of the signal can be constructed by utilizing curve 
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interpolation to fit these extreme points. These envelopes 
can then serve as an approximation of the fluctuation range 
of the signal. 
 The peak and trough points of the original signal  
are then connected to these extreme points through curve 
interpolation to obtain the upper envelopes  and 
lower envelopes  of the signal. 
 The upper and lower envelopes are averaged to isolate 
the long-term trend or overall variation of the signal from 
the original signal and accurately extract the IMFs in 
subsequent steps. 
 

                            (1) 

 
 In signal processing, a residual signal can be obtained by 
performing a subtraction operation between the original 
signal and the mean envelope calculated by interpolating 
between the extreme points. For smooth signals, this residual 
signal often directly reflects the characteristics of the 
original signal in a specific frequency range and is extracted 
as the first IMF of the original signal. However, the situation 
differs when dealing with signals that exhibit irregularities. 
A signal with a non-monotonic waveform, which is 
characterized by inflection points at specific locations, 
contains important features of the original signal. If these 
inflection points are not precisely captured during the 
processing stage, then the resulting first-order IMF may fail 
to accurately represent the characteristics of the original 
signal at this frequency scale. Specifically, this condition 
may not adhere to the two fundamental criteria of an IMF: (1) 
the number of extreme points and zero crossings must differ 
by at most one, and (2) the local mean value should be zero. 
Therefore, further optimizing and extracting the IMF 
through a screening process is necessary to ensure the 
accuracy and validity of the IMF. This process is repeated on 
the remaining signals  until the stopping criterion (SD, 
generally taking a value between 0.2 and 0.3) falls below the 
threshold value, thus obtaining the final first-order modal 
component  (i.e., the first IMF). The SD is calculated as 
follows:  
 

                        (2) 

 
 The first-order residual quantity  is obtained by 
subtracting signal  from signal . Instead of the 
original signal ,  can be used as the input for the 
subsequent processing steps to obtain the nth-order modal 
function  and the final standardized residual quantity 

 after repeating the process for n times. The 
mathematical expression for the decomposition of the 
original signal  using empirical mode decomposition 
(EMD) is as follows: 
 

.                           (3) 

 
3.2 VMD Rationale 
VMD is an adaptive, fully non-recursive method for modal 
discretization and signal processing. The algorithm can 

determine the number of modal decompositions based on the 
actual situation, thus exhibiting its adaptivity. Furthermore, 
the subsequent iteration and solving process enables the 
algorithm to adaptively match the optimal center frequency 
and finite bandwidth of each modality. Additionally, VMD 
efficiently separates IMFs, partitions signals into frequency 
bands, extracts key decomposition components, and 
achieves the optimal variational solution [25, 26]. 

The variational problem is first constructed by assuming 
that the original signal  is decomposed into  
components, where each component is an IMF with a finite 
bandwidth and a center frequency. The objective is to 
minimize the sum of the estimated bandwidths of the IMFs 
while satisfying the constraint that the sum of all the modes 
is equal to the original signal. The corresponding constrained 
variational expression is then derived as follows: 

 

      (4) 

 
 

where  represent the (k)-th IMF component and 
center frequency, respectively, after decomposition. 

The Lagrange multiplier  is introduced to transform 
the constrained variational problem into an unconstrained 
variational problem and solve the above equation, and the 
augmented Lagrangian function is obtained as: 

 

      (5) 

 
 where  is a quadratic penalty factor that serves to 
reduce the interference of Gaussian noise. The alternating 
direction method of multipliers (ADMM), combined with 
Parseval's theorem (or Plancherel’s theorem), optimizes 
modal components as well as center frequencies. 
Additionally, this algorithm is employed to search for the 
saddle point of the augmented Lagrangian function. The 
expressions of  ,  and  after the ADMM iteration 
are as follows: 
 

 

 

              (6) 

 

  

 
 The main iterative solution process of the VMD is 
as follows: 

( )f t

max ( )f t

min ( )f t

max min( ) ( )( )
2

f t f ts t +
=

( )tu

( )tw

2
1

2
0 1

( ) ( )
( )

T
k k

t k

t t
SD

t
u u

u
-

= -

é ù-
= ê ú

ê úë û
å

( )tr
( )tw ( )f t

( )f t ( )tr

( )n tw
( )n tr

( )f t

1
( ) ( ) ( )

n

n nf t t tw r= +å

f K

{ } { }
[ ]

2

, 2

1

min ( ) / ( )* ( )

. .

k

k k

j t
t k

k

K

k
k

t j t t e

s t f

w

µ w
d p µ

µ

-

=

ì ü¶ +í ý
î þ

=

å

å

{ } { },k kµ w

l

{ } { } [ ]
2

2

2

2

( , , ) ( ) / ( )* ( )

( ) ( ) ( ), ( ) ( )

kj t
k k t k

k

k k
k k

L t j t t e

f t t t f t t

wµ w l a d p µ

µ l µ

-= ¶ +

+ - + -

å

å å

a

kµ kw l

1

2

( ) ( ) ( ) / 2
( )

1 2 ( )

n
i k i

k
k

f w µ w l w
µ w

a w w

Ù Ù Ù
+Ù

¹- +
¬

+ -
å

1 1

( ) ( ( ) ( ))
n n n

k
k

fl w l g w µ w
+ +Ù Ù Ù Ù

¬ + -å

21

0
1

21

0

( )

( )

n

k
n
k n

k

d

d

w µ w w
w

µ w w

+Ù¥

+

+Ù¥

¬
ò

ò



Chenyang Dong, Hui Xiang, Jian Cui, Wei Hu and Yayu Miao/Journal of Engineering Science and Technology Review 17 (3) (2024) 52 - 59 

 55 

 S1: Initialization of , ,  and maximum 
number of iterations ; 

 S2: Using Equation (6) to update , , ; 
 S3: Precision convergence criterion ; if it 

does not meet conditions  

and , then return to the second step; otherwise, 

complete the iteration and output the final result , 

. 
 
3.3 Noise Reduction Indexes 
Linear correlation coefficient is a quantity that examines the 
degree of linear correlation between variables. This 
coefficient is usually denoted by . 
 

                          (7) 

 
 where  is the covariance of , and 

,  is the variance of . 
The mean squared error (MSE) measures the magnitude 

of dissimilarity between the noise-reduced and original 
functions. In the context of geotechnical engineering, MSE 
can be used as an indicator of the accuracy of noise 
reduction algorithms applied to signals. 

 
                              (8) 

 
where  and  denote the signal after noise reduction and 
the original signal, respectively. 
 The noise reduction objective function  [26, 27] is 
defined as a weighted combination of factors. In this 
function,  represents the algorithm performance factor 
with a value of 0.2, and  represents the correlation 
coefficient factor with a value of 0.8. 
 

                  (9) 
 
3.4 EMD Signal 
The sampling frequency of the measured signal is 10,000 Hz. 
A time span of 0 to 1.4 s is selected for noise reduction of 
the signal, as depicted in Fig. 1. A total of 14,334 sampling 
points were collected during this period. 

The original signal is decomposed using the EMD 
algorithm, and the resulting time domain diagram of the 
vibration signal decomposition is presented in Fig. 2. As 
shown in the figure, the EMD algorithm effectively 
separates the original signal into multiple IMF components, 
each carrying distinct signal characteristics. 

However, the endpoint effect is one of the issues 
encountered with EMD. The EMD decomposes the signal 
into IMFs sequentially through a series of sifting processes, 
where the local average of the signal is calculated based on 
its upper and lower envelopes. The envelopes of a signal are 
delineated by its local maxima and minima, employing 
spline interpolation. Notably, both extremities of the signal 
cannot concurrently attain extreme maximum and minimum 

values. Thus, the upper and lower envelopes inevitably 
diverge at the endpoints of the data sequence. Consequently, 
this divergence directly impacts the quality of the EMD [28]. 

 
Fig. 1.  Bursting signal 
 

 
Fig. 2.  EMD time-domain diagram 
 
3.5 VMD Decomposition Signal 
The parameters should be set before decomposing the signal 
using the VMD algorithm. The fidelity  is set to 0, and the 
penalty factor  is set to the default value of 2000. The 
determination of the number of modes  is obtained based 
on the center frequency method, as shown in Table 1. When 

 = 8, the highest center frequency increases abruptly, 
indicating over-decomposition; therefore, the value of  is 
set to 7. At this point, the change in center frequency is 
shown in Fig. 3. The decomposition of the time-domain 
graph is depicted in Fig. 4, where the last component 
represents the low-frequency noise part. The VMD 
algorithm is highly effective at decomposing signals, and it 
can extract the low-frequency noise component. 
 As observed from the frequency domain plot in Fig. 5, 
each IMF component possesses a distinct center frequency. 
Each IMF exhibits a considerably narrow frequency band, 
and no modal aliasing phenomenon is observed.  
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 Fig. 6 presents a three-dimensional comparison of each 
IMF component with the original signal. Analysis results 
reveal that the IMF components can be grouped into three 
parts: IMF1 to IMF4 correspond to the initial stage of the 
blasting process; IMF5 represents the second part, which 
demonstrates the most notable impact; and IMF6 to IMF7 
correspond to the third part, where the energy is reduced, 
and the effects of blasting vibration gradually diminish. 
 

 
Fig. 3.  Plot of change in center frequency 

 

 
Fig. 4.  VMD time-domain diagram 

 
Table 1. Center frequencies of components at different values of   

         
2 89.252 160.515       
3 88.336 151.261 355.368      
4 88.201 149.645 312.212 1452.371     
5 88.141 148.021 266.426 508.023 1413.877    
6 88.141 147.172 247.642 413.644 761.670 1459.689   
7 88.128 143.663 181.105 280.601 439.239 765.566 1462.222  
8 88.097 142.750 176.979 276.528 436.841 763.171 1447.586 3319.976 

 

 
Fig. 5.  Frequency-domain graph 
 

 
Fig. 6.  VMD 3D component comparison 
 
4. Result Analysis and Discussion 
 
4.1 Project Cases 
The Xiangshuling Tunnel is located in Nanchuan District, 
Chongqing. For this small-clearance separated rock tunnel, 
the tunnel traverses through various types of rocks, ranging 
from hard to soft, mainly comprising V- and IV-level 
surrounding rock. Table 2 shows the length of the 
surrounding rock sections and their proportion of the total 
tunnel length. 
 
Table 2. Distribution of surrounding rocks at all levels of 
the tunnel 

Rock mass 
classification 

Left line Right line 
Lengths Percentage of Lengths Percentage of 

K
K 1I 2I 3I 4I 5I 6I 7I 8I
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total length total length 
V 734 m 18.26% 660 m 16.45% 
IV 3285 m 81.74% 3351 m 83.55% 
  
 Grade V surrounding rock is primarily distributed at the 
entrance and exit of the cave. The stratum lithology mainly 
comprises siltstone, mudstone, and shale, which are 
classified as soft rocks. Tectonic fractures are highly 
developed, resulting in poor interlayer bonding, and the 
surrounding rock exhibits poor self-stabilizing capability, 
increasing its collapse tendency. Therefore, the construction 
adopts the three-bench and seven-segment excavation 
method, which involves arc-shaped pilot excavation to retain 
the core soil as the basic mode. This method is divided into 
upper, middle, and lower steps with seven excavation 
surfaces. Each excavation and support phase is staggered 
longitudinally along the tunnel, proceeding parallel to the 
advancement of the tunnel construction. 
 Several residences are found near the tunnel. The L-20 
vibrometer was used on-site for testing to evaluate the 
impact on the surrounding environment during tunnel 
blasting and excavation. A typical blasting vibration signal 
was selected as the study object. The monitoring points are 
depicted in Fig. 7, while the blasting signal and amplitude 
spectrum are presented in Fig. 8 and Fig. 9, respectively. 
 

 
Fig. 7.  Location of monitoring points 
 
 

 
Fig. 8.  Measured blast signal 
 
 

 
Fig. 9. Amplitude spectrum 
 
4.2 Noise Reduction of Blast Vibration Signals 
The individual components decomposed by the two 
algorithms are reorganized and subsequently compared to 
the original signal to achieve noise reduction. The 
superposition of IMF1 through IMF7 is denoted as Fs17, the 
superposition of IMF2 through IMF7 is denoted as Fs27, and 
so forth up to Fs67, as illustrated in Fig. 10 and Fig. 11. 
 

 
Fig. 10.  Comparison of EMD reconstructed and original signals 
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Fig. 11. Comparison of VMD reconstructed and original signals 
 
 From Fig.10 and Fig. 11, it can be seen that compared to 
the VMD method, the EMD recombined signal notably 
diverges from the original signal after Fs47 and begins to 
exhibit distortion, indicating that the VMD recombined 
signal has a superior correlation with the original signal 
compared to EMD. The noise reduction metrics in Table 3 
reveal that VMD outperforms the EMD algorithm for each 
recombined signal. Despite the adaptive binary filtering 
characteristics of the EMD method, for complex signals, 
noise and impulse interference can affect the envelope 
calculation. This phenomenon subsequently impacts modal 
decomposition, leading to aliasing and rendering the IMF 
component devoid of its physical significance. By contrast, 
VMD is a set of adaptive Wiener filters with strong noise 
robustness. The modal and center frequencies are 
continuously adjusted and updated using this method to 
achieve a superior signal decomposition effect [28, 29]. This 
finding conclusively demonstrates that the VMD algorithm 
is more advantageous than the EMD algorithm in noise 
reduction processing. 

 
Table 3. Noise reduction indicator
Project Fs17 Fs27 Fs37 Fs47 Fs57 Fs67 

EMD 
M 0.9935 0.9935 0.9932 0.9891 0.9011 0.8526 
r 0.9828 0.9826 0.9818 0.9704 0.6478 0.2889 
f 0.9850 0.9848 0.9841 0.9742 0.6985 0.4016 

VMD 
M 1.000 0.9999 0.9997 0.9992 0.9975 0.9940 
r 1.000 0.9998 0.9993 0.9980 0.9934 0.9844 
f 1.000 0.9998 0.9994 0.9983 0.9942 0.9863 

 
5. Conclusions 
 
This study adopted two signal processing methods, namely 
EMD and VMD, to decompose and reorganize the IMFs and 
accurately analyze the characteristics of tunnel blasting 
vibration signals. The optimal noise reduction signals were 
obtained, and the noise reduction effects of these two 
methods on the blasting vibration signals of the engineering 
examples of the small-clearance separating tunnels were 
analyzed. The following conclusions could be drawn: 
 (1) Both signal processing methods can implement 
effective noise reduction processing on the original signal at 
various sampling frequencies. Specifically, the algorithmic 
similarity coefficients of the EMD and VMD methods are 
stable above 0.8526 and 0.9940, respectively, indicating a 
certain similarity and stability in noise reduction processing. 
The VMD method is superior to the EMD method in terms 
of decomposing and extracting IMFs; this method can also 
effectively reject low-frequency noise. 
 (2) The VMD method excels over the EMD method in 
terms of noise reduction, boasting a substantially larger 
linear correlation coefficient. Moreover, the linear 
correlation coefficient of the VMD method remains 
relatively stable with an increase in sampling frequency, 
exhibiting robust performance. Conversely, the linear 
correlation coefficient of the EMD method notably decreases 

as the sampling frequency rises, indicating a decline in its 
noise reduction capabilities at high frequencies. As the 
sampling frequency increases, the VMD method 
demonstrates greater stability in noise reduction processing 
compared to the EMD method, particularly at high sampling 
frequencies. 
 In this study, the EMD and VMD decomposition of 
blasting vibration signals from the measured tunnels, along 
with a comparison of the two algorithms in terms of noise 
suppression and signal processing, provides a valuable 
reference for noise reduction processing of blasting vibration 
signals in similar projects. The current study primarily 
focuses on the noise reduction effect of blasting vibration 
signals over a single or short-term period; however, tunnel 
blasting is a long-term and continuous process. Therefore, 
future studies should test the algorithms for long-term 
stability to evaluate their performance in the continuous 
blasting process and explore potential improvement 
strategies. 
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