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Abstract 
 

Traffic accidents are prone to occur in mixed-traffic flows of nonmotorized and motorized vehicles. Particularly, electric 
two-wheeled vehicles face risks when they move laterally to the motor vehicle lane to avoid obstacles. To decrease 
accident risks caused by lateral offset in mixed-traffic flows, this study proposed a lateral offset detection method based 
on deep learning technology. A vehicle lateral offset risk recognition model of You Only Look Once Version 8 
(YOLOv8) was established using actual traffic scenes in Xuzhou as a dataset. The model was trained by loading the pre-
processed and labelled dataset, selecting the model architecture suitable for target detection in traffic scenes, setting 
training parameters, and executing. Then, the training results were analyzed based on images, such as labelled images, 
training result plots, and model curves, and the accuracy and reliability of the model were evaluated using standard 
metrics, such as precision, recall, and average precision. Results demonstrate that the offset model of YOLOv8 can detect 
the lateral offset risk of vehicles from traffic surveillance videos. The proposed model has robustness in category 
judgment. The detection precision of lateral offset in the model is 0.638, the recall rate is 0.626, the mean average 
precision calculated at an intersection over union (IoU) threshold of 0.50 (mAP50) is 0.679, and the mean average 
precision calculated at an IoU threshold of 50%-95% (mAP50-95) is 0.358. The study provides an important reference 
for the construction and performance evaluation of lateral movement models of vehicles in mixed-traffic flows. 
 
Keywords: Mixed-traffic flows, Lateral offset detection, YOLOv8, Traffic accident prevention 
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1. Introduction 
 
As a convenient means of transportation for short-distance 
commuting, electric two-wheelers are lightweight, low-
carbon, and environmentally friendly, and their usage cost is 
low. Constrained by economic or engineering conditions, 
different types of vehicles share a road surface in China [1], 
resulting in mixed-traffic flows composed of motorized and 
nonmotorized vehicles, such as electric two-wheelers that 
have been existing in China’s urban road network for a long 
time and have become a remarkable feature of urban road 
traffic in China. 

However, with the increase in the number of electric 
two-wheelers and motorized vehicle travel in recent years, 
the high acceleration and speed of electric two-wheelers 
have resulted in numerous traffic accidents. About 78% of 
injuries and fatalities involving electric two-wheelers occur 
in mixed-traffic sections of motorized and nonmotorized 
vehicles [2]. Evidently, mixed traffic poses potential safety 
hazards. 

To ensure the efficiency of driving and the safety of 
nonmotorized drivers, scholars have conducted numerous 
studies from the perspectives of active safety system 
optimization [3, 4], methodology application [5], and 
collision data feedback [6]; these perspectives involve active 
safety systems, precrash scenarios, and post-accident data 
summarization of electric two-wheelers and motorized 
vehicles. The safety of the mixed-traffic flow of electric 
two-wheelers and motorized vehicles has been effectively 
improved. However, many factors, such as traversing 
motorized two-wheelers, influence the safety of mixed-

traffic flow and increase the instability of traffic flow and 
collision risks. Therefore, how to observe and measure the 
offset of electric two-wheelers relative to motor vehicles and 
how to use the results for the assessment of traversal risks in 
traffic monitoring systems are urgent problems that need to 
be solved. This study proposed a deep learning-based 
detection model that aims to improve the safety and 
efficiency of electric vehicle avoidance behavior. A vehicle 
lateral offset volume model for mixed traffic of electric two-
wheelers and motor vehicles in on-street parking 
environments was established by focusing on lateral offset 
behavior. Through deep learning technology, electric two-
wheeler and motor vehicle streams were distinguished from 
traffic monitoring videos and a risk assessment was 
conducted based on the degree of traffic mixing and the 
density of traverse intrusion into motor vehicle lanes. 
Automatic warnings were issued by the model on the basis 
of real-time traffic conditions. These warnings can 
effectively reduce casualties caused by traffic accidents and 
improve urban traffic safety. 
 
 
2. State of the art  
 
Existing studies on vehicle lateral offset behaviors have 
examined autonomous driving technologies [7], early 
warning strategies [8], and detection methods [9]. However, 
imperfect technologies and growing demands bring 
considerable challenges to the modeling and control of 
vehicles that have lateral offset behaviors. 

With the development of autonomous driving technology, 
vehicle offset has gradually attracted the attention of 
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scholars. Tork et al. [10] used an adaptive improved neural 
transverse–longitudinal control system to control vehicle 
lateral offset and improve driving safety, but the system is 
only suitable for self-driving vehicles. Narayanan et al. [11] 
proposed an offset-based collision detection and avoidance 
system in curvilinear motion to avoid possible collisions of 
both-end vehicles; the system focuses on avoiding collisions 
in dense traffic. Hu et al. [12] established a lateral safety 
distance model by using the relative velocity and position of 
moving targets crossing roads and developed an obstacle 
avoidance algorithm on the basis of the lateral safety 
distance model. In their study, the influence of road 
conditions on the experiment was fully considered. However, 
the developed model is only applicable to active vehicle 
safety obstacle avoidance. Lyu et al. [13] established a 
trajectory prediction model based on long short-term 
memory by analyzing the feasibility of lane change and the 
change rate of lateral offset. After comparing the warning 
confusion matrix and warning time, they found that the 
proposed cut-through collision warning model is superior to 
the traditional collision warning model, but it is only 
applicable to active driver assistance systems that warn 
about the surrounding vehicles and traffic environment. 
Although the aforementioned autonomous driving 
technologies can actively avoid accidents, they are 
inapplicable to vehicles that do not have autonomous driving 
functions. 

At present, the effects of vehicle lateral deviation are still 
being explored, and warning strategies need to be further 
improved. Liu et al. [14] modeled and stimulated overtaking 
events of different types of nonmotorized vehicles on a 
mixed roadway and assessed the performance of different 
types of nonmotorized vehicles in terms of their lateral 
position. However, the model is only suitable for validation 
purposes. Kotagi et al. [15] analyzed the effects of vehicle 
lateral movement by modeling the lateral offset of vehicles 
in mixed traffic on an undivided urban roadway, but they 
focused only on real-world scenarios in India. Luan et al. [16] 
proposed a method that combines driver intent prediction 
and vehicle behavior recognition to predict vehicle lateral 
motion; the method achieves predictive results but relies 
heavily on driver information, such as age and personality. 
Kumar et al. [17] developed an Internet of Things-based 
sensor fusion vehicle accident detection and classification 
system that aims to reduce casualties and promote the 
progress of smart cities. However, the proposed model 
focuses on after-the-fact statistics. How to efficiently 
accomplish the recognition and detection of target vehicle 
crossing in real time has become the focus of current study. 

Improving the efficiency of identification and detection 
and identifying suitable detection methods for target vehicle 
traversal is the core of solving the current safety problem of 
lateral movement in mixed traffic. By conducting a survey 
of collision avoidance driving safety on the basis of sensing, 
vehicular communication, and artificial intelligence (AI), Fu 
et al. [18] compared the most common AI algorithms with 
different functions in a collision avoidance system, but the 
scalability and reliability of the algorithms were not assessed. 
Tavanti et al. [19] proposed a novel microwave radar-based 
technology for short-range detection and classification of 
multiple vehicle targets traversing a surveillance area. Guo 
et al. [20] predicted the lateral deviation trajectories of 
vehicles in a mixed human–motor vehicle driving 
environment by using millimeter-wave radar and sensors, 
such as Global Positioning System. However, other targets, 
such as nonmotorized vehicles, were not studied. Lin et al. 

[21] used millimeter-wave radar to collect continuous 
motion trajectories of targets, and their approach has 
superior tracking performance under lateral traffic 
interference. However, the sensor or radar is inferior to 
vision solutions in recognizing the type and characteristics 
of moving objects. 

In terms of vision schemes, Pawar et al. [22] proposed a 
deep learning-based road traffic accident detection and 
localization system for traffic surveillance videos; the 
system helps promote the development of traverse detection 
technology, but its real-time situational awareness is 
insufficient. Barbu [23] investigated deep learning-based 
multiscale video target detection and tracking, which can 
detect and track multiple vehicles automatically, but their 
focus on vehicle traversal in mixed-traffic flows was 
insufficient. On the basis of the improved You Only Look 
Once Version 5s (YOLOv5s) + DeepSort neural network, 
Deng [24] established a prediction model for vehicle 
detection and tracking. The model can detect violations of 
turning vehicles on the basis of speed, direction, and lateral 
displacement, and it focuses on reducing vehicle violations. 
Duman et al. [25] fine-tuned the YOLOv5 model by using 
unmanned aerial vehicle (UAV) images to realize real-time 
vehicle detection. The use of these images improves the 
architecture and performance of the model. However, the 
model depends on UAV aerial photography and is affected 
by extreme weather. Yi et al. [26] developed a collision 
warning system based on YOLOv5 that includes the 
judgment of dangerous areas caused by vehicle offset. The 
ability of the collision warning system was improved to 
perceive the surrounding environment, but the system was 
not compared with the subsequent model. 

The studies above focused on vehicle lateral offset in 
different models or systems. The new generation of vision 
programs with high real-time performance was not 
investigated, and only a few studies used You Only Look 
Once Version 8 (YOLOv8) model programs in vehicle 
lateral offset detection. In this study, the YOLOv8 algorithm 
was employed to establish a model for lateral offset risk 
recognition of two-wheelers and motor vehicles in mixed 
traffic, and the training results were analyzed using images 
such as labeled images, training result images, and model 
curves. The application effect of the model in actual traffic 
monitoring scenarios was evaluated based on standard 
indices, such as precision, recall, and average precision. The 
results provide a basis for the optimization and 
experimentation of deep learning-based lateral offset risk 
recognition in mixed-traffic flows. 

The remainder of this study is organized as follows. 
Section 3 describes the data acquisition process and image 
labeling method and shows the operating environment of the 
model and the training method of the dataset. A model of 
lateral offset risk recognition in mixed traffic is established 
by analyzing the characteristics of motor vehicle lateral 
offset avoidance behavior. Section 4 shows the training 
results of the model obtained by analyzing images, such as 
labeled images, training result graphs, and model curves. 
The model is evaluated with standard indices, such as 
precision, recall, and average precision, and the accuracy 
and reliability of the model are verified. Section 5 
summarizes the study and presents relevant conclusions. 
 
 
3. Methodology  
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3.1 Dataset preparation 
In the development and optimization of a traffic safety 
monitoring and warning system for two-wheelers and motor 
vehicles in a mixed-traffic flow, representative and sufficient 
training-set samples can effectively improve the prediction 
accuracy and stability. 

Given the complex operating environment, this study 
constructed a dataset of two-wheelers and motorized 
vehicles in a mixed-traffic flow. In the experiment, with the 
specific road traffic system in Xuzhou City as the research 
object, existing traffic equipment and surveillance cameras 
were used to obtain actual traffic images in a mixed-traffic 
flow. The images were collected in mid-April 2023. After 
the sample data were collected and analyzed, necessary 
adjustments were made to the image samples. The collected 
images were screened to remove blurred or duplicate images. 
This process ensures stability during model training and 
avoids overfitting. A total of 738 high-quality images were 
retained. The images were randomly divided into training 
and validation sets at a ratio of 8:2. When motorized two-
wheelers and motorized vehicles were close to each other 
and had obvious angles, they were considered to be 
transverse, and the vehicles in this area were annotated. If no 
obvious angle was observed between close motorized two-
wheelers and motorized vehicles, traffic was considered 
normal, and the vehicles were annotated accordingly. The 
open-source visual annotation tool LabelImg [27] was 
utilized, and a maximum horizontal rectangular box was 
used to frame the image area at multiple angles. The data 
were saved in PASCAL VOC format. By using the training-
set samples, this study trained machine learning models that 
could accurately recognize and predict warning scenes. 

 
3.2 Dataset training 
The environment configuration provided the study with 
stable, efficient computational resources to support the 
complex computational requirements of model training and 
evaluation. The experimental environment was based on the 
Ubuntu 18.04.5 long-term support operating system with the 
kernel version of GNU/Linux (5.4.0-42-generic) and the 
Python programming language (version 3.8.19). The deep 
learning framework was PyTorch 2.0.0, which operates on a 
Tesla T4 GPU hardware-accelerated platform, and the 
CUDA version was 12.0. 

The You Only Look Once Version 8n (YOLOv8n) 
model was applied to perform the target detection task by 
using a customized dataset. A pretrained YOLOv8n.pt 
model was adopted as a starting point, and the key 
parameters during the training process included the number 
of samples per batch (i.e., 4). The input image size was set to 
640 × 640 pixels. The initial learning rate was set to 0.01, 
and the learning rate scheduling strategy based on a cosine 
function was adopted to optimize the convergence speed and 
performance of the model. The optimizer used an adaptive 
configuration, and the training process lasted for 300 epochs. 
For data enhancement, various techniques, such as random 
transformation, color warping, and blending, were employed 
to enhance the scene diversion generalization ability of the 
model. Mixed precision training was applied to enhance the 
computation speed while reducing the memory footprint to 
further enhance the training effect. In addition, a 
nonmaximal suppression (NMS) algorithm was 
implemented to improve the accuracy and stability of the 
detection results and ensure that the output bounding box 
and category predictions meet the expected requirements. 
Detailed log records and performance graphs were obtained 

during the training process for subsequent result analysis and 
presentation. 

During the training process, a validation set and 
corresponding evaluation metrics, such as an intersection-
over-union (IoU) threshold of 0.7 and maximum number of 
detections equals to 300, were set to verify the 
generalization ability of the model. These steps helped in the 
comprehensive performance evaluation and result analysis at 
the end of the training. The training goal was to enable the 
YOLOv8n model to achieve excellent results in vehicle 
traverse detection through effective hyperparameter tuning 
and data processing techniques. 

 
3.3 Modeling of lateral offset in mixed-traffic flow 
In restricted road spaces, such as streets with on-street 
parking, drivers of two-wheelers illegally occupy other lanes 
because of the need for lateral safety space, resulting in 
lateral friction interference that affects the speed of 
motorized vehicles. Therefore, the effects of different traffic 
factors on motorized and nonmotorized vehicle behaviors 
were studied prior to modeling. The causes of nonmotorized 
lane encroachment were observed in surveillance videos and 
categorized into natural and human factors, and appropriate 
remedial strategies were developed. Presupposing such 
problems helps in the micro modeling and simulation of 
vehicle behaviors in mixed-traffic flows. 

Model reliability depends on the accuracy of traffic 
simulation, so samples need to be obtained from the field. 
Various traffic data acquired from the Xuzhou 
Transportation Department were the basis for calibrating and 
validating the model parameters in this study. A model study 
was performed on a real system to realize real-system 
modeling. The results of the actual system were observed, 
collected, analyzed, and used to calibrate and validate the 
model. The mixed-traffic lateral-offset-behavior model 
employed the YOLOv8n algorithm to model the lateral 
offset behavior between motorized and nonmotorized 
vehicles and was implemented in the system. The core 
objective of the model was to reduce accidents caused by 
vehicle lateral offset. First, traffic surveillance videos of the 
corresponding road section were collected through cameras 
or drones at the intersection, and from them, the picture 
frames containing the traveling status of motorized and 
nonmotorized vehicles were obtained. Second, the image 
frames that had undergone data cleaning and processing 
were labeled to generate a dataset unique to the road section. 
Third, the system environment and training dataset were 
configured to improve the ability of the model to recognize 
the risk of lateral offset or normal traffic flow. Last, in 
combination with the trained model data, the model was 
deployed and operated on edge-computing servers and 
processed based on the feedback. The model provides real-
time alerts so that relevant personnel can deal with the risks 
of vehicle lateral offset in a timely manner, thereby reducing 
the complexity and danger of urban roadway conditions, 
shortening the vehicle passing time, alleviating congestion, 
and safeguarding the safety of citizens. The mixed traffic 
lateral offset model is shown in Fig. 1. 

This design utilized the YOLOv8n algorithm to perform 
vehicle detection and tracking. The algorithm divides the 
input image into multiple grids, each of which is responsible 
for recognizing and predicting the type of object inside it. 
The NMS technique is used to minimize repetition and 
excessive overlap between bounding boxes. The network 
architecture of YOLOv8n consists of a convolution module, 
a cross-stage partial bottleneck with two convolutions (C2f) 
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module, and a spatial pyramid pooling fast (SPPF) module. 
The main role of the SPPF module is to integrate the 
multiscale features and effectively extract local and global 
features of the target. Although the C2f module can 

effectively improve the overall accuracy, its effectiveness in 
detecting small or partially occluded targets still needs to be 
enhanced. The network model of YOLOv8n is shown in Fig. 
2. 

 
Fig. 1.  Mixed traffic lateral offset model 

  

Fig. 2.  Mixed traffic lateral offset model 
 
The vehicle lateral offset problem can be investigated 

thoroughly by pre-studying different traffic factors and 
analyzing detailed surveillance data. In this study, the 
dataset was trained to obtain training charts for adjusting the 
training parameters of the model. The traffic risks of lateral 
offset can be assessed in real time by using the advanced 
YOLOv8n algorithm to detect and track vehicles. With the 
help of timely warning and treatment solutions, traffic 
accidents can be effectively decreased to improve the overall 
efficiency and safety of urban transportation. 

The lateral relationship between vehicles can be 
understood accurately by studying lateral no-deviation 
behavior, and the change trend of traffic flow can be further 
analyzed. This method can improve the accuracy and 
response speed of traffic monitoring systems and provide 
strong support for urban traffic management to ensure traffic 
safety and smooth flow. System monitoring accuracy is 

improved, and potential safety hazards caused by lateral 
offset can be detected and resolved in a timely manner. The 
lateral-offset-free behavior model is a powerful tool for 
traffic managers to formulate effective traffic planning and 
management strategies. The data output of this model not 
only considerably improves the monitoring and warning of 
traffic flows, but also supports the intelligent development of 
urban transportation planning. 
 
4. Result Analysis and Discussion 
 
4.1 Dataset labeling analysis 
On the basis of the dataset constructed in Section 3.1, this 
section presents the object instance distribution in the dataset 
and a location analysis. The dataset has normal and shifting 
instance distributions. Given that the percentage of normal-
traveling electric two-wheelers and motorized vehicles is 
high, the number of object instances in the normal category 
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is much higher than that in the shifting category, indicating 
that the dataset is captured frequently at regular locations of 
the objects. An uneven distribution may affect model 
training, making the model demonstrate improved object 
recognition performance in the normal category. The upper-
right part of the labeling image shows the variation in the 
density and location of the bounding boxes and the spatial 
consistency and trend of the objects in the dataset. Most of 
the bounding boxes are concentrated in a particular region, 
showing high spatial concentration, because of the fixed 
location of the objects in a particular position in the scene. 
The following scatter plots present the normalized position 
(x and y coordinates) and size (width and height) of the 
objects. These plots also show the generalized position and 
size distribution of the objects in the images and provide 
data support for adjusting the sense field and anchor frame 
size in the target detection algorithm. In this way, the 
algorithm can be optimized effectively for target objects of 
different sizes and locations, which in turn improves 
detection accuracy and robustness. The labeling images are 
shown in Fig. 3. 
 

 
Fig. 3.  Labels 
 

As indicated in Fig. 4, the label correlation map provides 
complex data visualization of the multivariate distribution 
and a univariate histogram, which can be used to analyze the 
spatial distribution and dimensional characteristics of targets 
in a target detection dataset. The combined analysis of the 
scatter plots and histograms for each dimension provides 
insights into the statistical characteristics of the target 
position (x and y coordinates) and size (width and height) in 
the image. The histogram of the y coordinates shows that the 
targets are mainly concentrated in the middle region 
vertically, indicating that most of the targets are in the center 
of the image. The distribution of the x coordinate shows a 
similar concentration tendency but is slightly more dispersed 
than the distribution of the y coordinate, which may be 
related to the image shooting angle or target movement. 
Meanwhile, the histograms of width and height show a 
skewed distribution and the distribution of width is 
concentrated, whereas the distribution of height is dispersed. 
These distribution characteristics may be related to the target 
vehicle and shooting distance. The results of the analysis of 
the distribution plots can be used to adjust the size and 

proportion of the anchor frame in the target detection 
algorithm to effectively adapt to the actual distribution of 
targets in the dataset. In addition, the target detection model 
can be further optimized to improve its detection accuracy 
and robustness for targets of different sizes and locations by 
comprehensively analyzing the joint distribution of x and y 
coordinates and the aspect ratio. 
 

 
Fig. 4.  Labels’ correlogram 

 
4.2 Model graphical analysis 
On the basis of the experimental environment and training 
method in Section 3.2, the YOLOv8n model was used for 
training and validation. During the training process, the 
bounding box loss (box_loss), category loss (cls_loss), and 
direction loss (dfl_loss) decreased considerably with the 
increase in the training period, indicating that the model was 
stable and that its effectiveness gradually improved during 
the continuous learning process. With regard to the direction 
loss, the loss of the training set decreased from nearly 1.8 to 
about 0.4, indicating an excellent learning effect. However, 
the decrement trend of the bounding box and direction losses 
at the validation phase was not as stable as that at the 
training phase, and both of them fluctuated at the late 
training stage. Meanwhile, the category loss on the 
validation set stabilized and gradually decreased after the 
initial fluctuation, indicating that the model was robust in 
category judgment. In terms of the performance indices, the 
model had good performance in precision and recall. The 
mean average precision calculated at an IoU threshold of 
0.50 (mAP@0.5) was about 68%, and the mean average 
precision averaged over an IoU threshold of 50%–95% 
(mAP@0.5-0.95) exceeded 30%, reflecting the model’s 
detection ability under different IoU thresholds. These 
results confirm that the model has a strong generalization 
ability and reliable performance, and it is applicable to 
practical target detection scenarios. The variation of each 
loss and performance index is shown in Fig. 5. 

The precision–confidence curve (P_curve) shows the 
change in the accuracy of a model under different 
confidence thresholds. The accuracy and usefulness of 
detection can be balanced by choosing an appropriate 
confidence threshold. In the curve, the horizontal axis 
represents the confidence threshold, and the vertical axis 
represents the corresponding accuracy value. The curves 
indicate that the accuracy of both categories gradually 



Likai Wang, Ping Cui, Weiwei Liu and Nan Zhou/Journal of Engineering Science and Technology Review 17 (4) (2024) 119 - 127 

 124 

increased with the increase in the confidence threshold, 
showing that the model could recognize the target with high 
confidence. In addition, the accuracy of all categories 
reached 1 at a confidence level of about 0.916, indicating 

that the model could recognize targets in all categories with 
high accuracy above this threshold. The P_curve plot is 
shown in Fig. 6. 
 

 

 
Fig. 5.  Result graph 
 

 
Fig. 6.  P_curve graph 
 

The recall–confidence curve (R_curve) reflects the 
detection recall of a target by a target detection model at 
different confidence thresholds. Recall measures the model’s 
ability to identify all positive samples, and the confidence 
threshold affects the choice of model predictions. As shown 
in the figure, recall decreased as the confidence threshold 
increased because a high confidence threshold allows a 
model to make predictions only when it is confident, thus 
reducing the number of predictions but increasing the 
precision of the predictions. Furthermore, recall decreased 
dramatically to 0 at a confidence level of 0.81 for all 
categories. This phenomenon indicates that an appropriate 
confidence threshold must be selected in applications to 
ensure that the system does not miss too many real targets 
nor make too much false detection. Therefore, in traffic 
safety monitoring scenarios, careful analysis of the recall–
confidence curve and fine-tuning and optimization of the 
target detection model are crucial to achieving an efficient 
detection system. The R_curve plot is shown in Fig. 7. 

 

 
Fig. 7.  R_curve graph 
 

The F1-confidence curve (F1_curve plot) is used to 
evaluate the comprehensive performance of a target 
detection model at different confidence thresholds. The F1 
score is a standard measure of categorization. It is a function 
of the harmonic mean of precision and recall between 0 and 
1. As shown by the curves, the F1 scores for all categories 
increased rapidly to a peak at low confidence levels then 
gradually declined with increasing confidence. This trend 
suggests that although low confidence leads to high recall, 
accuracy is low. Although accuracy increased as confidence 
increased, the decrease in recall led to an overall decrease in 
the F1 scores. In addition, the F1 scores for all categories 
reached a maximum of 0.65 at a confidence level of about 
0.076, indicating that performance reached a balanced 
optimum at this threshold. The F1_curve plot is shown in 
Fig. 8. 
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Fig. 8.  F1_curve graph 
 

The precision–recall curve (PR_curve) reflects a model’s 
ability to recognize positive samples by showing the 
precision that the model can achieve at different recall levels. 
As shown in the figure, the precision of the two categories 
gradually decreased as recall increased. Specifically, the 
maximum mAP@0.5 of the normal and shifting categories 
was 0.693 and 0.681, respectively, indicating that the 
detection performance of the normal category was slightly 
better than that of the shifting category at the standard IoU 
threshold of 0.5. The difference in performance may be 
related to the sample distribution, sample quality, or 
variability of the two categories in the training data. The 
normal category made model learning easy because of its 
large number of samples and low variability, so it performed 
well in the detection task. The shifting category posed 
challenges to model learning because of the high variability 
in location or morphology. Overall, the average accuracy 
(mAP@0.5) of all the categories was 0.687, showing the 
high robustness of the model in the recognition of 
multicategory targets under the current configuration. These 
results provide important references for further optimizing 
the model parameters, improving the training strategy, and 
adjusting the category balance to achieve good detection 
performance and application results. The PR_curve plot is 
given in Fig. 9. 

 
4.3 Detection results 
On the basis of the lateral offset model for mixed-traffic 
flow constructed in Section 3.3, this study evaluated the 
detection performance of the vehicle lateral movement 
model in mixed-traffic flow. The performance evaluation 
indices of the model included detection precision, recall, and 
average precision (AP). The definitions of the three indices 
are shown in Eqs. (1), (2), and (3), where TP denotes the 
number of targets detected by the model and recognized 
correctly, false positive (FP) is the number of incorrectly 
detected samples, and false negative (FN) refers to the 
number of the targets not detected by the model. 

 

                                     (1) 
 

                                       (2) 

 
                                      (3) 

 

 
Fig. 9.  PR_curve graph 
 
 

Detection precision can measure the ratio of correctly 
detected targets to all detected targets in the detection results. 
The higher the precision rate is, the lower the proportion of 
false alarms is among the objects detected by the model. 
Recall can measure the ratio of targets correctly detected by 
the model to all true targets. A high recall value means that 
the model misses a few detected targets only. mAP50 
represents the average precision when the IoU ratio is 0.5. 
The IoU ratio is a metric used to measure the overlap 
between the predicted bounding box and the true bounding 
box. mAP50-95 is a comprehensive metric that is typically 
used to calculate the average mAP for all IoU thresholds 
from 0.5 to 0.95. The index considers not only loose IoUs, 
but also tight IoUs, thus allowing for a comprehensive 
assessment of model performance under overlap conditions 
of varying stringency. The test results are shown in Table 1. 
 
Table 1. Test results 

Class Precision Recall mAP50 mAP50-95 
All 0.636 0.674 0.688 0.331 

Normal 0.634 0.721 0.696 0.304 
Shifting 0.638 0.626 0.679 0.358 

 
The detection results showed that the detection accuracy 

for electric two-wheelers and nonmotorized vehicles 
approaching but passing normally in the mixed-traffic flow 
was 0.634, the recall value was 0.721, mAP50 was 0.696, 
and mAP50-95 was 0.304. The detection accuracy, recall, 
mAP50, and mAP50-95 for shifting were 0.638, 0.626, 
0.679, and 0.358, respectively. Although the model can 
provide accuracy and coverage when detecting the lateral 
offset of electric two-wheelers and nonmotorized vehicles, it 
needs to be further optimized. 

Lateral offset detection in mixed-traffic flow can 
effectively identify the transverse movements of motorized 
and nonmotorized vehicles in mixed traffic on a motorway. 
The detection effect is shown in Fig. 10. 
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Fig. 10.  Detection effect 
 
5. Conclusions 
 
To explore the lateral offset characteristics of vehicles and 
reduce the traffic congestion and safety risks caused by 
lateral offset, this study trained a model of vehicle lateral 
offset in mixed-traffic flow via the collection and processing 
of traffic data from specific road sections. The dataset labels 
and the charts involved were analyzed to study the detection 
effect. The following conclusions could be drawn: 

(1) YOLOv8n can effectively provide real-time warning 
on the basis of the data from traffic surveillance cameras, 
and it can be used to study vehicle lateral offset models in 
mixed-traffic flows. 

(2) The category loss on the validation set stabilizes and 
gradually decreases after initial fluctuations, indicating that 
the vehicle lateral offset model is suitable for category 
judgment. 

(3) The performance index of mAP@0.5 of the vehicle 
lateral offset model is about 68%, and the performance index 
of mAP@0.5-0.95 is above 30%. These values show the 
model’s detection ability under different IoU thresholds. The 
model has a strong generalization ability and reliable 
performance. 

By combining deep learning algorithms and practical 
applications of traffic monitoring, this study proposed a new 
method for vehicle lateral offset detection. The model can be 
used for traffic traverse detection. However, the trained 
model has some deficiencies. When the target detection 
image contains targets of different sizes, small targets are 
not detected because of the fixed sensing field and the low 
resolution of the extracted feature maps. Vehicle tracking 
suffers from tracking target loss under occlusion. In the 
future, the model must be further optimized and tested with 
additional real data to improve its applicability and enhance 
its detection capability. 
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